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2 Preliminaries

In this section we review the basic notions involved in the belief network formalism and
outline Pearl’s algorithms for computing probabilities from a belief network and for processing
evidence; for further details, the reader is referred to [Pearl, 1988] or [van der Gaag, 1992].

2.1 The Belief Network Formalism

A belief network for a given problem domain is a formal representation of the joint probability
distribution Pr on the set of variables discerned in the said domain. A belief network consists
of an acyclic digraph G and a set of associated functions. The digraph G of the network
represents the variables in the domain and their probabilistic interdependencies. Each vertex
in G represents a variable; the arcs in G are taken to represent the independency relation
holding between the variables. Associated with the digraph is a set of probability assessment
functions representing the numerical aspects of the joint probability distribution.

Before defining the notion of a belief network more formally, we provide some additional
terminology and introduce our notational convention. In the sequel, we will assume that the
variables discerned are binary, taking one of the values true and false. We will use the following
notation: v; denotes the proposition that the variable V; takes the truth value true; V; = false
will be denoted by —w;. For a given set of variables V, the conjunction Cy = Ay,cy Vi of
the variables from V is called the configuration template of V; a conjunction cy of value
assignments to the variables from V is called a configuration of V. The independency relation
holding between the variables discerned in view of a given joint probability distribution Pr will
be denoted as Ip,; an independency statement Ip,(X,Y, Z) signifies that in the distribution
Pr the sets of variables X and Z are conditionally independent given the set of variables Y.

We now define the notion of a belief network more formally.

Definition 2.1 A belief network is a tuple B = (G,T) such that
o G = (V(G), A(G)) is an acyclic digraph with vertices V(G) = {V1,...,Va}, n 2 1, and

o I' = {w, | V; € V(G)} is a set of real-valued nonnegative functions vy, : {vi, v} X
{cro(viy} = [0,1], called (conditional) probability assessment functions, such that for
each configuration c.g(v;) of the set m¢(V;) of (immediate) predecessors of vertezx V; we
have that vy, (—v; | cravi)) =1 — (Vs | Cag(viy), 1 =1,...,7m.

Note that in the previous definition V; is viewed as a vertex from the graph and as a proba-
bilistic variable, alternatively.

To link the qualitative and quantitative parts of a belief network, a probabilistic meaning
is assigned to the topology of the digraph of the network.

Definition 2.2 Let G = (V(G), A(G)) be an acyclic digraph with vertices V(G) = {V4,...,V,.},
n > 1. Let s be a chain in G from vertex V; € V(G) to vertez V; € V(G); let V, be the set
of vertices on s and let A, be the set of arcs on s. Then, we say that s is blocked by a set
W C V(G) if one of the following conditions holds:

e The chain s contains a vertezx X, € W NV, and two vertices X;,X3 € V;, such that
(X2, X1) € A, and (X, X;5) € A,.



e The chain s contains a vertex Xo € W NV, and two vertices X,,X; € V, such that
(Xl,Xz) € As and (Xg,Xa) € As.

e The chain s contains vertices X1, Xz, X3 € V, such that (X, X;) € A, and (X3, X,) € A,,
and 0*(X,) "W = @, where 0*(X) denotes the set of vertices composed of X itself and
all its descendants.

Building on the notion of blocking we define the d-separation criterium.

Definition 2.3 Let G = (V(G), A(G)) be an acyclic digraph with vertices V(G) = {V4,...,V»},
n>1. Let X,Y,Z C V(G) be sets of vertices. The set Y is said to d-separate the sets X
and Z, denoted as (X|Y|Z)%, if for each V; € X and V; € Z every chain from V, to V; in G
is blocked by Y .

The d-separation criterium provides for reading independency statements from a digraph, as
stated in the following definition.

Definition 2.4 Let G = (V(G), A(G)) be an acyclic digraph. Let Pr be a joint probability
distribution on V(G) and let Ip, be the independency relation of Pr. Then, the digraph G is
called an I-map for Pr if for all X,Y,Z C V(G) we have: if (X|Y|Z)¢ then Ip,(X,Y, Z).

The following proposition now states that the initial probability assessment functions of a
belief network provide all information necessary for uniquely defining a joint probability dis-
tribution on the variables discerned that respects the independency relation portrayed by the
graphical part of the network; henceforth, we will call this the joint probability distribution
defined by the network.

Proposition 2.5 Let B = (G,T) be a belief network as defined in Definition 2.1, where
V(G)y={W,...,V.}, n > 1. Then,

Pr(Cv) = ILiay,. Vil Cravi))

defines a joint probability distribution Pr on the set of variables V(G) such that G is an I-map
for Pr.

2.2 Pearl’s Algorithms

Once a belief network is constructed for a given application domain, it is used for making
probabilistic statements concerning the variables discerned in the said domain. For this
purpose, a set of algorithms for probabilistic inference is associated with the belief network
formalism:

e an algorithm for (efficiently) computing probabilities of interest from a belief network,
and

e an algorithm for processing evidence, that is, an algorithm for entering evidence into the
network and subsequently (efficiently) computing the revised probability distribution
given the evidence.



Several such sets of algorithms have been developed, [Pearl, 1988], [Lauritzen & Spiegethalter,
1988], [Shachter, 1990]. In this paper, we build on Pearl’s set of algorithms.

In briefly outlining the basic idea of Pearl’s algorithms for probabilistic inference we will
take an object-oriented point of view. The digraph of a belief network is viewed as a com-
putational architecture by taking the vertices of the digraph as autonomous objects having a
local processor capable of performing certain probabilistic computations and a local memory
in which the associated probability assessment function is stored; the arcs of the digraph are
viewed as bi-directional communication channels through which the objects can send mes-
sages. The vertices of the digraph send each other parameters providing information about
the joint probability distribution and the evidence obtained sofar. Each vertex computes the
(revised) probabilities of its values from the information it receives from its neighbours and
its own local conditional probability assessment function. The time complexity of computing
these parameters depends to a large extent on the number of neighbours a vertex has.

Initially, the belief network is in an equilibrium state: recomputing parameters will not
result in a change in any of them. When a piece of evidence for a specific variable is entered
into the belief network, this equilibrium is perturbed. The variable modifies the parameters to
send to its neighbours to reflect the entered evidence. These modifications activate updating
parameters throughout the network: after receiving modified parameters, each vertex in turn
computes new parameters to send to its neighbours. The new information is thus diffused
through the network in a single pass. This process is termed spreading activation. The belief
network will reach a new equilibrium state once each vertex in the digraph has been visited
by the process of spreading activation.

We emphasize that the computational effort involved in probabilistic inference with a
belief network is largely determined by the sparsity of the digraph of the network.

3 Evidence Absorption and Pearl’s Algorithms

In building a belief network for a given application domain, its graphical part is constructed to
reflect as many of the independencies between the variables discerned as possible. There are
several reasons for seeking to represent these independencies to accuracy. The most important
reason is a computational one. The more independencies are represented explicitly, the sparser
the digraph of the network will be, and as we have mentioned above, the computational
effort involved in probabilistic inference with a belief network is largely determined by the
sparsity of its digraph. In fact, Pearl’s algorithms for probabilistic inference exploit the
independencies portrayed by the digraph of a belief network explicitly and perform the better
from a computational point of view as the digraph is sparser.

Now consider entering evidence into a belief network and processing it. Each piece of evi-
dence provides additional information on the joint probability distribution in a given context.
More in specific, new dependencies and independencies may hold in this context. It is possi-
ble to modify the topology of the digraph of the belief network dynamically so as to reflect
these newly created dependencies and independencies. In the sequel, however, we will argue
that it is worthwhile to modify the topology of the digraph to reflect the new independencies
only. We propose extending Pearl’s algorithms for probabilistic inference to this end with the
method of evidence absorption.

In Section 3.1 we introduce the method of evidence absorption. Section 3.2 briefly reviews
the algorithm for probabilistic inference introduced by R.D. Shachter, [Shachter, 1990], that



incorporates the method of evidence absorption. In Section 3.3 we propose integrating the
method into Pearl’s algorithms.

3.1 The Method of Evidence Absorption

Informally speaking, the method of evidence absorption amounts to modifying a belief network
after a piece of evidence has been entered for a specific variable: the topology of the digraph of
the network is modified by deleting all arcs departing from the vertex for which the evidence
has been entered, and the probability assessment functions for the (former) successors of this
vertex are adjusted to reflect the evidence. The modified network is defined more formally in
the following definition.

Definition 3.1 Let B = (G,T') be a belief network where G = (V(G), A(G)) is an acyclic
digraph and T = {vv, | V; € V(G)} is a set of probability assessment functions. Let V; be a
vertez in G for which the evidence V; = true is entered. We define the tuple B* = (G¥,I'™)
by
o G¥ = (V(G%), A(G%)) is an acyclic digraph such that V(G") = V(G) and
A(GY) = A\ {(Vi, Vj) | V; € a6(Vi)}, and
o I = {y} | V; € V(G)} is the set of real-valued nonnegative functions
W, {v;,7v;} X {Cagui(v;)} = [0,1] such that
— 1 (V; | Crgoi(vp)) = 1v; (Vs | Crovinviy A vi), for all vertices V; € og(Vi), and
— A% (Vi | Crgoe ) = Wi (Vi | Crg(ay), for all vertices Vi € V(G) \ o6(V:).
The tuple B~ = (G™%,T™%) is defined analogously by substituting —v; for v; in the above.

The method of evidence absorption is illustrated by means of an example.

Figure 1: The Digraph G of the Belief Network B.

Example 3.2 Consider the belief network B = (G,T') where G is the singly connected di-
graph shown in Figure 1, and I" consists of the six conditional probability assessment functions
Yviser o Vet

’7V1(‘/1)

7V2(‘/2)

7V3(‘/3 | ‘/1 A ‘/2)
Y. (Va)

7V5(V5 | V3)
’)/VG(‘/G I Vv3 A V:i)



Now suppose that the evidence V3 = true is obtained for the variable V;. The belief network
B then is modified to B* = (G*,I'*). The digraph G* is obtained from G by deleting
all arcs departing from vertex V3, and is shown in Figure 2; the evidence is represented by
drawing vertex V; with shading.

Figure 2: The Digraph G** of the Belief Network B**.

The set I'** consists of the six functions 72, ...,72 that are obtained from the probability
assessment functions of the original belief network B:

(1) = w(W)

i (V2) = w(Ve)

WMVs | VinVs) = 1z | iAV;)

Wi (Va) = w(Va)

Y3 (Vs) = (Vs | vs)

Vi (Ve | Va) = (Ve | va AVY)
O

The modified network resulting after evidence absorption once more is a belief network; this
is stated more formally in the following lemma.

Lemma 3.3 Let B = (G,T) be a belief network as before. Let V; € V(G) and let the tuple
B be defined as in Definition 3.1. Then, B* is a belief network.

Proof. The property stated in the lemma follows directly from Definition 2.1 and Definition
3.1. 0

A similar property holds for the modified network B™.

3.2 Evidence Absorption and Arc Reversal

The method of evidence absorption discussed in the previous subsection has been introduced
by R.D. Shachter and is part of an algorithm for processing evidence in a belief network,
[Shachter, 1986], [Shachter, 1990]. The basic idea of this algorithm is to eliminate a vertex
from the digraph of a belief network as soon as it is instantiated. The algorithm is composed
of two phases. When a piece of evidence is entered for a specific variable, the method of
evidence absorption is applied. Subsequently, the evidence is spread throughout the network
by a method called evidence propagation which basically consists of repeated application of
an arc modifying operation called arc reversal. In these two phases, the topology of the
digraph of the network is modified dynamically to reflect the newly created dependencies
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and independencies. In doing so, new arcs may be inserted into the digraph to portray the
newly created dependencies among the remaining variables and for these arcs accompanying
conditional probabilities have to be calculated.

Shachter’s algorithm for processing evidence has several drawbacks, as has already been
noted by J. Pearl, [Pearl, 1988 (pp. 144 - 145)]. Related to the computational effort involved,
we note that eliminating a vertex from a belief network is computationally expensive: the
algorithm has an exponential worst-case time complexity. In addition, the algorithm involves
computations that are not local to the vertices of the digraph. So, as opposed to Pearl’s
algorithms for probabilistic inference, Shachter’s algorithm requires a global supervisor. These
drawbacks cannot be alleviated if the aim is to eliminate an instantiated variable from a belief
network.

Upon close examination of Shachter’s algorithm for processing evidence and the drawbacks
mentioned above, it becomes apparent that these drawbacks are attributed entirely to the
arc reversal operation employed during evidence propagation: it is this method that accounts
for the exponential time complexity and for the need of a global supervisor. As opposed to
evidence propagation, evidence absorption can be performed in linear time; in addition, all
computations involved are local to a vertex and its successors, and can be effectuated without
supervision.

3.3 Incorporating Evidence Absorption into Pear!l’s Algorithms

We reconsider the method of evidence absorption as introduced in Section 3.1. It will be ev-
ident that for a given piece of evidence this method takes care of modifying a belief network
to reflect the new independencies holding in the context of this evidence, only. Now recall
that Pearl’s algorithms for probabilistic inference exploit the independencies reflected by the
digraph of a belief network directly, and that the algorithms perform the better from a com-
putational point of view as the digraph is sparser. Since the method of evidence absorption
tends to delete arcs from the digraph of a belief network, it is worthwhile to integrate this
method into Pearl’s algorithms to cut down on the computational expense in future proba-
bilistic inference. The basic idea is as follows. When a piece of evidence for a specific variable
is entered into a belief network, the method of evidence absorption is applied. Subsequently,
Pearl’s algorithms are called upon to propagate the evidence. It is emphasized that the in-
stantiated vertex is mot eliminated from the digraph: as the method of evidence absorption
strives to incorporate new independencies only, an instantiated vertex has to remain in the
digraph to reflect the newly created dependencies.

The correctness of the enhanced algorithms for probabilistic inference as outlined above
derives from the observation that after propagation of the evidence the modified belief network
and the original belief network model the same updated joint probability distribution. We
prove two lemmas to support this observation.

Lemma 3.4 Let B = (G,T) be a belief network and let Pr be the joint probability distribution
defined by B. Let V; be a vertez in G for which the evidence V; = true is propagated throughout
the network; let Pr¥ be the (updated) joint probability distribution. Now, let the modified
network B% = (G%,T™) be defined as in Definition 3.1 and let P be the joint probability
distribution defined by B¥. Furthermore, let P*: be the (updated) joint probability distribution
after propagation of the evidence V; = true. Then, Pr% =P".



Proof. We consider the belief network B = (G,T") and the joint probability distribution Pr
defined by B, and the belief network B = (G*,T"**) and its joint probability distribution PP.
To prove Pr¥ = P¥, we show that

° Pr(Vl/\---/\Vi_l/\vi/\mH/\.--/\Vn)=IP(V1/\---/\V}-l/\vi/\VmA---/\Vn), and
o Pr(v;) = P(v;).

The main result then follows from the definition of conditional probability.
From Proposition 2.5, we have that the joint probability distribution Pr defined by the
belief network B can be expressed as

Pr(iA--AVa) = oy, nPr(Vi| Vi A--AV) =

= Hj:l,...,n'?’V,-(Vj | Cﬂc(Vj))

From this expression, we derive an expression for the marginal distribution Pr(ViA---AV,_1 A
v; A Viy1 A+ A'V,) by substituting the value v; for the variable V.
The joint probability distribution P defined by the belief network B can be expressed as

PViA-AVa) = oy nPVi | Vi Ao AVD) =

= Loy, 2 W, (Vi | Crguivp)

From this expression, we derive an expression for the marginal distribution P(ViA---AViLi A
v; A Vigs A-++ A'V,) by substituting the value v; for the variable V.

To show that Pr(ViA-- - AVi1 A AV A AV,) = P(ViA- - AVii AU AV A+ AVL), it
suffices to show that the corresponding terms in the expressions for the marginal distributions
are the same. We distinguish between several different cases:

e for the assessment functions vy, and 4y} for the variable V;, we have that

Y (Vi | Cravi)) = W (Vi | Crgoi(vi))

e for the assessment functions vy, and 7y for a variable V; such that V; € og(Vi), we
have that

Yv; (Vi | Cravingviy As) = W (Vs | Crgui(vi)
by definition;

e none of the other assessment functions involves the variable V;; for the functions vy,
and 4y for a variable V; such that Vi € V(G)\ (0¢(V;) U {V;}), we therefore have that

Wi (Vk l C""G(Vk)) = 7;,/;(Vk l Cﬂ’cve(Vk))
We conclude that
Pr(Vin-- AVid Av AVip A AVR) =PI A - AVig AU AVipn A A VL)

The property Pr(v;) = P(v;) now follows by further marginalization. O
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A similar property can be proven with respect to the piece of evidence V; = false.

In the previous lemma, it has been shown that after propagation of a piece of evidence the
modified network and the original belief network represent the same updated joint probability
distribution. In addition, the two networks represent the same independencies given the
evidence. Note that this property is required in addition to the previous one to guarantee
correct probabilistic statements being the result of applying Pearl’s algorithm to the modified
network.

Lemma 3.5 Let B = (G,T) be a belief network with G = (V(G), A(G)). LetV; be a vertex
in G for which the evidence V; = true is entered, and let the modified network B* = (G*,T*)
be as in Definition 3.1. Then, (X|Y|2)& if and only if (X]| Y|2)%.., for all X,Y,Z C V(G)
such that V; €Y.

Proof. We consider the digraphs G and G¥ of the belief networks B and B¥, respectively.
The property stated in the lemma will be proven by contradiction.

e Suppose that there exist vertices V; and Vj in V(G) and aset Y C V(G) with V; € Y
such that ({V;}| YI{Vi}}& holds and ({V;}| Y|{Vi})4w: does not hold.

Since the independency statement ({V;}| Y|{Vi})¢w: does not hold for the digraph G**,
it follows that there exists a chain s in G* from V; to Vj that is not blocked by Y. Now,
we distinguish between two cases:

— Suppose that vertex V; is not on the chain s from V; to V. Then, s is a chain in
G also. From the independency statement ({V;}| Y|{Vi})4 we have that the chain
s is blocked by the set Y in G. But then, s is blocked in G¥ by the set Y as well.

— Suppose that vertex V; occurs on the chain s. From the topology of G* we have
that vertex V; has no outgoing arcs. Therefore, the two arcs incident on V. on
the chain s are directed towards V;. Then, s is a chain in G also. From the
independency statement ({V;}|Y|{Vi})é we have that the chain s is blocked by Y
in G. But then, s is blocked in G* by the set Y as well.

e Now, suppose that there exist vertices V; and Vi in V(G) and a set Y C V(G) with
V; € Y such that ({V;}{Y|{Vi})é.: holds and {V;H Y1{Vi})& does not hold.

Since the independency statement ({V;}| Y|{Vi})& does not hold in the digraph G, we
have that there exists a chain s in G from V; to V; that is not blocked by the set Y.
Now, we distinguish between two cases:

— Suppose that vertex V; is not on the chain s. Then, s is a chain from V; to V; in
G¥ also. From the independency statement ({V;}HY|{Vi})&v it follows that the
chain s is blocked by the set Y in G*. But then, s is blocked in G as well.

— Suppose that vertex V; occurs on s. Then, we have that the two arcs incident on
V; on the chain s are directed towards Vi; otherwise, the chain s is blocked by the
set Y in G through V; € Y. The chain s therefore occurs in G¥ also. From the
independency statement ({V;}| Y|{Vi})&». we have that s is blocked by Y in G™.
Note that since V; € Y, the set Y must contain at least one other vertex, that is
responsible for blocking s. But then, s is blocked by Y in G as well.



proposed incorporating the method of evidence absorption into Pearl’s algorithms for proba-
bilistic inference. This method amounts to dynamically modifying a belief network as evidence
becomes available by local computations only. The ability of the method to improve on the
average-case performance of probabilistic inference derives to a large extent from the method’s
property of explicitly incorporating the new independencies created by the observation of the
evidence into the digraph of the network: the method tends to make a digraph fall apart into
separate components. The incorporation of the method into Pearl’s algorithms then allows for
lessening the computational expense involved in further probabilistic computations as these
may be restricted to one component of the digraph only.

Here, we have defined the method of evidence absorption and have proven that the en-
hanced algorithms provide for exact inference. The ability of the method to save on the
computational effort spent on the average-case performance of these algorithms, however,
still remains to be demonstrated. At present, we are conducting several experiments on
differing classes of randomly generated belief networks to gain insight into the impact of ap-
plying the method; the results from these experiments are presented in a forthcoming paper,
[van der Gaag, 1993].

Although the incorporation of the method of evidence propagation into Pearl’s algorithms
is likely to yield major savings on probabilistic computation in problem solving, we expect still
further optimisation by combining the method with a lazy evaluation approach to evidence
propagation. Future research therefore will be aimed at the development of such a lazy
evaluation approach for exact probabilistic inference in the context of the method of evidence
absorption.
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