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ABSTRACT

In this paper we investigate the concept of simple termination. A term rewriting
system is called simply terminating if its termination can be proved by means of a
simpli�cation order. The basic ingredient of a simpli�cation order is the subterm
property, but in the literature two di�erent de�nitions are given: one based on (strict)
partial orders and another one based on preorders (or quasi-orders). In the �rst part
of the paper we argue that there is no reason to choose the second one, while the
�rst one has certain advantages.

Simpli�cation orders are known to be well-founded orders on terms over a �nite
signature. This important result no longer holds if we consider in�nite signatures.
Nevertheless, well-known simpli�cation orders like the recursive path order are also
well-founded on terms over in�nite signatures, provided the underlying precedence
is well-founded. We propose a new de�nition of simpli�cation order, which coincides
with the old one (based on partial orders) in case of �nite signatures, but which is
also well-founded over in�nite signatures and covers orders like the recursive path
order.
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1. Introduction

One of the main problems in the theory of term rewriting is the detection of termination: for
a �xed system of rewrite rules, determine whether there exist in�nite reduction sequences or
not. Huet and Lankford [9] showed that this problem is undecidable in general. However,
there are several methods for deciding termination that are successful for many special cases.
A well-known method for proving termination is the recursive path order (Dershowitz [2]). The
basic idea of such a path order is that, starting from a given order (the so-called precedence)
on the operation symbols, in a recursive way a well-founded order on terms is de�ned. If every
reduction step in a term rewriting system corresponds to a decrease according this order, one can
conclude that the system is terminating. If the order is closed under contexts and substitutions
then the decrease only has to be checked for the rewrite rules instead of all reduction steps. The
bottleneck of this kind of method is how to prove that a relation de�ned recursively on terms is
indeed a well-founded order. Proving irre
exivity and transitivity often turns out to be feasible,
using some induction and case analysis. However, when stating an arbitrary recursive de�nition
of such an order, well-foundedness is very hard to prove directly. Fortunately, the powerful
Tree Theorem of Kruskal implies that if the order satis�es some simpli�cation property, well-
foundedness is obtained for free. An order satisfying this property is called a simpli�cation

order. This notion of simpli�cation comprises two ingredients:
� a term decreases by removing parts of it, and
� a term decreases by replacing an operation symbol with a smaller (according to the prece-

dence) one.
If the signature is in�nite, both of these ingredients are essential for the applicability of Kruskal's
Tree Theorem. It is amazing, however, that in the term rewriting literature the notion of
simpli�cation order is motivated by the applicability of Kruskal's Tree Theorem but only covers
the �rst ingredient. For in�nite signatures one easily de�nes non-well-founded orders that are
simpli�cation orders according to that de�nition. Therefore, the usual de�nition of simpli�cation
order is only helpful for proving termination of systems over �nite signatures. Nevertheless, it
is well-known that simpli�cation orders like the recursive path order are also well-founded on
terms over in�nite signatures (provided the precedence on the signature is well-founded).

In this paper we propose a de�nition of a simpli�cation order that matches exactly the
requirements of Kruskal's Tree Theorem, since that is the basic motivation for the notion of
simpli�cation order. According to this new de�nition all simpli�cation orders are well-founded,
both over �nite and in�nite signatures. For �nite signatures the new and the old notion of
simpli�cation order coincide. A term rewriting system is called simply terminating if there is
a simpli�cation order that orients the rewrite rules from left to right. It is immediate from
the de�nition that every recursive path order over a well-founded precedence can be extended
to a simpli�cation order, and hence it is well-founded. Even if one is only interested in �nite
term rewriting systems this is of interest: semantic labelling ([18]) often succeeds in proving
termination of a �nite but \di�cult" (non-simply terminating) system by transforming it into
an in�nite system over an in�nite signature to which the recursive path order readily applies.

In the literature simpli�cation orders are sometimes based on preorders (or quasi-orders)
instead of (strict) partial orders. A main result of this paper is that there are no compelling
reasons for doing so. We prove (constructively) that every term rewriting system which can be
shown to be terminating by means of a simpli�cation order based on preorders, can be shown
to be terminating by means of a simpli�cation order (based on partial orders). Since basing the
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notion of simpli�cation order on preorders is more susceptive to mistakes and results in stronger
proof obligations, simpli�cation orders should be based on partial orders. (As explained in
Section 3 these remarks already apply to �nite signatures.) As a consequence, we prefer the
partial order variant of well-quasi-orders, the so-called partial well-orders, in case of in�nite
signatures. By choosing partial well-orders instead of well-quasi-orders a great part of the
theory is not a�ected, but another part becomes cleaner. For instance, in Section 5 we prove a
useful result stating that a term rewriting system is simply terminating if and only if the union
of the system and a particular system that captures simpli�cation is terminating. Based on
well-quasi-orders a similar result does not hold.

A useful notion of termination for term rewriting systems is total termination (see [6, 17]).
For �nite signature one easily shows that total termination implies simple termination. In
Section 6 we show that for in�nite signatures this does not hold any more: we construct an
in�nite term rewriting system whose termination can be proved by a polynomial interpretation,
but which is not simply terminating.

2. Termination

In order to �x our notations and terminology, we start with a very brief introduction to term
rewriting. Term rewriting is surveyed in Dershowitz and Jouannaud [4] and Klop [11].

A signature is a set F of function symbols. Associated with every f 2 F is a natural number
denoting its arity. Function symbols of arity 0 are called constants. Let T (F ;V) be the set of
all terms built from F and a countably in�nite set V of variables, disjoint from F . The set of
variables occurring in a term t is denoted by Var(t). A term t is called ground if Var(t) = ?.
The set of all ground terms is denoted by T (F).

We introduce a fresh constant symbol �, named hole. A context C is a term in T (F[f�g;V)
containing precisely one hole. The designation term is restricted to members of T (F ;V). If C is
a context and t a term then C[t] denotes the result of replacing the hole in C by t. A term s is
a subterm of a term t if there exists a context C such that t = C[s]. A subterm s of t is proper
if s 6= t. We assume familiarity with the position formalism for describing subterm occurrences.
A substitution is a map � from V to T (F ;V) with the property that the set fx 2 V j �(x) 6= xg
is �nite. If � is a substitution and t a term then t� denotes the result of applying � to t. We
call t� an instance of t. A binary relation R on terms is closed under contexts if C[s] R C[t]
whenever s R t, for all contexts C. A binary relation R on terms is closed under substitutions if
s� R t� whenever s R t, for all substitutions �. A rewrite relation is a binary relation on terms
that is closed under contexts and substitutions.

A rewrite rule is a pair (l; r) of terms such that the left-hand side l is not a variable and
variables which occur in the right-hand side r occur also in l, i.e., Var(r) � Var(l). Since we
are interested in (simple) termination in this paper, these two restrictions rule out only trivial
cases. Rewrite rules (l; r) will henceforth be written as l! r.

A term rewriting system (TRS for short) is a pair (F ;R) consisting of a signature F and a
set R of rewrite rules between terms in T (F ;V). We often present a TRS as a set of rewrite
rules, without making explicit its signature, assuming that the signature consists of the function
symbols occurring in the rewrite rules. The smallest rewrite relation on T (F ;V) that contains
R is denoted by!R. So s!R t if there exists a rewrite rule l! r in R, a substitution �, and a
context C such that s = C[l�] and t = C[r�]. The subterm l� of s is called a redex and we say
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that s rewrites to t by contracting redex l�. We call s !R t a rewrite or reduction step. The
transitive closure of !R is denoted by !+

R and !�
R denotes the transitive and re
exive closure

of !R. If s!
�
R t we say that s reduces to t. The converse of !�

R is denoted by  �
R.

A TRS (F ;R) is called terminating if there are no in�nite reduction sequences t1 !R t2 !R

t3 !R � � � of terms in T (F ;V). In order to simplify matters, we assume throughout this paper
that the signature F contains a constant symbol. Hence a TRS is terminating if and only if
there do not exist in�nite reduction sequence involving only ground terms.

A (strict) partial order � is a transitive and irre
exive relation. The re
exive closure of � is
denoted by <. The converse of < is denoted by 4. A partial order � on a set A is well-founded
if there are no in�nite descending sequences a1 � a2 � � � � of elements of A. A partial order
� on A is total if for all di�erent elements a; b 2 A either a � b or b � a. A preorder (or
quasi-order) % is a transitive and re
exive relation. The converse of % is denoted by -. The
strict part of a preorder % is the partial order � de�ned as %n-. Every preorder % induces an
equivalence relation � de�ned as % \ -. It is easy to see that � = %n�. A preorder is said to
be well-founded if its strict part is a well-founded partial order.

A rewrite relation that is also a partial order is called a rewrite order. A well-founded rewrite
order is called a reduction order. We say that a TRS (F ;R) and a partial order � on T (F ;V)
are compatible if R is contained in �, i.e., l � r for every rewrite rule l ! r of R. It is easy to
show that a TRS is terminating if and only if it is compatible with a reduction order.

Definition 2.1. We say that a binary relation R on terms has the subterm property if C[t] R t
for all contexts C 6= � and terms t.

The task of showing that a given transitive relation R has the subterm property amounts
to verifying f(t1; : : : ; tn) R ti for all function symbols f of arity n > 1, terms t1; : : : ; tn, and
i 2 f1; : : : ; ng. This observation will be used freely in the sequel.

Definition 2.2. Let F be a signature. The TRS Emb (F) consists of all rewrite rules

f(x1; : : : ; xn) ! xi

with f 2 F a function symbol of arity n > 1 and i 2 f1; : : : ; ng. Here x1; : : : ; xn are pairwise
di�erent variables. We abbreviate !+

Emb (F) to Bemb and  
�
Emb (F) to Eemb. The latter relation

is called embedding.

The following easy result relates the subterm property to embedding.

Lemma 2.3. A rewrite order � on T (F ;V) has the subterm property if and only if it is com-
patible with the TRS Emb (F). �

Proof.

) The subterm property yields f(x1; : : : ; xn) � xi and hence l � r for every rewrite rule
l! r 2 Emb (F).

( We have to show f(t1; : : : ; tn) � ti for all function symbols f of arity n > 1, terms t1; : : : ; tn,
and i 2 f1; : : : ; ng. By assumption f(x1; : : : ; xn) � xi. Closure under substitutions yields
f(t1; : : : ; tn) � ti.

�
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3. Simple Termination | Finite Signatures

Throughout this section we are dealing with �nite signatures only.

Definition 3.1. A simpli�cation order is a rewrite order with the subterm property. A TRS
(F ;R) is simply terminating if it is compatible with a simpli�cation order on T (F ;V).

Since we are only interested in signatures consisting of function symbols with �xed arity, we
have no need for the deletion property (cf. [2]). It should also be noted that many authors (e.g.
[1, 2, 3, 7, 10, 16]) do not require that simpli�cation orders are closed under substitutions. Since
we don't really want to check whether a simpli�cation order orients all instances of rewrite rules
from left to right in order to conclude termination, and concrete simpli�cation orders like the
recursive path order are closed under substitutions, closure under substitutions should be part
of the de�nition. Moreover, it is easy to show that the class of simply terminating TRSs is not
a�ected by imposing closure under substitutions. Dershowitz [1, 2] showed that every simply
terminating TRS is terminating. The proof is based on the beautiful Tree Theorem of Kruskal
[12].

Definition 3.2. An in�nite sequence t1, t2, t3, : : : of terms in T (F ;V) is self-embedding if there
exist 1 6 i < j such that ti Eemb tj .

Theorem 3.3 (Kruskal's Tree Theorem|Finite Version). Every in�nite sequence of

ground terms is self-embedding. �

We refrain from proving Theorem 3.3 since it is a special case of the general version of
Kruskal's Tree Theorem, which is presented and proved in Section 4.

Theorem 3.4. Every simply terminating TRS is terminating.

Proof. Suppose there exists a simply terminating TRS (F ;R) that is not terminating. So
(F ;R) is compatible with a simpli�cation order � on T (F ;V) and there exists an in�nite
reduction sequence t1 !R t2 !R t3 !R � � � involving only ground terms. From Kruskal's Tree
Theorem we learn the existence of 1 6 i < j such that ti Eemb tj . From Lemma 2.3 we easily
obtain tj < ti. However, since (F ;R) is compatible with �, ti !

+
R tj implies ti � tj . Hence

we have a contradiction with the fact that � is a partial order. We conclude that (F ;R) is
terminating. �

The following well-known result is especially useful for showing that a given TRS is not

simply terminating, see [17].

Lemma 3.5. A TRS (F ;R) is simply terminating if and only if (F ;R[Emb (F)) is terminating.

Proof.

) Let (F ;R) be compatible with the simpli�cation order � on T (F ;V). From Lemma 2.3 we
learn that � is compatible with the TRS Emb (F). Hence the TRS (F ;R [ Emb (F)) is
simply terminating. Theorem 3.4 yields the termination of (F ;R [ Emb (F)).

( Let � be the rewrite order associated with (F ;R [ Emb (F)) (i.e., the transitive closure
of its rewrite relation). Clearly � is compatible with Emb (F). Lemma 2.3 shows that
it is a simpli�cation order. Since also the TRS (F ;R) is compatible with �, it is simply
terminating.

�
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In the term rewriting literature the notion of simpli�cation order is sometimes based on
preorders instead of partial orders. Dershowitz [2] obtained the following result.

Theorem 3.6. Let (F ;R) be a TRS. Let % be a preorder on T (F ;V) which is closed under
contexts and has the subterm property. If l� � r� for every rewrite rule l ! r 2 R and

substitution � then (F ;R) is terminating. �

A preorder that is closed under contexts and has the subterm property is sometimes called
a quasi-simpli�cation order. Observe that we require l� � r� for all substitutions � in Theo-
rem 3.6. It should be stressed that this requirement cannot be weakened to the compatibility
of (F ;R) and � (i.e., l � r for all rules l ! r 2 R) if we additionally require that % is closed
under substitutions, as is incorrectly done in Dershowitz and Jouannaud [4]. For instance, the
relation !�

R associated with the TRS

R =

8>>><
>>>:

f(g(x)) ! f(f(x))
f(g(x)) ! g(g(x))

f(x) ! x
g(x) ! x

is a rewrite relation with the subterm property (because R contains Emb (ff; gg)). Moreover,
l !�

R r but not r !�
R l, for every rewrite rule l ! r 2 R. So R is included in the strict part of

!�
R. Nevertheless, R is not terminating:

f(g(g(x))) !R f(f(g(x))!R f(g(g(x))) !R � � � :

The point is that the strict part of !�
R is not closed under substitutions. Hence to conclude

termination from compatibility with % it is essential that � is closed under substitutions. A
simpler TRS illustrating the same point, due to Enno Ohlebusch (personal communication), is
ff(x)! f(a); f(x)! xg.

Dershowitz [2] writes that Theorem 3.6 generalizes Theorem 3.4. We have the following
result.

Theorem 3.7. A TRS (F ;R) is simply terminating if and only if there exists a preorder % on

T (F ;V) that is closed under contexts, has the subterm property, and satis�es l� � r� for every

rewrite rule l! r 2 R and substitution �. �

The proof is given in Section 5, where the above theorem is generalized to TRSs over arbi-
trary, not necessarily �nite, signatures.

So every TRS whose termination can be shown by means of Theorem 3.6 is simply termi-
nating, i.e., its termination can be shown by a simpli�cation order. Since it is easier to check
l � r for �nitely many rewrite rules l ! r than l� % r� but not r� % l� for �nitely many
rewrite rules l! r and in�nitely many substitutions �, there is no reason to base the de�nition
of simpli�cation order on preorders.

4. Partial Well-Orders

Theorem 3.4 does not hold if we allow in�nite signatures. Consider for instance the TRS (F ;R)
consisting of in�nitely many constants ai and rewrite rules ai ! ai+1 for all i > 1. The rewrite
order !+

R vacuously satis�es the subterm property, but (F ;R) is not terminating:

a1 !R a2 !R a3 !R � � �

6



So in case F is in�nite, compatibility with Emb (F) does not ensure termination. In the next
section we will see that the results of the previous section can be recovered by suitably extending
the TRS Emb (F).

Definition 4.1. Let � be a partial order on a signature F . The TRS Emb (F ;�) consists of
all rewrite rules of Emb (F) together with all rewrite rules

f(x1; : : : ; xn) ! g(xi1 ; : : : ; xim)

with f an n-ary function symbol in F , g an m-ary function symbol in F , n > m > 0, f � g, and
1 6 i1 < � � � < im 6 n whenever m > 1. Here x1; : : : ; xn are pairwise di�erent variables. We ab-
breviate !+

Emb (F;�) to �emb and 
�
Emb (F;�) to 4emb. The latter relation is called homeomorphic

embedding.

Since Emb (F ;?) = Emb (F), homeomorphic embedding generalizes embedding. Consider
for instance the signature F consisting of constants a and b, a unary function symbol g, and
binary functions symbols f and h. De�ne the partial order � on F by a � b � f � g � h. In
the TRS

Emb (F ;�) = Emb (F) [

8>>>>><
>>>>>:

a ! b

f(x; y) ! g(x)

f(x; y) ! g(y)

f(x; y) ! h(x; y)

9>>>>>=
>>>>>;

we have the reduction sequence f(h(a; b); g(a)) ! f(a; g(a)) ! f(a; a) ! f(a; b), hence the
term f(a; b) is homeomorphically embedded in f(h(a; b); g(a)). Since there is no reduction
sequence in the TRS Emb (F) from f(h(a; b); g(a)) to f(a; b), the term f(a; b) is not embedded
in f(h(a; b); g(a)).

In the next section we show that all results of the previous section carry over to in�nite
signatures if we require compatibility with Emb (F ;�), provided the partial order � satis�es a
stronger property than well-foundedness. This property is explained below.

Definition 4.2. Let � be a partial order on a set A.
� An in�nite sequence (ai)i>1 over A is called good if there exist indices 1 6 i < j with ai 4 aj ,

otherwise it is called bad.
� An in�nite sequence (ai)i>1 over A is called a chain if ai 4 ai+1 for all i > 1. We say that

(ai)i>1 contains a chain if it has a subsequence that is a chain.
� An in�nite sequence (ai)i>1 over A is called an antichain if neither ai 4 aj nor aj 4 ai, for

all 1 6 i < j.

Lemma 4.3. Let � be a partial order on a set A. The following statements are equivalent.

(1) Every partial order that extends � (including � itself) is well-founded.

(2) Every in�nite sequence over A is good.

(3) Every in�nite sequence over A contains a chain.

(4) The partial order � is well-founded and does not admit antichains.

7



Proof.

(1) ) (2) Suppose (ai)i>1 is a bad sequence. De�ne �0 = (� [ f(ai; ai+1) j i > 1g)+. Assume
a �0 a for some a 2 A. Since � is irre
exive there is a non-empty sequence of
numbers i1; : : : ; in such that

a < ai1 ; ai1+1 < ai2 ; ai2+1 < ai3 ; : : : ; ain�1+1 < ain ; ain+1 < a:

Since (ai)i>1 is bad ai < aj is only possible for i 6 j. Hence we obtain the impossible

i1 < i1 + 1 6 i2 < i2 + 1 6 i3 < � � � < in�1 + 1 6 in < in + 1 6 i1:

We conclude that �0 is irre
exive. By de�nition it is transitive, hence it is a partial
order extending �. However, since a1 �

0 a2 �
0 a3 �

0 � � � , it is not well-founded.
(2) ) (3) Let (ai)i>1 be any in�nite sequence over A. Consider the subsequence consisting of

all elements ai with the property that ai 4 aj holds for no j > i. If this subsequence
is in�nite then it is a bad sequence, contradicting (2). Hence it is �nite, and thus
there exists an index N > 1 such that for every i > N there exists a j > i with
ai 4 aj . De�ne inductively

�(i) =

(
N if i = 1,
min fj j j > �(i� 1) and a�(i�1) 4 ajg if i > 1.

Now a�(1), a�(2), a�(3), : : : is a chain.
(3) ) (4) If � is not well-founded then there exists an in�nite sequence a1 � a2 � � � � . Clearly

ai 4 aj doesn't hold for any 1 6 i < j. Hence this sequence doesn't contain a chain.
If � admits an antichain then this antichain is an in�nite sequence not containing a
chain.

(4) ) (1) For a proof by contradiction, let � be a well-founded partial order not satisfying
(1). Then there is an extension �0 of � that is not well-founded. So there exists
an in�nite sequence a1 �

0 a2 �
0 � � � . Since � is well-founded, the sequence (ai)i>1

contains an element ai with the property that for no j > i ai � aj holds. Actually,
(ai)i>1 contains in�nitely many such elements. We claim that the in�nite subse-
quence (a�(i))i>1 consisting of those elements is an antichain (with respect to �).
Let 1 6 i < j. By construction a�(i) � a�(j) is impossible. If a�(i) 4 a�(j) then also
a�(i) 4

0 a�(j), contradicting a�(i) �
0 a�(j). Hence � admits a anti-chain.

�

Definition 4.4. A partial order � on a set A is called a partial well-order (PWO for short) if
it satis�es one of the four equivalent assertions of Lemma 4.3.

Using the terminology of PWOs, Theorem 3.3 can now be read as follows: if F is a �nite
signature then Bemb is a PWO on T (F).

By de�nition every PWO is a well-founded order, but the reverse does not hold. For instance,
the empty relation on an in�nite set is a well-founded order but not a PWO. Clearly every total
well-founded order (or well-order) is a PWO. Any partial order extending a PWO is a PWO.
The following lemma states how new PWOs can be obtained by restricting existing PWOs.

Lemma 4.5. Let � be a PWO on a set A and let A be a PWO on a set B. Let ':A ! B be

any function. The partial order �0 on A de�ned by a �0 b if and only if a � b and '(a) w '(b)
is a PWO.

8



Proof. Let (ai)i>1 be any in�nite sequence over A. Since � is a PWO this sequence admits a
chain

a�(1) 4 a�(2) 4 a�(3) 4 � � � :

Since A is a PWO on B there exist 1 6 i < j with '(a�(i)) v '(a�(j)). Transitivity of 4 yields
a�(i) 4 a�(j). Hence a�(i) 4

0 a�(j), while �(i) < �(j). We conclude that (ai)i>1 is a good sequence
with respect to �0, so �0 is a PWO. �

Corollary 4.6. The intersection of two PWOs on a set A is a PWO on A.

Proof. Choose the function ' in Lemma 4.5 to be the identity on A. �

Theorem 4.7 (Kruskal's Tree Theorem|General Version). If � is a PWO on a sig-

nature F then �emb is a PWO on T (F). �

For the sake of completeness, below we present a proof of this beautiful theorem, even though
it is very similar to the proof of the Kruskal's Tree Theorem formulated in terms of well-quasi-
orders (see e.g. Gallier [7]). First we show a related result for strings, known as Higman's Lemma

(Higman [8]).

Definition 4.8. Let � be a partial order on a set A. We de�ne a relation �� on A� as follows:
if w1 = a1a2 � � � an and w2 = b1b2 � � � bm are elements of A� then w1 �

� w2 if and only if w1 6= w2

and either
� m = 0, or
� n > m > 0 and there exist indices i1; : : : ; im such that 1 6 i1 < � � � < im 6 n and aij < bj for

all j 2 f1; : : : ;mg.

The next result can be viewed as an alternative de�nition of ��.

Lemma 4.9. Let � be a partial order on a set A. The relation �� is the least partial order A
on A� satisfying the following two properties:

(1) w1aw2 A w1w2 for all w1; w2 2 A
� and a 2 A,

(2) w1aw2 A w1bw2 for all w1; w2 2 A
� and a; b 2 A with a � b.

Proof. First we show that �� is a partial order. Irre
exivity is obvious. Let w1 = a1 � � � an,
w2 = b1 � � � bm, and w3 = c1 � � � cl be elements of A� such that w1 �

� w2 �
� w3. If l = 0 then

m > 0 (because w2 6= w3) and n > m > 0. Hence w1 �
� w3. Suppose l > 0. We have

n > m > l. There exist indices i1; : : : ; il and j1; : : : ; jm such that 1 6 i1 < � � � < il 6 m, bik < ck
for all k 2 f1; : : : ; lg, 1 6 j1 < � � � < jm 6 n, and ajk < bk for all k 2 f1; : : : ;mg. Since
1 6 ji1 < � � � < jil 6 n and ajik < bik < ck for all k 2 f1; : : : ; lg, we have w1 �

� w3. This
concludes the proof of the transitivity of ��. It is very easy to see that �� satis�es properties
(1) and (2). Conversely, let A be any partial order on A� that satis�es properties (1) and (2).
We will show that �� � A. Suppose w1 = a1 � � � an �

� b1 � � � bm = w2. If m = 0 then n > 0 and
hence the sequence w1 = a1 � � � an A a2 � � � an A � � � A an A " = w2 is non-empty, showing that
w1 A w2. If n > m > 0 then there exist indices i1; : : : ; im such that 1 6 i1 < � � � < im 6 n and
aij < bj for all j 2 f1; : : : ;mg. Let w3 = ai1 � � � aim . We have w1 w w3 by successively removing
elements ai from w1 whose index i does not belong to the set fi1; : : : ; img. (Clearly w1 = w3 if
and only if n = m.) We have w3 w w2 by replacing aij with bj whenever aij � bj . Therefore
w1 w w2 and since w1 6= w2 we obtain w1 A w2. �

9



Lemma 4.10 (Higman's Lemma). If � is a PWO on a set A then �� is a PWO on A�.

Proof. The following proof is essentially due to Nash-Williams [14]. We have to show that
there are no bad sequences over A�. Suppose to the contrary that there exist bad sequences
over A�. We construct a minimal bad sequence (wi)i>1 as follows:

Suppose we already chose the �rst n � 1 strings w1; : : : ; wn�1. De�ne wn to be a
shortest string such that there are bad sequences that start with w1; : : : ; wn.

Because " 4� w for all w 2 A�, we have wi 6= " for all i > 1. Hence we may write wi = aivi
(i > 1). Since � is a PWO on A, the in�nite sequence (ai)i>1 contains a chain, say (a�(i))i>1.
Because v�(1) is shorter than w�(1), the sequence

w1; : : : ; w�(1)�1; v�(1); v�(2); : : :

must be good. Clearly wi 4
� wj (1 6 i < j 6 �(1)� 1) is impossible as (wi)i>1 is bad. Likewise,

wi 4
� v�(j) (1 6 i 6 �(1) � 1 and 1 6 j) contradicts the badness of (wi)i>1 since v�(j) 4

� w�(j)

and therefore wi 4
� w�(j). Hence we must have v�(i) 4

� v�(j) for some 1 6 i < j. Combining this
with a�(i) 4 a�(j) easily yields w�(i) = a�(i)v�(i) 4

� a�(j)v�(j) = w�(j), contradicting the badness
of (wi)i>1. We conclude that there are no bad sequences over A�. �

Proof of Kruskal's Tree Theorem|General Version. The proof, essentially due to
Nash-Williams [14], has the same structure as the proof of Higman's Lemma. We have to show
that there are no bad sequences of terms in T (F). Suppose to the contrary that there exist bad
sequences of ground terms. We construct a minimal bad sequence (ti)i>1 as follows:

Suppose we already chose the �rst n�1 terms t1; : : : ; tn�1. De�ne tn to be a smallest
(with respect to size) term such that there are bad sequences that start with t1; : : : ; tn.

For every i > 1, let fi be the root symbol of ti and let Ai be the set of arguments of ti (if ti is
a constant then Ai = ?). Moreover, let wi be the string of arguments (from left to right) of ti.
Finally, let A =

S
i>1Ai.

We claim that �emb is a PWO on the subset A of T (F). For a proof by contradiction,
suppose (ai)i>1 is a bad sequence over A. Let a1 2 Ak. Since A

0 =
Sk�1

i=1 Ai is a �nite set and all
elements of (ai)i>1 are di�erent, only �nitely many elements of (ai)i>1 belong to A

0. Thus there
exists an index l > 1 such that ai 2 AnA

0 for all i > l. Because a1 is a proper subterm of tk, the
sequence

t1; : : : ; tk�1; a1; al; al+1; : : :

must be good. Clearly ti 4emb tj (1 6 i < j 6 k � 1) is impossible as (ti)i>1 is bad. Likewise,
ti 4emb aj (1 6 i 6 k � 1 and j = 1 or l 6 j) contradicts the badness of (ti)i>1 since aj 4emb tm
for some m > k|recall that a1 is a proper subterm of tk and if j > l then aj 2 AnA0|and
thus ti 4emb tj . Hence we must have ai 4emb aj for some 1 6 i < j (and i; j =2 f2; : : : ; l � 1g),
contradicting the badness of (ai)i>1. Hence �emb is a PWO on A. From Higman's Lemma we
infer that ��emb is a PWO on A�.

Since � is a PWO on F , the in�nite sequence (fi)i>1 contains a chain, say (f�(i))i>1. Consider
the in�nite sequence (w�(i))i>1 over A

�. Since ��emb is a PWO on A�, we have w�(i) 4
�
emb w�(j) for

some 1 6 i < j. A straightforward case analysis reveals that f�(i) 4 f�(j) and w�(i) 4
�
emb w�(j)

imply t�(i) 4emb t�(j). Hence we obtained a contradiction with the badness of (ti)i>1. We
conclude that there are no bad sequences over T (F). �

PWOs are closely related to the more familiar concept of well-quasi-order.
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Definition 4.11. A well-quasi-order (WQO for short) is a preorder that contains a PWO.

The above de�nition is equivalent to all other de�nitions of WQO found in the literature.
Kruskal's Tree Theorem is usually presented in terms of WQOs. This is not more powerful than
the PWO version: notwithstanding the fact that the strict part of a WQO is not necessarily a
PWO, it is very easy to show that the WQO version of Kruskal's Tree Theorem is a corollary
of Theorem 4.7, and vice-versa.

Let � be a PWO on a signature F . A natural question is whether we can restrict �emb while
retaining the property of being a PWO on T (F). In particular, do we really need all rewrite
rules in Emb (F ;�)? In case there is a uniform bound on the arities of the function symbols in F ,
we can greatly reduce the set Emb (F ;�). That is, suppose there exists an N > 0 such that all
function symbols in F have arity less than or equal to N . Now we can apply Lemma 4.5: choose
' to be the function that assigns to every function symbol its arity and take A to be the empty
relation on f1; : : : ; Ng. Hence the partial order �0 on F de�ned by f �0 g if and only if f and g
have the same arity and f � g is a PWO. The corresponding set Emb (F ;�0) consists, besides
all rewrite rules of the form f(x1; : : : ; xn)! xi, of all rewrite rules f(x1; : : : ; xn)! g(x1; : : : ; xn)
with f and g n-ary function symbols such that f � g. This construction does not work if the
arities of function symbols in F are not uniformly bounded. Consider for instance a signature
F consisting of a constant a and n-ary function symbols fn for every n > 1 (and let � be any
PWO on F). The sequence

f1(a); f2(a; a); f3(a; a; a); : : :

is bad with respect to �0emb. Finally, one may wonder whether the restriction to all rewrite
rules f(x1; : : : ; xn) ! g(xi+1; : : : ; xi+m) with f an n-ary function symbol, g an m-ary function
symbol, n > m > 0, n�m > i > 0, and f � g is su�cient. This is also not the case, as can be
seen by extending the previous signature with a constant b and considering the sequence

f2(b; b); f3(b; a; b); f4(b; a; a; b); : : : :

Of course, if the signature F is �nite then the rules of Emb (F) are su�cient since the empty
relation is a PWO on any �nite set.

5. Simple Termination | In�nite Signatures

Kurihara and Ohuchi [13] were the �rst to use the terminology simple termination. They call
a TRS (F ;R) simply terminating if it is compatible with a simpli�cation order on T (F ;V).
Since compatibility with a simpli�cation order doesn't ensure the termination of TRSs over
in�nite signatures, see the example at the beginning of the previous section, this de�nition of
simple termination is clearly not the right one. Ohlebusch [15] and others call a TRS (F ;R)
simply terminating if it is compatible with a well-founded simpli�cation order on T (F ;V). This
is a very arti�cial way to ensure that every simply terminating is terminating, more precisely,
termination of simply terminating TRSs has nothing to do with Kruskal's Tree Theorem; simply
terminating TRSs are terminating by de�nition. We propose instead to bring the de�nition of
simple termination in accordance with (the general version of) Kruskal's Tree Theorem.

Definition 5.1. A simpli�cation order is a rewrite order on T (F ;V) that contains �emb for
some PWO � on F . A TRS (F ;R) is simply terminating if it is compatible with a simpli�cation
order on T (F ;V).
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This de�nition coincides with the one in Section 3 in case of �nite signatures:

Lemma 5.2. A rewrite order A on T (F ;V) with F �nite is a simpli�cation order if and only if

it has the subterm property, i.e., B � A.

Proof.

) By de�nition there exists a PWO � on F such that �emb � A. Since B � �emb, A has the
subterm property.

( The empty relation ? is a PWO on any �nite set. The subterm property yields ?emb = B � A.
Hence A is a simpli�cation order.

�

Theorem 5.3. Every simply terminating TRS is terminating.

Proof. Let (F ;R) be compatible with a simpli�cation order A on T (F ;V). Let � be any PWO
such that �emb is included in A. Theorem 4.7 shows that the restriction of �emb to ground terms
is a PWO. Hence the extension A of �emb is well-founded on ground terms. Therefore (F ;R) is
terminating. �

The following result extends the very useful Lemma 3.5 to arbitrary TRSs. In the proof of
Theorem 5.9 below and in the �nal example of Section 6 we make use of this result.

Lemma 5.4. A TRS (F ;R) is simply terminating if and only if the TRS (F ;R [ Emb (F ;�))
is terminating for some PWO � on F .

Proof.

) Let (F ;R) be compatible with the simpli�cation order A on T (F ;V). By de�nition there
exists a PWO � on F such that �emb � A. If l ! r 2 Emb (F ;�) then l �emb r and
therefore l A r. Hence Emb (F ;�) is also compatible with A. So (F ;R [ Emb (F ;�)) is
simply terminating. Theorem 5.3 shows that (F ;R [ Emb (F ;�)) is terminating.

( Suppose (F ;R[Emb (F ;�)) is terminating for some PWO� on F . Let A be the rewrite order
associated with the TRS (F ;R[Emb (F ;�)). Clearly �emb � A. Hence A is a simpli�cation
order. Since (F ;R) is compatible with A, we conclude that it is simply terminating.

�

It should be stressed that there is no equivalent to the above lemma if we base the de�nition
of simpli�cation order on WQOs. This is one of the reasons why we favor PWOs.

In the remainder of this section we generalize Theorem 3.7 (and hence Theorem 3.6) to
arbitrary TRSs. Our proof is based on the elegant proof sketch of Theorem 3.6 given by Plaisted
[16]. The proof employs multiset extensions of preorders. A multiset is a collection in which
elements are allowed to occur more than once. If A is a set then the set of all �nite multisets
over A is denoted byM(A). The multiset extension of a partial order � on A is the partial order
�mul de�ned onM(A) de�ned as follows: M1 �mul M2 if M2 = (M1�X)]Y for some multisets
X;Y 2 M(A) that satisfy ? 6= X � M1 and for all y 2 Y there exists an x 2 X such that
x � y. Using Higman's Lemma, it is quite easy to show that multiset extension preserves PWO.
From this we infer that the multiset extension of a well-founded partial order is well-founded,
using the well-known facts that (1) every well-founded partial order can be extended to a total
well-founded order (in particular a PWO) and (2) multiset extension is monotonic (i.e., if � � A
then �mul � Amul). Using K�onig's Lemma, Dershowitz and Manna [5] gave a direct proof that
multiset extension preserves well-founded partial orders.
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Definition 5.5. Let % be a preorder on a set A. For every a 2 A, let [a] denote the equivalence
class with respect to the equivalence relation � containing a. Let An� = f[a] j a 2 Ag be the
set of all equivalence classes of A. The preorder % on A induces a partial order � on An� as
follows: [a] � [b] if and only if a � b. (The latter � denotes the strict part of the preorder %.)
For every multiset M 2 M(A), let [M ] 2 M(An�) denote the multiset obtained from M by
replacing every element a by [a]. We now de�ne the multiset extension %mul of the preorder %
as follows: M1 %mul M2 if and only if [M1] �

=
mul [M2] where �

=
mul denotes the re
exive closure

of the multiset extension of the partial order � on An�.

It is easy to show that %mul is a preorder on M(A). The associated equivalence relation
�mul = %mul \ -mul can be characterized in the following simple way: M1 �mul M2 if and only
if [M1] = [M2]. Likewise, its strict part �mul= %muln-mul = %muln�mul has the following simple
characterization: M1 �mul M2 if and only if [M1] �mul [M2]. Observe that we denote the strict
part of %mul by �mul in order to avoid confusion with the multiset extension �mul of the strict
part � of %, which is a smaller relation.

The above de�nition of multiset extension of a preorder can be shown to be equivalent to
the more operational ones in Dershowitz [3] and Gallier [7], but since we de�ne the multiset
extension of a preorder in terms of the well-known multiset extension of a partial order, we get
all desired properties basically for free. In particular, using the fact that multiset extension
preserves well-founded partial orders, it is very easy to show that the multiset extension of a
well-founded preorder is well-founded.

Definition 5.6. If t 2 T (F ;V) then S(t) 2 M(T (F ;V)) denotes the �nite multiset of all
subterm occurrences in t and F (t) 2 M(F) denotes the �nite multiset of all function symbol
occurrences in t. Formally,

M(t) =

8><
>:
ftg if t is a variable,

ftg ]
n]
i=1

M(ti) if t = f(t1; : : : ; tn).

F (t) =

8><
>:
? if t is a variable,

ffg ]
n]
i=1

F (ti) if t = f(t1; : : : ; tn).

Lemma 5.7. Let % be a preorder on T (F ;V) with the subterm property. If s � t then S(s) �mul

S(t).

Proof. We show that s � t0 for all t0 2 S(t). This implies fsg �mul S(t) and hence also
S(s) �mul S(t). If t

0 = t then s � t0 by assumption. Otherwise t0 is a proper subterm of t and
hence t % t0 by the subterm property. Combining this with s � t yields s � t. �

Lemma 5.8. Let % be a preorder on T (F ;V) which is closed under contexts. Suppose s % t and
let C be an arbitrary context.
� If S(s) �mul S(t) then S(C[s]) �mul S(C[t]).
� If S(s) %mul S(t) then S(C[s]) %mul S(C[t]).
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Proof. Let S1 = S(C[s]) � S(s) and S2 = S(C[t]) � S(t). For both statements it su�ces to
prove that S1 %mul S2. Let p 2 Pos(C[s]) be the position of the displayed s in C[s]. There is
a one-to-one correspondence between terms in S1 (S2) and positions in Pos(C)� fpg. Hence it
su�ces to show that s0 % t0 where s0 = C[s]jq and t0 = C[t]jq are the to position q corresponding
terms in S1 and S2, for all q 2 Pos(C) � fpg. If p and q are disjoint positions then s0 = t0.
Otherwise q < p and there exists a context C 0 such that s0 = C 0[s] and t0 = C 0[t]. By assumption
s % t. Closure under contexts yields s0 % t0. We conclude that S1 %mul S2. �

After these two preliminary results we are ready for the generalization of Theorem 3.7 to
arbitrary TRSs.

Theorem 5.9. A TRS (F ;R) is simply terminating if and only if there exists a preorder % on

T (F ;V) that is closed under contexts, contains the relation Aemb for some PWO A on F , and
satis�es l� � r� for every rewrite rule l! r 2 R and substitution �.

Proof. The \only if" direction is obvious since the re
exive closure < of the simpli�cation
order � used to prove simple termination is a preorder with the desired properties. For the
\if" direction it su�ces to show that (F ;R [ Emb (F ;A)) is a terminating TRS, according to
Lemma 5.4. First we show that either S(s) �mul S(t) or S(s) �mul S(t) and F (s) Amul F (t)
whenever s ! t is a reduction step in the TRS (F ;R [ Emb (F ;A)). So let s = C[l�] and
t = C[r�] with l! r 2 R [ Emb (F ;A). We distinguish three cases.
� If l ! r 2 R then l� � r� by assumption and S(l�) �mul S(r�) according to Lemma 5.7.

The �rst part of Lemma 5.8 yields S(s) �mul S(t).
� If l ! r 2 Emb (F) then l� = f(t1; : : : ; tn) and r� = ti for some i 2 f1; : : : ; ng. Therefore

S(l�) �mul S(r�) since S(ti) is properly contained in S(f(t1; : : : ; tn)). Clearly l� Aemb r�
and thus also l� % r�. An application of the �rst part of Lemma 5.8 yields S(s) �mul S(t).

� If l! r 2 Emb (F ;A)�Emb(F) then l� = f(t1; : : : ; tn) and r� = g(ti1 ; : : : ; tim) with f A g,
n > m > 0, and 1 6 i1 < � � � < im 6 n whenever m > 1. We have of course l� Aemb r� and
thus also l� % r�. Since the multiset fti1 ; : : : ; timg is contained in the multiset ft1; : : : ; tng,
we obtain S(l�) %mul S(r�) and F (l�) Amul F (r�). The second part of Lemma 5.8 yields
S(s) %mul S(t). We obtain F (s) Amul F (t) from F (l�) Amul F (r�).

Kruskal's Tree Theorem shows that Aemb is a PWO on T (F). Hence % is a well-founded
preorder on T (F). Since multiset extension preserves well-founded preorders, %mul is a well-
founded preorder on M(T (F)). Because A is a PWO on the signature F it is a well-founded
partial order. Hence its multiset extension Amul is a well-founded partial order onM(F). We
conclude that (F ;R [ Emb (F ;A)) is a terminating TRS. �

6. Other Notions of Termination

In this �nal section we investigate the relationship between simple termination and other re-
stricted kinds of termination as introduced in [17]. First we recall some terminology. Let F be
a signature. A monotone F-algebra (A;�) consists of a non-empty F-algebra A and a partial
order � on the carrier A of A such that every algebra operation is strictly monotone in all its
coordinates, i.e., if f 2 F has arity n then

fA(a1; : : : ; ai; : : : ; an) � fA(a1; : : : ; bi; : : : ; an)
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for all a1; : : : ; an; bi 2 A with ai � bi (i 2 f1; : : : ; ng). We call a monotone F-algebra (A;�)
well-founded if � is well-founded. We de�ne a partial order �A on T (F ;V) as follows: s �A t if
[�](s) � [�](t) for all assignments �:V ! A. Here [�] denotes the homomorphic extension of �.
Finally, a TRS (F ;R) is said to be compatible with (A;�) if (F ;R) and �A are compatible.

It is not di�cult to show that the relation �A is a rewrite order on T (F ;V), for every
monotone F-algebra (A;�). If (A;�) is well-founded then �A is a reduction order. It is also
straightforward to show that a TRS (F ;R) is terminating if and only if it is compatible with
a well-founded monotone F-algebra. Simple termination can be characterized semantically as
follows.

Definition 6.1. A monotone F-algebra is called simple if it is compatible with the TRS
Emb (F ;�) for some partial well-order � on F .

It is straightforward to show that a TRS (F ;R) is simply terminating if and only if it is
compatible with a simple monotone F-algebra.

Definition 6.2. A TRS (F ;R) is called totally terminating if it is compatible with a well-
founded monotone F-algebra (A;�) such that � is a total order on the carrier set of A. If the
carrier set of A is the set of natural numbers and � is the standard order then the TRS is called
!-terminating. If in addition the operation fA is a polynomial for every f 2 F , the TRS is
called polynomially terminating .

Total termination has been extensively studied in [6]. Clearly every polynomially terminating
TRS is !-terminating and every !-terminating TRS is totally terminating. For both assertions
the converse does not hold, as can be shown by the counterexamples R1 = ff(g(h(x))) !
g(f(h(g(x))))g and R2 = ff(g(x)) ! g(f(f(x)))g respectively. An easy observation ([17])
shows that every totally terminating TRS over a �nite signature is simply terminating. Again the
converse does not hold as is shown by the well-known exampleR3 = ff(a)! f(b); g(b)! g(a)g.

Somewhat surprisingly, for in�nite signatures total termination does not imply simple termi-
nation any more: we prove that the non-simply terminating TRS (F ;R4) is even polynomially
terminating. Here F is the signature ffi; gi j i 2 Ng and R4 consists of all rewrite rules

fi(gj(x)) ! fj(gj(x))

where i; j 2 N with i < j. First we prove that (F ;R4) is not simply terminating. Let � be any
PWO on F . Consider the in�nite sequence (fi)i>1. Since every in�nite sequence is good, we
have fj � fi for some i < j. Hence Emb (F ;�) contains the rewrite rule fj(x)! fi(x), yielding
the in�nite reduction sequence

fi(gj(x))! fj(gj(x))! fi(gj(x))! � � �

in the TRS (F ;R4 [ Emb (F ;�)). Lemma 5.4 shows that (F ;R4) is not simply terminating.
For proving polynomial termination of (F ;R4), interpret the function symbols as the follow-

ing polynomials over N:

fiA(x) = x3 � ix2 + i2x and giA(x) = x+ 2i

for all i; x 2 N. Let i 2 N. The interpretation giA of gi is clearly strictly monotone in its single
argument. The same holds for the interpretation of fi since

fiA(x+ 1)� fiA(x) = (x+ 1� i)2 + 2x2 + 2x+ i > 0
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for all x 2 N. It remains to show that fiA(gjA(x)) > fjA(gjA(x)) for all i; j; x 2 N with i < j.
Fix i, j, x and let y = gjA(x) = x+ 2j. Then

fiA(gjA(x)) � fjA(gjA(x)) = fiA(y)� fjA(y) = y(j � i)(y � j � i) > 0

since j > i and y > 2j > j + i > 0. We conclude that (F ;R4) is polynomially terminating.

polynomial

termination

!-termination

R1

�

total termination

R2

�

simple termination

R3

�

in�nite

signatures

�nite

signatures

R4

�

R5

�

R6

�

Figure 1.

Summarizing the relationship between the various kinds of termination we obtain Figure 1;
for R5 and R6 we simply take the union of R4 with R1 and R2 respectively. Uwe Waldmann
(personal communication) was the �rst to prove total termination of a non-simply terminating
system similar to R4, using a much more complicated total well-founded order.

The class of simply terminating TRSs is properly included in the class of all TRSs that are
compatible with a well-founded rewrite order having the subterm property. Nevertheless, it's
quite big. For instance, it includes all TRSs whose termination can be shown by means of the
recursive path order (Dershowitz [2]) and its variants. This can be seen as follows. It is known
that �rpo is a rewrite order on T (F ;V) with the subterm property (cf. [2]). It is not di�cult
to show that �rpo extends �emb, for any precedence � on the signature F . Hence �rpo is a
simpli�cation order whenever the precedence � is a PWO. In particular, if the signature is �nite
then every �rpo is a simpli�cation order. If � is a well-founded precedence on an arbitrary
signature then �rpo is included in a simpli�cation order (and hence well-founded). This follows
from the incrementality of the recursive path order (i.e., if � � A then �rpo � Arpo) and the
well-known fact that every well-founded partial order can be extended to a total well-founded
partial order. Hence every TRS (F ;R) that is compatible with �rpo for some well-founded
precedence � on F is simply terminating.
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