
W[2]-hardness of Precedence Constrained
K-processor Scheduling

Hans L. Bodlaender
�

Michael R. Fellows
y

Abstract

It is shown that the Precedence Constrained K-Processor

Scheduling problem is W [2]-hard. This means that there does
not exist a constant c, such that for all �xed K, the Precedence

Constrained K-Processor Scheduling problem can be solved
in O(nc) time, unless an unlikely collapse occurs in the parameter-
ized complexity hierarchy introduced by Downey and Fellows (see [5]).
That is, if the problem can be solved in polynomial time for each �xed
K, then it is likely that the degree of the running time polynomial must
increase as the number of processors K increases.

1 Introduction

The Precedence Constrained K-Processor Scheduling problem is
a well studied problem. In this problem, we look for a schedule of a set of unit
length tasks T on a set of K processors, that meets a given deadline D, and
satis�es a given partial order on the set of tasks T . In practical situations the
set of tasks will normally be much larger than the set of processors. Thus it

�Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB The
Netherlands. The research of this author was partially supported by the ESPRIT II Basic
Research Actions of the EC under Contract No. 3075 (project ALCOM). hansb@cs.ruu.nl

yComputer Science Department, University of Victoria, Victoria, British Columbia
V8W 3P6, Canada. Research supported in part by the National Science and Engineering
Council of Canada and by the United States National Science Foundation under grant
MIP-8919312. mfellows@csr.uvic.ca

1



is an interesting problem is to look for e�cient scheduling algorithms when
the number of processors K is a �xed integer. So far, a polynomial time
algorithm is known only for the case of K = 2 [7], and the question whether
there exists a polynomial time algorithm for this problem for each �xed K

is a famous open problem. (See e.g. [8], [OPEN 8].) If K is variable, then
the problem is NP-hard. Many special cases have been investigated; see e.g.
[9] for an overview.

Although it is often believed that `polynomial time' is a synonym for
`practical', this is not always the case. Polynomial time algorithms with a
running time of �(nK) will be slow, even for very small values of K. This ob-
servation motivates the study of the structural complexity of parameterized
problems: problems that have as part of their input a parameter, usually an
integer in N+. For some parameterized problems that are solvable in poly-
nomial time for a �xed parameter K, there exists a constant c, such that for
all �xed K, there exists an algorithm for the problem with �xed parameter
K, that runs in time O(nc). This (desirable) complexity behaviour is termed
�xed-parameter tractability. For other parameterized problems, it seems that
the degrees of the polynomials bounding the running times must depend
on K. Well-known examples of the former include K-Vertex Cover and
K-Min Cut Linear Arrangement (see [8] for the de�nitions). Each of
these is solvable in linear time for each �xed K. Examples of the latter in-
clude K-Dominating Set and K-Bandwidth, for which the best known
algorithms require time 
(nK) and are based on forms of exhaustive search.
The di�erence between these two kinds of complexity behaviour is reminis-
cent of the contrast we often see between problems in P and problems which
are NP -complete, with the latter often solvable (apparently) only by means
of (exponential) exhaustive search.

Just as the theory of NP-completeness can be used to show that problems
are unlikely to be solvable in polynomial time, the theory of �xed parameter
complexity, introduced in [5], can be used to demonstrate the unlikelihood
of �xed-parameter tractability. Some of the basic notions of this theory are
reviewed in Section 2.

The main result of this paper is that the Precedence Constrained

K-Processor Scheduling problem is hard for the complexity class W [2].
This means that it is most likely that if the problem is solvable in polynomial
time for �xed K, then the problem exhibits the second type of behavior, i.e.,
that it is unlikely that there exists a c, such that for each �xed K, there

2



exists an O(nc) algorithm for the problem. Namely, if such an algorithm
would exist for Precedence Constrained K-Processor Scheduling,
this would imply such algorithms for all problems in the parameterized com-
plexity classes W [1] andW [2], including K-Independent Set, K-Clique,
K-Perfect Code, K-Subset Sum, K-Subset Product, K-Square
Tiling, and K-Step Halting Problem for Nondeterministic Tur-

ing Machines [3, 4, 5, 6]. Although we do not solve the problem [OPEN 8]
from [8], our result can be interpreted as bearing on the practical signi�cance
of this problem, showing that even if there is no particular K for which the
problem is NP-complete, it is still likely to be computationally intractable
for the �xed parameter values that are important in many applications.

2 De�nitions

In this section we give some of the basic de�nitions from the theory of �xed
parameter intractability. We also give the formal de�nition of the Prece-
dence Constrained K-Processor Scheduling problem:

Precedence Constrained K-Processor Scheduling

Instance: Set T of unit length tasks, partial order � on T , a
deadline D 2 N+, number of processors K 2 N+.

Question: Does there exist a mapping f : T ! f1; : : : ; Dg, such
that for all t; t0 2 T : t � t0 ) f(t) < f(t0), and for all i,
1 � i � D: jf�1(i)j � K?

Parameter: K.

A parameterized problem is a set L � ����� where � is a �xed alphabet.
For convenience, we consider that a parameterized problem L is a subset of
L � �� � N+. For a parameterized problem L and K 2 N+ we write LK

to denote the associated �xed-parameter problem LK = fxj(x;K) 2 Lg. We
say that a parameterized problem L is (uniformly) �xed-parameter tractable
if there is a constant c and an algorithm � such that � decides if (x;K) 2 L

in time f(K)jxjc where f : N+ ! N+ is an arbitrary function. Let A;B be
parameterized problems. We say that A is (uniformly many:1) reducible to
B if there is an algorithm � which transforms (x;K) into (x0; g(K)) in time
f(K)jxjc, where f; g : N+ ! N+ are arbitrary functions and c is a constant
independent of K, so that (x;K) 2 A if and only if (x0; g(K)) 2 B.

3



In [5], Downey and Fellows de�ne complexity classes FPT , W [1], W [2],
: : : , W [P ], where FPT is the class of �xed-parameter tractable problems.
The following containment relations hold:

FTP � W [1] � W [2] � : : : � W [P ]

Problems that are hard for W [1] (and hence problems hard for any larger
class) are believed not to be �xed-parameter tractable. However, showing
that the W hierarchy is proper would be very hard, as this would imply
P 6= NP . Thus a completeness theory for exploring the issue of �xed-
parameter tractability is a reasonable way to proceed. It can be shown that
if the W hierarchy collapses, then a strong quantitative form of the P 6= NP

conjecture fails [1].

A set of vertices W � V is a dominating set of an undirected graph
G = (V;E), if for all v 2 V , either v 2 W or v is adjacent to a vertex
w 2 W . The Dominating Set problem is the following:

Dominating Set

Instance: Undirected graph G = (V;E), integer K 2 N+.
Question: DoesG have a dominating setW � V with jW j � K?
Parameter: K.

Our main result relies on the following theorem from [5].

Theorem 1 Dominating Set is complete for the class W [2].

3 Main Result

Theorem 2 Precedence Constrained K-Processor Scheduling is
W [2]-hard.

Proof: We transform from Dominating Set. Let (G = (V;E),
k) be an instance to Dominating Set. Suppose jV j = n, and write
V = fv0; : : : ; vn�1g.

Write c = n2 + 1. Take D = (k � n) � c+ 2n, and take K = 2k + 1.
We now de�ne a directed acyclic graph H = (W;F ). H consists of the

following parts:

4



The 
oor Take a path with lengthD: take vertices fa1; : : : ; aDg, and edges
(ai; ai+1) for all i, 1 � i � D � 1.

The 
oor gadgets `Parallel' to each 
oor vertex of the form an�1+��c+in,
1 � i � n, 0 � � � kn � 1, we take a 
oor gadget vertex: take vertices
fbn�1+��c+in j 1 � i � n; 0 � � � kn� 1g = B, and add edges: (ai�1; bi) and
(bi; ai+1) for all bi 2 B.

The selector paths For each i, 1 � i � k, we take a path of length
D � n + 1. This path will represent the ith vertex from a dominating set of
G. Take vertices fci;j j 1 � i � k; 1 � j � D� ng, and edges (ci;j; ci;j+1) for
all i, 1 � i � k, j, 1 � j � D � n.

The selector gadgets If i 6= j and (vi; vj) 62 E, then we take a vertex,
which is put `parallel' to cr;n�1+��c+in�j, for all �, 1 � � � k �n, r, 1 � r � k.
Take vertices fdr;n�1+��c+in�j j 1 � r � k; 1 � i � n; 1 � j � n; i 6=
j; (vi; vj) 62 E; 1 � � � kng = D, and for each vertex dr;� 2 D, add edges
(cr;��1; dr;�) and (dr;�; cr;�+1).

Let H = (W;F ) be the directed acyclic graph (dag) resulting from this
construction. Let � � W �W be the transitive closure of F , i.e, let v � w,
if and only if there exists a path from v to w in H.

Claim 3 Task set W with partial order �, deadline D, and number of pro-
cessors K, is a yes-instance to Precedence Constrained K-Processor

Scheduling, if and only if G has a dominating set of size at least k.

Proof: (: Suppose fv
1 ; : : : ; v
kg � V is a dominating set of size k of G.
Consider the following schedule f of W :

ai = i (1 � i � D)

bi = i (bi 2 B)

ci;j = j + 
i (1 � i � D � n)

di;j = j + 
i (di;j 2 D)

Clearly f satis�es the precedence constraints. To an integer i, not of the
form n � 1 + � � c + jn (1 � j � n, 1 � � � kn), one 
oor vertex, no 
oor

5



gadget vertex, at most k selector path vertices, and at most k selector gadget
vertices are mapped, so for such i, jf�1(i)j � 2k + 1 = K.

Look at i of the form n� 1 + � � c+ jn with 1 � j � n, 1 � � � kn. As
fv
1 ; : : : ; v
kg is a dominating set of G, there are two cases:

Case 1: vp is in the dominating set, i.e., p = 
q, 1 � q � k. As
dq;n�1+��c+pn�p does not exist in D, at most k� 1 selector gadget vertices are
mapped to i = n � 1 + � � n2 + pn � p + 
q. The total number of vertices
mapped to i hence is at most K. (The other vertices mapped to i are: at
most one 
oor vertex, one 
oor gadget vertex, and k selector path vertices.)

Case 2: vp is adjacent to vertex v
q , 1 � q � k. Now dq;n�1+��c+pn�
q does
not exist in D, so again at most k� 1 selector gadget vertices are mapped to
i.

): Suppose f : W ! f1; : : : ; Dg is a schedule, ful�lling the required
properties. First, as the length of the 
oor path equals the deadline D, it
follows that we have for all i, 1 � i � D:

f(ai) = i

For 
oor gadget vertices, only one possibility is now left:

f(bi) = i

Call the interval [n�1+(i�1)c+1; n�1+ ic] the ith range (1 � i � kn).
We say that the ith range is polluted by the jth selector path, when there
exist an integer in this range to which no vertex on this jth selector path is
mapped, i.e., when there exists an x, n� 1 + (i� 1)c + 1 � x � n� 1 + ic,
with f�1(x) \ fcj;j0 j 1 � j 0 � D � n + 1g = ;. As each selector path has
length D � n + 1, it can pollute only n � 1 ranges. The total number of
polluted ranges hence is at most kn � k, so there is at least one range that
is not polluted, say the �th range [n� 1 + (� � 1)c+ 1; n� 1 + �c]. We now
de�ne numbers 
1; : : : ; 
k, such that

f(ci;n�1+(��1)c+1�
i) = n� 1 + (� � 1)c+ 1

Note that by the discussion above, 
1; : : : ; 
k are uniquely de�ned. It easily
follows that for all selector path vertices, the following holds:

j � f(ci;j) � j + n� 1

6



So, f
1; : : : ; 
kg � f0; : : : ; n� 1g.
Now, we show that for all q, vq belongs to the set fv
1 ; : : : ; v
kg, or is

adjacent to a vertex in this set. As shorthand notation, we write z = n�1+
(� � 1)c+ qn. Look at X = f�1(z). Note that the set X contains one 
oor
vertex, one 
oor gadget vertex, and k selector path vertices. So, it can contain
at most k� 1 selector gadget vertices. So, there is an l, 1 � l � k, such that
X does not contain any vertex of the form dl;�. We claim that dl;z�
l does
not exist in D: Note that f(cl;z�
l�1) = z� 1, f(cl;z�
l+1) = z+1. So, dl;z�
l

does not exist in D, otherwise it would be mapped to z. As dl;n�1+(��1)c+qn�
l

does not exist in D, we have that 
l = q, or (v
l; vq) 2 E. It follows that
fv
1 ; : : : ; v
kg is a dominating set of G. 2

The theorem follows directly by Claim 3, and Theorem 1. 2

4 Conclusions

The main result of this paper indicates that Precedence Constrained

K-Processor Scheduling is unlikely to be �xed-parameter tractable.
In practical terms, this means, that even if the problem were found to be
polynomial-time solvable for �xed numbers of processors, the problem still is
likely to be impractically hard for small values of K.

We feel that this result is a nice example of the use of a powerful and
interesting new tool for the complexity analysis of practical problems.

Acknowledgement
We would like to thank Gene Lawler for stimulating our work on this

problem by asking, some years ago, whether it might be �xed-parameter
tractable by means of RS posets.

References

[1] K. Abrahamson, R. Downey and M. Fellows. Fixed-Parameter In-
tractability II. Proceedings of the 10th Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 374-385, Springer-Verlag, Lecture
Notes in Computer Science, 1993.

7



[2] H. Bodlaender, M. Fellows and M. Hallett. Beyond NP-completeness for
problems of bounded width: hardness for the W hierarchy. To appear,
Proceedings of the 26th ACM Symposium on the Theory of Computing,
1994.

[3] L. Cai, J. Chen, R. Downey and M. Fellows. The parameterized com-
plexity of short computations and factorization. University of Victoria,
Technical Report, Department of Computer Science, July, 1993.

[4] R. Downey, P. Evans and M. Fellows. Parameterized learning com-
plexity. Proc. Sixth ACM Workshop on Computational Learning Theory
(COLT), pp. 51{57, ACM Press, 1993.

[5] R. Downey and M. Fellows. Fixed-parameter intractability (extended
abstract). In Proceedings of the Seventh Annual Conference on Structure
in Complexity Theory, pp. 36{49, IEEE Computer Society Press, Los
Alamitos, CA, 1992. Final version to appear in SIAM J. Comp.

[6] R. Downey, M. Fellows, B. Kapron, M. Hallett and H.T. Wareham. The
parameterized complexity of some problems in logic and linguistics. To
appear in Proceedings of Symposium on Logical Foundations of Com-
puter Science (LFCS'94), Springer-Verlag, Lecture Notes in Computer
Science, 1994.

[7] M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equiv-
alent processors. SIAM J. Appl. Math., 17 (1969), 784{789. Erratum.
SIAM J. Appl. Math. 20 (1971), 141.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[9] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.
Sequencing and scheduling: Algorithms and complexity. In S. G. et al,
editor, Handbooks in OR & MS, Vol. 4, pages 445{522. Elsevier Science
Publishers, 1993.

8


