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Abstract

Chordal bipartite graph are exactly those bipartite graph in which every
cycle of length at least six has a chord. The MINIMUM FILL-IN problem is the
problem of finding a chordal embedding of the graph with a minimum number
of edges. We present a polynomial time algorithm for the exact computation
of the minimum fill-in for all chordal bipartite graphs.

1 Introduction

Chordal bipartite graphs (or weakly chordal bipartite graphs) are bipartite graphs
such that every induced cycle of length at least six has a chord. The chordal bipartite
graphs form a large class of perfect graphs containing for example the convex and bi-
convex bipartite graphs, the bipartite permutation graphs and the bipartite distance
hereditary graphs (or (6, 2)-chordal bipartite graphs). Many NP-complete problems
remain NP-complete when restricted to the class of chordal bipartite graphs. For ex-
ample HAMILTONIAN CYCLE, HAMILTONIAN PATH, DOMINATING SET, CONNECTED
DOMINATING SET, INDEPENDENT DOMINATING SET and STEINER TREE [12, 3|.
Since chordal bipartite graphs are bipartite and hence perfect, the weighted version
of STABLE SET and some other problems like the CLIQUE COVERING problem are
solvable in polynomial time [6]. Recognizing chordal bipartite graphs can be done
in O(min(mlogn,n?)) [11].

The MINIMUM FILL-IN problem is the problem of finding a chordal embedding
of a graph with a minimum number of edges. The problem is sometimes also called
the CHORDAL GRAPH COMPLETION problem and is of importance in relation with
the performance of Gaussian elimination on sparse matrices. The minimum fill-in
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problem is NP-complete in general [14]. In [13] an O(n’) time algorithm is given
for the class of bipartite permutation graphs. Notice that this class of graphs is
properly contained in the class of chordal bipartite graphs. In this paper we show
that the minimum fill-in can be computed in O(n’) time for all chordal bipartite
graphs.

We do not claim that our algorithm is a very practical one, however we feel
that it is one of the first non-trivial polynomial time algorithms for computing the
minimum fill-in for a relatively large class of graphs.

2 Preliminaries

In this section we start with some necessary definitions and lemmas. For more
information the reader is referred to [5] or [2].

Definition 2.1 A graph is called chordal bipartite (or weakly chordal bipartite ) if
it is bipartite and each cycle of length at least siz has a chord.

If G = (V,E) is a graph then we use the notation N(x) for the set of neighbors of a
vertex x. Chordal bipartite graphs can be characterized by the existence of a certain
ordering of the edges.

Definition 2.2 Let G = (X,Y,E) be a bipartite graph. Then (u,v) € E is called a
bisimplicial edge if N(x) U N(y) induces a complete bipartite subgraph of G.

Definition 2.3 Let G = (X,Y,E) be a bipartite graph. Let (e1,...,ex) be an or-
dering of the edges of G. Fori =0,...,k define the subgraph G; = (Xi, Y, Ey) as
follows. Go = G and fori > 1, G; is the subgraph of Gi_y with X; = Xi-1, Y =Yi
and By = Ei_y \ {ei} (i.e. the edge e; is removed but not the end vertices). The
ordering (ey,...,ex) is a perfect edge without vertex elimination ordering for G if
each edge e; is bisimplicial in Gy, and Gy has no edge.

The following characterization appears for example in [2].

Lemma 2.1 G is chordal bipartite if and only if there is a perfect edge without
verter elimination ordering.

The following lemma shows that we can start a perfect edge without vertex elimi-
nation ordering with any bisimplicial edge.

Lemma 2.2 Let G be chordal bipartite. Let e be a bisimplicial edge in G. Let G' be
the graph obtained from G by deleting the edge e but not the endvertices of e. Then
G’ s chordal bipartite.



Proof. Assume G' has a chordless cycle C of length > 6. Then, clearly, x and y
must be elements of C. The neighbors of x and y in the cycle form a square. This
shows that C cannot be chordless in G'. )

In [4] it is shown that a bisimplicial edge in a chordal bipartite graph with n vertices
can be found in O(n?) time.

Corollary 2.1 We can find a perfect edge without vertez elimination scheme in
time O(n*m), where n is the number of vertices and m is the number of edges.

This shows that chordal bipartite graphs can be recognized efficiently. If
G = (X,Y,E) is a bipartite graph then we call the sets of vertices X and Y the
color classes of G. A maximal complete bipartite subgraph M of a bipartite graph
G is an ordered pair M = (A,B) with A C X and B C Y. By definition there is an
edge between every vertex of A and every vertex of B. In this paper we call a graph
M = (A, B) complete bipartite only if |[A| > 2 and |B| > 2. As a first important
result we obtain the following (see also [10]).

Lemma 2.3 If G = (X, Y, E) is chordal bipartite then it contains at most |E| maxi-
mal complete bipartite subgraphs.

Proof. Consider a perfect edge without vertex elimination ordering (es,...,ex).
Consider a maximal complete bipartite subgraph (A, B) and let e; = (x,y) be the
first edge in the ordering with x € A and y € B. Then, since e; is bisimplicial
and (A, B) is maximal, A = N(y) and B = N(x). Hence (A, B) is completely and
uniquely determined by e;. This proves the lemma. a

The problem we solve in this paper is finding a triangulation of a chordal bipartite
graph such that the maximum clique size is minimum.

Definition 2.4 A graph is chordal if it has no induced chordless cycle of length at
least four.

Definition 2.5 A triangulation of a graph G is a graph H with the same vertex set
as G such that G is a subgraph of H and H s chordal.

Here are two problems that have drawn much attention because of the large number
of applications. The first is to find a triangulation such that the maximum clique size
is as small as possible. This problem is called the TREEWIDTH problem. For more
information on treewidth we refer to [9]. The second important problem related to
triangulations of graphs is the so called MINIMUM FILL-IN problem. In this case
one tries to find a triangulation of a graph with a minimum number of edges. Both
problems are NP-complete [1, 14].
We start with the following easy but important observation.



Lemma 2.4 If G = (A, B) is a complete bipartite graph and H is a triangulation
of G then either H[A] or H[B] is a complete subgraph of H.

Proof. Assume there are two vertices x and y in A which are not adjacent in H and
two vertices p and q in B which are also not adjacent in H. Since G is complete
bipartite the four vertices {x,y,p,q} form a chordless cycle of length four in H
which is a contradiction. m]

Corollary 2.2 If G is a bipartite graph and H is a triangulation of G then for every
complete bipartite subgraph in G at least one of the color classes induces a complete
subgraph in H.

We say that the color class is completed in H. Suppose we make a list of all maximal
complete bipartite subgraphs of a bipartite graph G and for each we choose one color
class to be completed. In [10] it is shown that in general the result need not be a
triangulation, hence we restrict the choices of the color classes to be completed.

Definition 2.6 Let My = (A1, By) and M; = (A3, B;) be two mazimal complete
bipartite subgraphs of G. We say that My and M, cross if either A; C Ay and
By C By, or Ay C Az and B, C B;.

Definition 2.7 Let G be a bipartite graph and let M be the set of all mazimal
complete bipartite subgraphs of G. For each M € M let C(M) be one of the color
classes. The set C = {C(M)| M € M} is called a feasible set if for each pair
M; = (A1, B1), Mz = (A2, B;) € M that cross with A; D Az and By C B, not both
Ay and By are in C.

Notice that a feasible set always exists: Let C be the set of color classes containing
for each maximal complete bipartite subgraph the color class with the least number
of vertices. This is a feasible set. In [10] the following theorem was proved.

Theorem 2.1 Let G be chordal bipartite and C be a feasible set of G. Let H be the
graph obtained from G by making each C € C complete. Then H is a triangulation
of G.

Let G be chordal bipartite. If C is a feasible set, we denote by H¢ the triangulation
of G obtained from G by making every color class in C complete. We show that
there exists a feasible set such that the number of edges in Hc is minimum over all
triangulations of G. In [10] the following result was shown.

Theorem 2.2 Let G be chordal bipartite and let H be a triangulation of G. There
is a feasible set C such that Hc is a subgraph of H.

Corollary 2.3 Let G be chordal bipartite. There is a feasible set C such that, over
all triangulations of G, Hc has the minimum number of edges.
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3 Couples and umbrellas

In this section let G = (X, Y, E) be chordal bipartite and let M be the set of all
maximal complete bipartite subgraphs.

Construct a digraph W with vertex set M as follows. If M; = (A4, B;) and
M; = (A3, B;) are elements of M that cross with A; C A, then we direct an arc
from M; to M,.

Lemma 3.1 W s transitively oriented.

Proof. Clearly, the orientation is acyclic. Consider three elements M; = (A, By),
1= 1,2,3 and assume there is an arc from M; to M; and from M; to M3. Then
A1 C A; C Az and hence By D B; D Bs. This clearly implies that there is also an
arc from M, to M. d

A source in a directed graph is a vertex without incoming arcs. A sink is a vertex
without outgoing arcs. Notice that a vertex can be a source and a sink at the same
time only if it is isolated.

Definition 3.1 An umbrella is either a source or a sink of W.

Notice that the subgraph of W induced by the umbrellas is bipartite (with possibly
isolated vertices).
We define a feasible set restricted to the umbrellas.

Definition 3.2 Let U be the set of umbrellas. For each U € U choose one color class
C(U). The set C° = {C(U) | U € U} is called a spine if for each pair Uy = (A, By)
and U, = (Az, B,) that cross with Ay C Ay not both Ay and B, are in C°.

One of the main observations is that a spine can be extended to a feasible set.
Theorem 3.1 Let C° be a spine. There is a feasible set C with C° C C.

Proof. We can construct C in a greedy manner as follows. Start with C = C°.
Consider the maximal complete bipartite subgraphs of M \ C° one by one. As-
sume that at a certain moment there are no maximal complete bipartite subgraphs
M, = (A4, By) and M; = (A;, B;) that cross with A, C Ay and both Ay and B; in
C. Notice that by definition, initially, when C = C° this is the case. Now consider a
new maximal complete bipartite subgraph (A,B) € M\ C.

If there is a maximal complete bipartite subgraph (C, D) that crosses with (A, B)
such that C C A and D € C, then put B € C. Notice that in this case there is no
maximal complete bipartite subgraph (K, L) that crosses with (A,B) with A C K
and K € C, otherwise (K, L) and (C, D) would also cross with C C K and K,D € C.

If there is no maximal complete bipartite subgraph (C,D) that crosses with
(A,B) with C C A and D € C then put A € C.

This proves that we can extend the spine C° to a feasible set C. O



Definition 3.3 A couple is a pair of vertices p and q which are both in the same
color class of G and which have at least two common neighbors.

Notice that each couple is contained in at least one maximal complete bipartite
subgraph.

We assign each couple to a color class of an umbrella as follows. Let p,q € X.
Consider the maximal complete bipartite subgraph M = (C, D) with one color class
D = N(p) N N(q) and the other color class C = NaepN(d). Choose any umbrella
U = (K, L) such that in the digraph W there is an arc from U to M, or, if M is an
umbrella itself, choose U = M. The couple p, q is under the color class K of the
umbrella U.

Now consider a couple r,s in Y and let M = (C,D) be the maximal complete
bipartite subgraph with C = N(r) N N(s) and D = NcecN(c). In this case choose
an umbrella U = (K, L) such that in W there is an arc from M to U or, in case M
is an umbrella itself, choose U = M. In this case we assign the couple to the color
class L and we say that the couple is under the color class L of the umbrella U. In
this way every couple is under exactly one color class of an umbrella.

Lemma 3.2 If the umbrella is not an isolated vertex in W then at most one of the
color classes has couples under it. If the umbrella is an isolated verter in W then
the only couples under each color class are the pairs of vertices in this color class.

Proof. Obvious. a

Definition 3.4 Let U = (K,L) be an umbrella. The weight of each color class is
the number of couples that are under 1t.

We define the weight of a spine.

Definition 3.5 Let C° be a spine. The weight of C°, w(C°), is the sum of the
weights of the color classes in C°.

We can now state our main theorem.

Theorem 3.2 Let G = (X, Y,E) be a chordal bipartite graph and let CO be a spine.
Let C be any feasible set with C° C C. Then the number of edges in He is [E[+w(C°).

Proof. Consider an edge (p,q) of Hc that is not in E. Hence p and q are in the
same color class of G. Without loss of generality assume that p and q are both in
X. There must be a maximal complete bipartite subgraph M = (A, B) such that
p,q € A and A € C. This shows that p, q is a couple.

Consider M/ = (C, D) with D = N(p) N N(q) and C = NaepN(d). Notice that
M and M’ cross or are the same with C C A. Since C is a feasible set with A € C
we also have C € C.



Since p, q is a couple in X there is an umbrella U = (Uy, U;) such that p,q is
under U; of U. In the digraph W there is an arc from the umbrella U to M’ or
U = M. It follows that U; € C and hence U; € C. Hence the edge (p, q) is counted
in w(C°).

Since each couple is under exactly one color class of an umbrella each edge of
H¢ is counted exactly once. O

4 The algorithm

In this section we give an algorithm to compute the minimum fill-in for chordal
bipartite graphs. Let G = (X,Y,E) be chordal bipartite. In fact we give an al-
gorithm that computes a spine which has minimum weight. It is then easy, using
Theorem 3.1, to extend this spine to a feasible set. Completing each color class then
gives the triangulation of G with a minimum number of edges by Theorem 3.2.

Consider the subgraph of W induced by the umbrellas. First consider the isolated
vertices of the digraph. Notice that for each isolated umbrella we can take the
smallest color class (the weight of the color class is in this case simply the number of
unordered pairs of vertices) and put this in the spine. Since the umbrella is isolated,
it cannot cross with any other umbrella. Hence there is spine with minimum weight
containing this set of color classes as a subset.

Let T = (U, U;) be the subgraph of W induced by the umbrellas without the
isolated umbrellas. Let U; be the set of umbrellas which are sources and let U, be
the set of umbrellas which are sinks. Of the vertices of U; only the color class that
is contained in X has a positive weight and of the vertices that are in U;, only the
color class that is contained in Y has a positive weight. Hence we can safely define
the weight of an umbrella as the weight of that color class that has non zero weight.

We can formulate the problem as a coloring problem on a weighted bipartite
graph as follows. Try to find a coloring of the vertices with two colors red and black.
If a vertex is colored red, this means that the color class that is in Y is in the spine.
If a vertex is colored black, the color class that is contained in X is in the spine. It
follows from the non crossing condition that we must have the following restriction
on the coloring.

Definition 4.1 A wvertez coloring of T is called correct if the following condition is
satisfied. If an umbrella of Uy is colored red, then all its neighbors in Uz are also
colored red. Or, equivalently, if a vertex of U, is colored black then all its neighbors
in X are also black.

Definition 4.2 The weight of a correct coloring of T = (U, Uy) is defined as the
sum of the weights of the black vertices of Uy and the weights of the red vertices of
;.



Lemma 4.1 Consider a correct coloring of the vertices of T. Let C° be the set of
color classes defined as follows. If a verter is colored red then the color class of the
umbrella contained in Y is in C° and if a vertez is colored black then the color class
contained in X is in C°. Then C° is a spine and the weight of the spine is the same
as the weight of the coloring. Conversely, if C° is a spine, then color an umbrella
red if the color class that is contained in Y is in the spine and otherwise color the
verter black. This is a correct verter coloring and the weight is equal to the weight
of the spine.

Proof. Obvious. o

Consider an independent set S in the bipartite graph. We can color the vertices
of SN U, red and the vertices of S N U, black. If the rest of the vertices in U, are
colored black, and the rest of the vertices of U, are colored red, then the weight of
this correct coloring is w(U; U Uz) — w(S). (The weight of a subset of vertices is
defined as the sum of the weights of the vertices in the subset). On the other hand,
consider a correct coloring. If S is the set of red vertices of Uy and black vertices of
U, then this set S must be an independent set. This proves the following.

Lemma 4.2 Consider a correct coloring. The set of red vertices of Uy together with
the set of black vertices of U, is an independent set. On the other hand, let S be an
independent set. Color the vertices of Uy that are in S red and the other vertices of
U, black. Color the vertices of U, that are in S black and the other vertices of U,
red. This is a correct coloring with weight w(l; U Uz) — w(S).

Hence the coloring problem is equivalent with the problem of finding a maximum
weight independent set in the bipartite graph.

Change the weighted bipartite graph into a bipartite graph without weights
as follows. Consider the vertices one by one. If the weight of a vertex is w we
replace the vertex by w copies of the vertex, and each copy is made adjacent to
all neighbors of the original vertex. Notice that if a vertex of the new graph is in
a maximum independent set, then all copies are in the independent set. It follows
that the problem of finding a maximum weight independent set in the old graph is
equivalent with the maximum independent set of the new graph.

Since the sum of all weights is at most the number of pairs of vertices of G, the
number of vertices in the unweighted bipartite graph is at most n?, where 1 is the
number of vertices in G.

Finally, notice that we can find a maximum independent set in a bipartite graph
as follows. The number of vertices of a maximum independent set is equal to the
total number of vertices minus the point covering number (i.e., the smallest number
of vertices that cover all edges [7]). Since the graph is bipartite, the point covering
number is equal to the number of edges in a maximum matching (see, e.g., 7).
A maximum matching in a bipartite graph can be found using a maximum flow
algorithm [8]. We obtain the following result.
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Theorem 4.1 Let G = (X,Y,E) be a chordal bipartite graph. There ezists a poly-
nomial time algorithm to find the minimum fill-in of G. The algorithm can be
implemented to run in O(n°) time.

Proof. The constructed bipartite graph has at most n? vertices. Hence a maximum
matching can be found in O(n®) time (see, e.g., [8]). O

5 Conclusions

In this paper we showed that computing the minimum fill-in of a chordal bipartite
graph can be done in polynomial time. In this section we mention some open
problems.

It would be of interest to know if there are other large classes of graphs for which
the minimum fill-in can be computed in polynomial time.

Chordal bipartite graphs are properly contained in perfect elimination bipartite
graphs. It would be interesting to know if MINIMUM FILL-IN is also solvable in
polynomial time for this somewhat larger class of graphs.

It is very likely that there are faster algorithms for subclasses of chordal bipartite
graphs, like convex bipartite graphs.

Another interesting question is of course whether the time bound of this algo-
rithm can be improved. It could also be very useful to have a fast algorithm that
approximates minimum fill-in within a constant factor for chordal bipartite graphs.
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