On the Relation Between Unity Properties
and Sequences of States

R.T. Udink and J.N. Kok

RUU-CS-93-07
February 1993

Utrecht University
oS S

0
; (‘E Department of Computer Science
At g Padualaan 14, P.O. Box 80.089,

5
7 ¥ 3508 TB Utrecht, The Netherlands,
Tel. : ... +31- 30 - 531454

¢

On the Relation Between Unity Properties
and Sequences of States

R.T. Udink and J.N. Kok

Technical Report RUU-CS-93-07
February 1993

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

e SR

S

On the Relation Between Unity Properties and Sequences of
States

R.T. Udink* and J.N. Kok

Utrecht University,
Department of Computer Science,
P.O. Box 80.089,

3508 TB Utrecht, the Netherlands.
Email: {rob,joost}@ecs.ruu.nl.

Abstract

Stepwise refinement of programs has proven to be a suitable method for developing parallel
and distributed programs. We examine and compare a number of different notions of program
refinement for Unity. Two of these notions are based on execution sequences. Refinement
corresponds to the reduction of the set of execution sequences, i.e., reducing the amount of
nondeterminism. The other refinement notions are based on Unity properties as introduced by
Chandy and Misra. The Unity approach is to refine specifications. Although it has proven a
suitable formalism for deriving algorithms, it seems less suitable for handling implementation
details. Following Sanders and Singh, we formalize program refinement in the Unity framework
as the preservation of Unity properties. We show that Unity properties are not powerful enough
to characterize execution sequences. As a consequence, the notion of property-preserving
refinement differs from the notion of reducing the set of execution sequences.

1 Introduction

Developing correct parallel and distributed programs from specification to implementation is a
difficult task. Stepwise refinement has proven to be a useful methodology for this task.

The Unity framework, as introduced by Chandy and Misra in [CM88], consists of a programming
language and a programming logic. The logic is based on a set of temporal properties. These
properties are used to give specifications. The Unity approach is to refine specifications toward a
specific architecture until a program can be derived easily. A specification is refined by a stronger
set of properties. As can be seen from the case studies in [CM88], this method is useful for deriving
parallel and distributed algorithms. However, it is not easy to deal with low-level implementation
details at the level of specification. So, the specification refinement seems less suitable for the final
stage of program development. In this stage of the development process, program refinement is
more useful. This consists of transforming programs toward a specific architecture in such a way
that semantic properties of the program are preserved. There are different notions of what kind of
properties are to be preserved. Because we are also interested in interactive programs, we need a
semantic notion that takes into account some temporal behavior of the program, not only its pre-
and postconditions. Sanders [San90] defines a syntactic notion of program refinement similar to
reactive refinement as defined by Back in [Bac90]. For this kind of refinements, she is interested
in the preservation of adjusted Unity properties. In [Sin91], Singh uses a similar approach for the
original Unity properties. Lamport and Abadi [AL88] base their work on behaviors, sequences of
states that can occur during program execution. Refinement of a program should reduce the set
of behaviors, that is, it reduces the amount of nondeterminism.

*This research has been supported by the Foundation for Computer Science in the Netherlands SION under
project 612-317-107

In this paper the relation between these notions of program refinement is examined for Unity
programs. Therefore, we define a number of semantic models for Unity programs. First, we define
two models based on sequences of states. The first semantics of a program is the set of stutter-free
sequences of states that can occur during program execution. An extension for compositionality
results in the second model. Secondly, we define some models based on Unity properties. The
semantics of a program is the set of properties (safety and progress properties) that it satisfies.
We can base the semantics models on two notions of progress: either leadsto properties, or ensures
properties. Since we can use properties defined by Chandy and Misra as well as those defined
by Sanders, we define four different models. Each model yields a notion of refinement. At first
sight one might think that the notion of refinement in terms of sequences and properties are
equivalent. We will show that Unity properties are not powerful enough to characterize sequences.
Consequently, the notion of property-preserving refinement differs from the notion of reducing the
set of execution sequences.

This paper is organized as follows. In section 2 we give a brief introduction of the Unity
programming language. In section 3, the notion of program executions is formalized in terms of
sequence of states and section 4 gives an introduction to the Unity logic. Section 5 discusses some
notions of program refinement, based on executions sequences and Unity properties. These notions
will be compared in section 6. Section 7 mentions some conclusions and further research.

2 Unity programs

In this section, a brief overview of the Unity programming language, as introduced by Chandy and
Misra in [CM88], is given. We will denote Unity programs by F and G. A Unity program has
several parts that are called sections. We will only consider a subset of Unity programs, namely,
programs that are made up of the following sections.

e An initially-section defining the initial values of variables. We denote by init.F the set of
possible states that satisfy the requirements of the initially-section of a program F.

e An assign-section containing a non-empty set of (possibly multiple and/or conditional) as-
signment statements (for a program F denoted by assign.F). Assignment statements are
separated by the symbol |. Assignment statements are deterministic and the execution of
each statement always terminates,

When it is clear from the context, we may use F to denote init.F or assign.F.
An example of a Unity program is given below.

Program F
initially
z2>0
assign
z:=z+1ifz>0
lz:=2-1ifz<0
end{F}

The idea of program execution is as follows. Execution of a Unity program F starts in a state
contained in init.F. In each step an assignment statement is chosen from the set assign.F and
executed. Furthermore, an execution has to be fair, that is, each statement should be chosen
infinitely often. If the guard of the statement evaluates to false, execution of that statement is a
skip statement. The execution of a Unity program never terminates. However, there is the notion
of fixed point: if after some moment the state cannot be changed by any statement of F , one can
view this state as the result of the computation.

Execution of the program given above starts in a state where z = ¢ for some ¢ > 0 and
repeatedly a statement is executed. Execution of the first statement increases z by one. This

happens infinitely often. The second statement, which is also selected infinitely often, does not
change the value of z. So, the execution results in an ever increasing value of z.
Two programs can be composed with the union operator |:

Definition 2.1 Let F and G be Unity programs. The union of F and G, denoted by F|G, is
defined as

init.(F|G) 2 init.F inil.G,
assign.(F|G) = assign.F U assign.G.

For example, the program F, as given above, can be composed with program G. This results in
program F|G:

Program G Program F|G
initially initially
z>0 z>0
assign assign
T =~z z:=z+1ifz>0
end{G} lz:=z-1ifz<0
|z:=-2z
end{F|G}

Program union can be interpreted as a kind of parallel composition, where parallelism is modeled
as interleaving of actions.

3 Operational semantics

In this section, we define two operational semantic models for Unity programs. One consists of
sequences of states, the other is an extension to make the model compositional. Chandy and Misra
have defined an execution model for Unity programs in terms of sequences of tuples. Each tuple
consists of a state and a label of the statement that is executed. We use the operational view
that only states can be observed. This means that neither stutterings, nor the statement that is
executed can be observed. This corresponds to the idea of the Unity properties that also abstract
from stutterings. In [Liu89), Liu gives the semantics of Unity programs in terms of fair execution
sequences. This model resembles our first operational semantics.

Our first model gives a set of stutter-free sequences of states that may occur during an execution
of the program. We will first define some preliminaries. Let X be the set of states, which could be
modeled as functions from variables to values, and Seq = P(X*) be the domain of sets of infinite
state sequences. We use the {(.))-brackets to denote sequences. We denote function application by
a dot that associates to the left: f.g.z = (f.g).z. For sequences an operator | is defined by Abadi
and Lamport in [AL88] that removes stutterings from a sequence, i.e., it replaces all maximal finite
segments pp - - - p of identical states by the single state p. E.g., 0.{pop1p1920202 -) = {pop1p2),
if po,p1, and p; are different states. We call a sequence z stutter-free if fl.z = 2. This means that
2 may only contain a suffix of stutterings.

Lemma 3.1 For every sequence z = {{09,01,02,)

bz=z2=NMitoi=oip1 2> (Vi <y 0; = 0j41)).

By o s ¢’ we denote that execution of statement s in state o results in state o’.
Now we define the first operational semantics of a Unity program.

Definition 3.2 The operational semantics Oy : Unily — Seq is defined for a Unity program F as
the set of stutter-free sequences of states z for which there exists an infinite sequence

2= «”0;61)027 e »

such that

o h.z/ =2,

e nit.F.op,

o (Vi::(3s:s€ assign.F ::0; s 0i41)), and
e (Vs:s € assign.F :: (AP 05 5 0i41)).

The quantification : 3%° says that there are infinitely many i. The third condition states that a
sequence only contains transitions that can be made by a statement of the program. The fourth
condition formalizes fairness. Remark that the definition of fairness is slightly different from the
definition used by Chandy and Misra. They require that every statement is executed infinitely
often. We only require that the effect of each statement is visible as a state transition (that may
be caused by executing another statement with the same effect) infinitely often. However, since
a Unity program only contains a finite number of statements, both notions result in the same set
of sequences of states. Note that O1[F] can contain only infinite sequences. Termination of a
program (reaching a fixed point) corresponds to an infinite suffix of stutterings. The following
lemma gives a characterization of @; that is more suitable for calculation.

Lemma 3.3 For every sequence z = ({0,061, --)) and Unity program F:
z € O1[F]= init. F.og All.z = z A oky.F .2 A fair) . F.z

where
oky.F.z = (Vi::(Js:s € assign.F ::0; s 0i41)),
Jairn, Fz=(Vi,s:se€ F:u(3:i<j:u(oj so;)V(ej s 0j41))) -

The model Oy has the drawback that it is not compositional with respect to union of programs.
This can be seen from the following example.

Program F Program G
initially initially
z2>0 z20
assign assign
r:=z+1ifz2>0 z:=z+1ifz>0
Jz:=2-1ifz<0 end{G}
end{F}

Both programs F and G have the same stutter-free sequences of states, i.e., O1[F] = 01[G].
However, composition with the program consisting of the statement z := —z will result in different
sequences because z may become negative. If 2 < 0, r can be decreased by the second statement
of F, no statement of G has a similar effect.

Hence, for some compositional semantics it is not sufficient to have all execution sequences:
we need a semantic model that allows for interleaving. Like [BKPR91], we use an extended
notion of sequences to make the model compositional. Extended sequences have holes and the
intuition is that the holes can be filled by the environment (that is, another Unity program).
So, an extended sequence gives the contribution of a program when it operates in a composition.
Extended sequences are sequences of pairs of states. The first state of each pair is arbitrary, reached
by the program or its environment, the second is the result of the execution of any statement of
the program. Because the first state of the first pair of an extended sequence can be any state, we
have to take care of the initial states explicitly. So, we define the domain of extended sequences
by ESeq = (P(X), P((Z x X)*)).

We also want to abstract from stuttering in the compositional model. However, it is not pos-
sible to remove all stuttering from each extended sequence. Then, it would not be possible to
derive the set of connected sequences. Like [BKPR91)], we only remove connected stutterings, and
to make the model more abstract, it is allowed to add stutterings. To remove stutterings, we

define the operator }j for extended sequences. This operator removes all maximal finite segments
of connected stutterings, i.e., it replaces all finite segments (7, p), (p, p),- -, (p,p) by (o,p) and
(p,p), -+ (p,p), -+, (p,o) by (p,0). Then the compositional model is defined as follows.

Definition 3.4 The operational semantics O, : Unily — ESeq is defined for a Unity program F
as the pair (I, V) where I = init.F and V is the set of all sequences of pairs of states v for which
there ezists an extended sequence

v' = ((00,00), 1 (00, 00), -)
such that
e hv' =,
o (Vi::(3s:s€ F.assign ::0; s 0}) V(0; = 0})), and
o (Vs:se€F: (3P :0; s o).
Similar as for O;, we make an alternative characterization of O, that is better for calculations.
Lemma 3.5 For every extended sequence v = ({(0g,05),(0q,01),---)) and Unily program F:
vE Vp=hv=vAok.F.uAfair, F.v
where
oky . F.v = (Vi::(Is:s € assign.F ::0; s 0}) Vo, = 0l),
fairp. Foo=(Yi,s:s€F :(Fj:i<j:(o; s 0;)V(0; s 0})V (0] s0})))

The predicates oks and fairs have a nice relation with the removal of stutterings. It follows directly
from the fact that § only removes finite segments.

Lemma 3.6 For each extended sequence v and Unily program F
okz.F.v = oky . F.(h.v) A fairg.F.v = fairg. F.(h.v)

We define an abstraction function 3 that relates the two operational models. The idea is to take
all extended sequences that are connected, i.e., each pair ends in a statement in which the next
pair continues. These sequences can be concatenated.

Definition 3.7 Let 3 : ESeq — Seq be defined by

B.(I, V) = {cat.z|startin.(z,I) A connecled.z Az € V},
where

startin.({(70, 9%), (01, 04), - 9, 1) (0 € 1),

connected.((0g,0p), -, (0,,00), -) & (Vi 0 = 0i41),
and

cat.{(00,00),(01,01),) = (00,01,02,--).

Before proving our theorem, we will prove some lemmas about the relation between stutter
free-sequences and extended stutter-free sequences.

Lemma 3.8 For every extended sequence v

connected.v = (1.v = v = §.(cat.v) = (cat.v))

Lemma 3.9 For every Unily program F and every exiended sequence v such that connected.v and

fv=1v

(faire.F .v = fair,.F (cat.v)),
(fairy . F .v) = (oky.F.v = ok;.F .(cat.v)).

Proof: The proof for fairness is straight forward,
0k2'F'«(°'0’ 0), (alt ”i)’)
= {definition ok;}
(Vi:(3s:s€F:uo;,s0;)Vo; =0}
= {connected}
(Vi:(Is:s€F 08 0iy1)Vo;=0i41)
= b.(cat.v) = (cai.v) and lemma 3.1
(Viz(Ts:seFuoisoi))V{Vj:i<jio;=0j41))
= {fair,.F .(cat.v)}
(Vi:(Is:s€F :0;s0i41))
= {definition ok, }
Okl-F-(cat~(((Uo»06), (0'1, Ull)’ tr)»
a
Theorem 3.10 O, =00,
Proof:
B-O-[F]
= {lemma3.5 }
B.(init.F l.v = v A oky.F.v A fairg . F.v)
= { definition 8}
{cat.v|init.F.v A connected.v Aj.v = v A oky.F.v A fairg . F.v}
= { lemma 3.8 en lemma 3.9}
{cat.v]init. F.vg A connected.v A f.(cat.v) = (cat.v) A oky.F.(cat.v) A fairy . F .(cat.v)}
= {cat.v = (v’ :: cat.v' = cal.v A connected.v')}
{cat.v|init.F .vo Aj.(cat.v) = (cat.v) A ok;.F .(cat.v) A fairy.F.(cat.v)}
= {z = cat.v}
{z|init.F.2o Ah.2 = z A oky . F .2 A fair, .F .2}
= { lemma 3.3 }
0,[F}
o

To show that this model is compositional, we define the function ﬁ, which is the semantic
equivalent of program union.

Definition 3.11 Let F, G be Unity programs and O,[F] = (Ir, Vr), and
0:[G) = (Ig, V¢). Then

0.[F]] 0.[G} = (Ir nIg,{h.v|(Jvr, vy :: vy € VP A vy € Vg :: v € merge(vy, vg)) }-

The operation merge is the standard fair interleaving on sequences.

Since {h.v|merge(vy, v2)} = {h.v|merge(f.v1,.v2)} for all extended sequences vy, v it is straight
forward to verify the following theorem.

Theorem 3.12 For Unity programs F, G,
(O2[F1] [G]) = o[FIG].

4 Unity logics

In this section, we give an overview of two logics for the Unity programming language: a variation
of the logic in {CM88] and a logic given by Sanders in [San91]. Both logics are based on a small
set of temporal properties that are defined in terms of the statements of a program. To provide
an intuition for the properties, we will give an interpretation of the properties in terms of the
operational models given in the previous section.

Before introducing the logics, we need to introduce some predicate transformers. The semantics
of a single assignment statement can be given by its weakest liberal precondition wip or strongest
postcondition sp predicate transformers (see for example [DS90]).

Definition 4.1 Let (z := E) be an assignment statement. The weakest liberal precondition and
the strongest postcondition are defined as

wlp.(z := E).p = p(E/z),
sp.(z:= E).p = (3y:z = E(y/z) :: p(y/2)).
The predicate p(E/x) is the predicate p in with E substituted for z.

The definitions for multiple assignments are similar, using simultaneous substitution.

Because the execution of each assignment statement always terminates, the notions of weak-
est liberal precondition and weakest precondition are the same. In the sequel, we model state-
predicates as functions from states to booleans, however, we sometimes interpret them as a set of
states. Since Unity statements are deterministic assignment statements, o s o' corresponds with
P => wip.s.p,r and sp.s.p, = p,r, where p, is the predicate that is truein o and falseotherwise,
that is p,.7 = (¢ = 7). We sometimes use o to denote the predicate p,. In the next definition we
lift the predicate transformers wilp and sp to Unity programs.

Definition 4.2 Let F be a Unity program and p a predicate. The predicate transformers wlp and
sp are lifted to Unity programs by

wlp.F.p = (Vs : s € assign.F :: wip.s.p),
sp.F.p=(3s:s € assign.F :: sp.s.p).

Next, we introduce the predicate transformer sst, the strongest stable predicates, as given in
[San91].

Definition 4.3 The predicate sst.F.p is the strongest solution for q of
[¢ = wip.F.qAp = q].

Sanders has proven the following characterization of sst that can be used to compute this predicate
transformer.

Theorem 4.4 Define function f by f.y = (sp.F.y)V p. Then
sst.F.p=(3i:i>0: f false),
where f° = identity and f* = fof~' ifi > 0.

We will use the sst-predicate transformer to characterize the set of all reachable states of a
program F:

Lemma 4.5 For a Unity program F

sst.F.(init. F).o = (3z,i: 2= ({po, p1,-) € O1[F]) :: pi = 7).

We abbreviate the set of reachable states sst.F.(init.F) by sinv.F, the strongest invariant of F.

Now we define the logics for Unity programs. Although the logic of Chandy and Misra is older
and the logic of Sanders is a modification of it, we introduce the latter first, since the interpretation
of the properties of this logic is closer to the operational intuition. The logic of Sanders is introduced
in [San91] and is based on four temporal properties: invariant, unless, ensures, and leadsto. The
properties are attached to an entire program and they are defined in terms of the set of reachable
states and the effect of the statements of the program Because we introduce the Chandy and Misra
logic later we subscript the properties by S. Following Dijkstra and Scholten [DS90], we use square
brackets to denote universal quantification over all states.

Definition 4.6 (Sanders Logic) Let p, ¢ be arbitrary predicates and F a Unity program. Define
the following properties of F by

1. invartant property:
invariants ¢ = [sinv.F = p]
2. unless property:
p unlesss q = [sinv.F = (p A=g = wip. F.(pV ¢))].

3. ensures property:
p ensuress ¢ = p unlesss g A (Is : s € F :: [sinv.F = ((p A ~¢q) = wip.F.q))).

4. leadsto property: s is defined as the smallest binary relation R between predicates satisfying
the following conditions:

(a) R D ensuress,
(b) R is transitive,
(c) for any set W, if (Ym :m € W ::pp, R q) then (3m :m € W :: p) R q.

If the program is not clear from the context we will mention the program explicitly using the
connective in , e.g., punlesss ¢ in F.

The Sanders logic differs from the logic of Chandy and Misra in the fact that all properties are
restricted to reachable states (expressed by the sinv.F in each definition). This has two important
consequences. Firstly, the following substitution principle holds:

if invariant (a = b) then we may substitute a for b in every property of the program.

Secondly, the interpretation of the properties in terms of normal sequences corresponds to the
intuition of the properties.

The unlesss property is a safety property. The operational interpretation of p unlesss ¢ is that
if p becomes {rue during the execution of the program it remains true as long as ¢ is false.

Lemma 4.7 For a Unity program F,

punlessg ¢ in F=(Vz,i:2= {09,01,---) €EO1[F]: (pA—-9).0: =2 (PV 0).0i41).
Proof:

p unlessg ¢ in F
{definition unlesss }

[sinv.F = ((p A—g) = wip.F.(pV q))]
{quantification over states }

(Vo:o0€X usinvFo:((pA-g)=>wlp.F.(pVg)).o)
{lemma 4.5 }

(Vz,i: 2= (00,01,) € O1[F] :: ((p A—g).0i => wip.F.(pV g).0%))
{definition wip.F }
(Vz,i: 2 = (00,01, -) € O1[F] : ((p A—q).0i => (Vs : s € F : wip.s.(pV g).04)))
{ predicate calculus }
(Vs:s€F:(Vz,i:2 € O[F]:((p Ag).oi => wip.s.(pV g).00))
{(Vs,z,i:s€ FA2z€ O\[F]: (32,5 : 2/ € O1[F]:: 0i = 0} Ao} = wip.s.ojyy)) }
(Vs:s€F::(Vz,i:2€O[F]A0; = wip.s.0iyr : ((p Ag).0i = wip.s.(pV 0).0:)))
{ interpretation wip }
(Vs:s€F::(V2,i:2€ O[FJAoi = wip.s.oigr : (p A0g).0i = (P V ¢).0i41))
{predicate calculus }
(V2,i: 2 € O1[F) = (p A-g).2i = (P V 0)-Zig1)

(u]

The ensuress and leadstos properties are progress properties. The operational interpretation of
p ensuress ¢ is that if p holds it remains to hold until ¢ holds and ¢ will hold within finite time,
i.e., a finite number of execution steps. The definition of the leadstos property is the definition of
Pachl given in [Pac90). It differs slightly from the definition of Sanders where the inference rules
may only be applied a finite number of times. We use Pachl’s notion because of its correspondence
to the operational intuition of the leadsto property, i.e., p+s ¢ holds in F iff whenever p is irue,
¢ will become true within finite time. This is expressed in the following lemma that was proven
by Pachl in [Pac92):

Lemma 4.8 For a Unily program F
psqin F=(Vz,i:2= (00,01,) €EO1[F}upoi=>(F:52>1:q.05).
Now we define the original Unity logic as defined by Chancy and Misra in [CM88].

Definition 4.9 (Chandy-Misra Logic) Let p, ¢ be arbitrary predicates and F a Unity program.
Define the following properties of F by

1. unless property:

punlesscm ¢ = [(p Ag) = wip.F.(pV q)].

2. ensures property:

p ensurescy ¢ = p unlesscyr ¢ A (3s : s € assign.F =2 [(p A —q) = wip.s.q)).

3. leadsto property: v oy is defined as the smallest binary relation R between predicates sal-
isfying the following conditions:

(a) R D ensuresca ,
(b) R is transitive,
(c) for any set W, if (Ym :m € W ::ppn R q) then (Im :m € W 1 pp) R g.

In this framework the invariant property (as some more properties) is defined as a “derived”
property, in terms of the three basic properties:

stablecpy p = p unlesscm false,
invariantcy p = (init.F = p) A (stablecy p),
p untilcyr q = (p unlessem ¢) A (p—cem ¢).

The properties defined here are stronger than the properties defined by Sanders, i.e., pRcmg =
pRsg, but the reverse implication does not hold. In fact, we can express the Sanders’s properties
in the Chandy and Misra logic as follows.

Lemma 4.10 For a Unity property R € unless , ensures , — and a Unily program F,
p Rs ¢ = (sinv.F Ap) Reu (sinv.F A q)
Proof: For R is the unless property:

p unlesss ¢ in F
{ definition unlesss }

[sinv.F = (p A—g => wip.F.(pV)
{ predicate calculus }

[(sinv.FApA—g) = wip.F.(pV q)]
{sinv.F = wip.F .(sinv.F)}

[(sinv.FApA—-g) = (wip.F (sinv.F)A wip.F.(pV)]
{ wlp is conjunctive }

[(sinv.F A p A—q) = wip.F.(sinv.F A (Vv D)
{ predicate calculus }

[((sinv.F A p) A—(sinv.F A q)) = wip.F .((sinv.F Ap)V (sinv.F A)]
{ definition unlesscu }

(sinv.F A p) unlesscy (sinv.F A g) in F

n

The proof of the ensures is similar:

p ensuress ¢ in F
{ definition ensuress }
punlesss g in FA(3s:s€F = [(sinv.FApA-g) = wlp.s.q))
{ sinv.F = wip.s.(sinv.F)}
punlesss g in FA{(3s:s€F = [(sinv.F Ap A—g) = (wlp.s.(sinv.F) A wip.s.q)])
{ previous, wip is conjunctive}
(sinv.F A p) unlesscum (sinv.F A g) in FA
(3s: s € F = [((sinv.F AP)A —(sinv.F A q)) = wip.s.(sinv.F A)]
{ definition ensurescm }
(sinv.F A p) ensurescy (sinv.F A g) in F

For the — property the relation directly follows from the ensures. a

As a consequence, the interpretations given in lemma 4.7 and 4.8 only hold in one direction,
when we examine the Chandy and Misra properties. Neither does the substitution principle hold
as can be seen from the following example. For example, for program F, introduced in section 2,
we can derive the properties (z = ¢cAz 2> 0) unlesscy z > ¢ and invarianicy (z > 0) = true. The
substitution principle says that (z = c) unlesscm (z > c) should be a property of F. However,
this is not true if ¢ is negative. This is because Unity properties also say something about the
behavior of the program in states that are never reached during any program execution, e.g., the
states where z < 0 for program F. This characteristic, however, make these properties suitable
for compositional reasoning.

punlesscy ¢ in F|G = (p unlesscpy ¢ in FAp unlesscy ¢ in G),
p ensurescy ¢ in F|G = (p ensurescm ¢ in FAp unlesscy ¢ in G)V
(p ensurescy ¢ in GAp unlesscy ¢ in F).

Chandy and Misra give an intuitive interpretation in terms of extended sequences.

Lemma 4.11 For a Unity program F and Oo[F] = (I, V).

p unlesscy ¢ in F = (¥(o,0") : (-, (o, o), -NeEVi(pA-ge=>(V q).0').

10

Proof:

1]

n

punlesscy ¢ in F
{ definition unlesscar }

[(pA=g) = wip.F.(pV q)]
{ quantification over state space }

(Vo::(pA-g)o=>((Vs:s€F = wilp.s.(pVq))).o)
{Yo:u (- (0,0,) € Os[F]}

Vo : (-, (a,0),-) €O[F]:: (pA—q).o=>((Vs:s€F ::wip.s.(pVq))).0)
{ predicate calculus }

(Vs,0:3€ FA{---,(0,0"),--)) € O[F]:: (p A—gq).0 = (wip.s.(pV ¢)).0)
{from definition of O3: c s 6’ Vo =0’}

(V(O', 61) : «) (0, al)) ot » € 02[F] i (P A _‘Q)'y = (P v q)‘al)

Lemma 4.12 For a Unity program F and O5[F] = (I, V).

p ensurescy ¢ in F = ((Vi: (p A—g).0;) = (3i: q.07))

Jor every sequence v = {((0,,0}),(05,0%),---) € V.

Proof:

=

=

Assume that p ensurescy ¢ in F, then:

(Vi (p A—g).oi)
{ p unless ¢ and lemma 4.11}
(Vi (pA-g)o;A(pV g).07)
{predicate calculus}
(Vi (pA—g).o;A(p A—g)oi) Vv (Ti:: qof)
{fairness}
((Ws:se€F:(Finag,so;Vo;s0:Voisal)) A(Viz(pA-g)o;A(pA-g)ai))
V(3i :: q.0%)
{predicate calculus}
(Vs:s€F (i (o;s0,Va,s0,Vo;sai)A(pA-g)o;A(pA-g).oi))
v(3i :: q.0%)
{3s€ F:[(pA—g)=> wips.q]}
(i (go;V g.o)A(pAg).o; A(p Ag).of) V(i 2 g.07)
{predicate calculus}
(3i = g.07)

5 Refinement relations

In the previous sections we have defined notions of execution sequences and we have given in
introduction in Unity logic. In this section, we will concentrate on refinement. We will define some

notions of refinement based on the models given in the previous sections.

First, we look at the model O;, the sets of sequences. For this model we use a notion of
refinement that corresponds to the idea of implementation as defined by Abadi and Lamport in
[AL8S]; a specification S; is implemented by a specification S; if every behavior of S; is allowed
by Si. Going from specification to implementation, the set of execution sequences reduces. The
number of choices that can be made decreases, in other words, the amount of nondeterminism

decreases.

11

Definition 5.1 Let F, G be Unity programs
FC G in 0y = (0,[F] 2 O04[G))-

We use the connective in to indicate the model. In a similar way we give a refinement relation
based on the model @, the sets of extended sequences.

Definition 5.2 For Unity programs F, G; Oz[F] = (Ir, Vr), and O3[G] = (Ig, Vg),
FCGin O;=2(Ir2IcAVF 2 Ve).

In [CM88), Chandy and Misra defined a notion of refinement for specifications, that are sets of
properties: a specification S1 is refined by a specification S2 iff all properties of S1 can be derived
from the properties of $2. Sanders ([San90]) and Singh ([Sin91]) used this idea to define refinement
for Unity programs as preservation of properties: a program F is refined by program G if every
property of F is a property of G.

To define this notion formally, we first define some semantic models for Unity programs based on
their properties. We define in total four different models; two based on the Unity logic of Chandy
and Misra, and the others based on the logic of Sanders. For each logic one model is based on
ensures properties and the other on leadsto properties. Therefore, we need the following domains:
U = P(X) x P(P) x P(P) as a triple containing a set of initial states, and two sets of properties.
The domain P is the property domain, i.e., a pair of sets of states, P = P(Z) x P(Z) (pairs of
predicates). We often switch between predicates and sets of states.

Definition 5.3 Define for x € {S, CM} and a Unity program F

. TUEF12 (I, U,E),

where I = F.init, U = {(p, ¢)| p unless, ¢ in F}, and
E = {(p, ¢)| p ensures, ¢ in F}.

. TULC[Fl=(,U,L),
where I = F.init, U = {(p, q)| p unless, ¢ in F}, and L= {(p, ¢)l p+=>+ ¢ in F}.

Remark that ZUEcu is the strongest model of the four and that it is compositional. This fol-
lows directly from the theory given in section 4. For these property-based models we can define
refinement as preservation of properties as follows.

Definition 5.4 For x € {S, CM} and Unity programs F, G.
Let TUE[F) = (IF, Ur, EF) and IUEL[G) = (g, Ug, Eg). Then,

FCGinTUE,E(Ir2IcAUrC Ug A Er C Eg).
Let TUL.[F) = (IF, Ur, LF) and IUuL.[Gl= (g, Ug,Lg). Then,
FE G in Iuﬁ.E(IFQIG/\ Ur C UG/\LFQLG).

6 Relation between the models

In the previous sections we gave a number of semantic models for Unity programs and for each
model we defined a refinement relation. In this section we examine the relations between the
models. We want to know how the notions of refinement for the models are related. Therefore, we
define the following relation on models.

Definition 6.1 For two models M, and M,
My - My = (YF,G = (FEG in M) = (FC G in My)),

12

TULs | — TIULcM

AN

TUEs | - TUEcM

Figure 1: Relation of Refinements

To denote that the arrow relation does not hold, we use the symbol /. It is straightforward to
prove that the arrow relation is transitive. If the arrow relation holds for two models, we can
conclude that the semantic equality of programs is related in the same way.

Lemma 6.2 For two models M; and My,
My — My = (YF,G = (Mi[F]1= Mi[G])) = (M:[F]= M:[G]))-
Proof: Suppose My — Mj. Then
(Mi[F= Mi[G]

(FEG in MI)A(G[_:_F in M,)
= {Ml—-*Mz}
(F;_G in Mz)/\(Gg_F in Mz)

n

(M2[F] = MalG]

(]

In figure 1, the arrow relation is shown for all models given in the previous section. Arrows that
are not given and do not follow from transitivity do not hold. In this section, we establish the
arrow relations. Since the relations between the property-based models follow directly from the
theory given in the previous sections, they will not be discussed here. We are especially interested
in the relations between the operational semantics and the semantics based on Unity properties.
Since the models ZUE oy and Oy are both compositional and contain some information about
atomicity, one might think that these models are equivalent. Also, one might think that O; and
TULs are equivalent. In this section we will show that this is not true.

First, we are going to examine the relation between O3 and TUEcMm. As can be seen from
figure 1, there is a refinement-preserving abstraction relation from Oy to ZUE cu, but not the
other way around. We will start by proving the latter by counterexample.

Theorem 6.3 IUEcM # Oz

13

Proof: Consider the following programs and their state transition diagrams.

Program F Program G
initially initially
z € {0,1,2} z €{0,1,2}
assign assign
z:=zmod3 z:=—-zmod3
lz:=(z+1)mod3 lz:=(1-2z)mod3
fz:=(z+2)mod3 Jz:=(2-z)mod3
end{F} end{G}
a a

We start to show that ZUE oy [F] = IUEcm][G), in other words, that the properties of both
programs are the same. Firstly, it is obvious that the initial sections of both programs are the
same. Secondly, for unlesscy properties:

p unlesscy ¢ in F
= {definition}
[(pA~g)= wip.F.(pVq)]
{definition wip.F}
[(pA-g)=>(Vs:s€ F:wlps(pVq))
{definition wip}
[(pA—g) = (Va:a €{0,1,2}:: (pV ¢).((z + a) mod 3/7)])

[(pA-g)=>(Vy:y€{0,1,2}:: (pV ¢)(3/7)])
[(pA-g)= (Ya:a€{0,1,2}:: (pV ¢).((« — z) mod 3/z)])

{derivation in reverse}
punlesscyy ¢ in G

1l

So, F and G have the same unlesscy properties.

Also, the ensurescy properties are the same. This is outlined in table 1. This table shows
whether or not a statement exists such that [(p A ~¢) = wip.s.q] holds for the given predicates
(p A—q) and g. A one in the table indicates that there exists such a statement, a zero denotes
that such a statement does not exist, and — indicates that the combination of predicates is not
possible. The predicates (p A —~¢q) and ¢ are given by the set of states on which they are true. It
is easy to check that the table holds for both programs F and G. Using symmetry arguments we
may conclude that the existence of the statements is the same for all predicates.

From this table and the fact that the unlesscpy properties of both programs are the same, it
can be concluded that the ensurescay properties are the same for both programs. So, we proved
that IusCM[F] = IL(SCM[G].

Although the properties are the same, the operational semantics O;[F] and O2[G] differ. The
following extended sequence is an element of O[G] but not of Q5[F]:

«(0’ 1)’ (1’ 2)a (2’ 0)’ (0: 1)’ (1’ 2)’ e »

14

g9 0 2 o1 12 012
PA—g

) 11 1 1 1 1
0 0 - 1 - 1 -
01 0 - 0 - - -
012 0 - — - - -—

Table 1: Existence of a statement s such that [(p A ~g) => wip.s.q).

This sequence is not fair in F because, to produce this sequence, the third statement of F should
be ignored forever. To summarize, we have found that

(TUE cm[F) = TUE cu[G)) A (O2[F] # O:[G))
So, by lemma 6.2, TUE cpm /A Oa. o

The same counterexample shows that ZUEcu 7 O1 and TUEs 4> O1. In the proof above, it is
shown that the notion of execution sequences is a stronger notion than Unity properties. Two
programs having the same Unity properties may have different execution sequences. In other
words, Unity properties are not expressive enough to characterize the set of execution sequences.
As a consequence, property preserving refinement is a weaker notion than the reduction of the
set of execution sequences. As we have seen in the proof, the programs F and G have the same
Unity properties. So, F C G in TUEcum and also F C G in TUEs. However, these refinements
do not reduce the set of execution sequences. In fact, they extend the set of sequences. So, neither
FZ G in Oznor FZ G in O.

Now we are going to prove an interesting relation between extended sequences and Unity prop-
erties: the arrow O3 — TUEcp. The model O only contains information about state transitions
and fairness. This proves to be sufficient to retain some information about the statements of a
program, namely ensures properties. Intuitively this can be argued as follows. A statement is
in fact a set of state transition, for each state it contains a transition. Programs with the same
transitions may have different groupings. Due to fairness, this grouping is essential for the behavior
of the program. For example, take two programs F and G with the same state transitions, but a
different grouping, the transitions (a, b) and (c, d) are grouped into one statement for F and into
different statements for G. Take an execution sequence with pairs starting in a and c, then, due
to fairness, there is a pair (a,) or (¢, d) in this sequence, this is not necessary for G. Formally,
the proof is:

Theorem 6.4 Oy —-TUEcM.

Proof: We have to prove that for all Unity programs F and G
(Ir2I¢A V2 Vg) = (Ir 2 Ic A Ur C Ug A Er C Eq),

where (Ir, Vr) = O2[F), (Ig, Ve) = 02IG), (Ir, Ur, Er) = TUEcu][F], and

(Ig, Ug, Eg) = TUE cm[G). The initial part is trivial and the unless part follows from lemma 4.11.
We only look at the ensures part here, and assume that the unlesscay properties of both programs
are the same. We use contraposition: »

p ensurescy ¢ in F A —(p ensurescy ¢ in G)
{ definition ensures }

p ensurescy ¢ in FA

(~(p unless ¢ in G)V~(Is:s€ G [(p A—g) = wip.s.q}))
{ predicate calculus }

(p ensurescy ¢ in F A —(p unlesscy ¢ in G))V

(p ensurescm ¢ in FA(Vsdo:s € G (p A—q).0 Awip.s.q.0)
{ assumption unless }

15

pensurescy ¢ in F A (Vsdo:s € G::(p A—g).0 A-wlp.s.q.0)

=> {lemma4.12 }
(Vv:ve Ve Av=((0y,01),(02,05),) = (Vi:(pA-g)o) = (3i: q.0)A
(Vs3o : s € G:: (p A—g).0 A~wlp.s.q.0)

= { straightforward construction of v }
(Vo :v € Ve Av= (03,00, (03,05),) 5 (Vi : (p Amg).o) = (30 : 2.0A
(@00 € Vanv= (1,00, (72,75, = (Vi : (p A=0).02) A=g.09)

= { v induces by second conjunct }
(Bv:vEESeq::v g VFAvE Vi)
=
Ve 2 V.

o

Next, we examine the relation between sequences and Sanders’s logic. There is a clear relation
between the properties unlesss and s, and sequences of states corresponding the intuitive idea
of the properties. These relations were given in the lemmas 4.7 and 4.8. This gives direct the
following theorem.

Theorem 6.5 O, —TULs.
However, the reverse arrow does not hold.
Theorem 6.6 IULs + Oy.

In fact, the counter-example of theorem 6.3 is a counter-example for this theorem also. However,
this is not the only cause of trouble. In [Mis90], Misra shows that the notion of ensuring is
essential when program composition is examined. The following theorem shows that the ensures
also provides a really finer distinction of sequences than the leadsto when programs are examined
in isolation.

Theorem 6.7 There are Unity programs F, G for which

o:[F] # oG],
Tucs{F]l = ITucs[Gl,
Tues[F] # ITuesfGl

Proof: Consider the following programs

Program F Program G
assign assign
r:=z+1 z:=z+1
z 1=z + 2 if even(z) | z :=z +2 if even(z)
| z:=z+2if odd(z) | z:=z+2 if odd(z)
fz:=z+2 end{G}
end{F}

The programs F and G have the same state transitions, so the unlesss relations are the same.
Using lemma 4.8 one can prove that both programs have the same -5 properties. The programs
F and G have different sequences, i.e. O1[F] # O1[G]. For example, the sequence {{0,1,2,3,---))
is an element of O1[G], but it is not an element of O1[F]. This difference can be expressed with
the ensuresg property

true ensuress ((z mod 4 = 0) V (z mod 4 = 1))

which is property a property of F but not of G. o

16

In this section we have shown that the notion of sequences is a stronger notion than Unity prop-
erties. Unity properties cannot characterize the (extended) sequences of programs completely. As
a consequence, the notion of property preserving refinement is a weaker notion than the reduction
of execution sequences or reduction of nondeterminism. It is also shown that the ensures property,
although it is too strong ([Mis90]), is essentially stronger than +— in characterizing sequences.

7 Conclusions and Further Research

We have defined a number of semantic models to justify refinement of Unity programs and compared
the notions of refinement induced by the different models. We have shown that the two notions
of sequences are more expressive than Unity properties. Programs that have the same properties
may have different execution sequences. Consequently, preservation of Unity properties, as used
by Sanders ([San90]) and Singh ([Sin91]), differs from the usual notion of refinement, reducing the
set of execution sequences. It is a weaker notion that may introduce new execution sequences. We
have also shown that extended sequences are stronger than Unity properties. Le., it is possible to
retain unless and ensures properties from extended sequences.

Unity properties have proven to be insufficient to characterize sequences. The real expressive
power of properties is not clear. We want to find a model of execution sequences that is equivalent
to properties. It also might be of interest to find a Unity-like property model that is powerful
enough to characterize sequences. As we have seen, ZWLs is not compositional, neither is ZUE 5.
It is interesting to know whether ZUE ci is the fully abstract model above ZULs.

Acknowledgements

We like to thank the Calculi for Distributed Program Construction Club headed by Lambert
Meertens and Doaitse Swierstra and the Formal Models Club at Utrecht University. We also
want to acknowledge Patrick Lentfert, Frans Rietman, Beverly Sanders, David Meier, Kaisa Sere,
Nissim Francez, Ted Herman, Jan van de Snepscheut, Harm Peter Hofstee and Robert Harley for
their comments, discussions and carefully reading of preliminary versions, and Wim Hesselink for
suggestions and references to the literature.

References

[ALS8S8] M. Abadi and L. Lamport. The existence of refinement mappings. In Proc. of the Srd
Annual IEEE Symp. on Logic in Computer Science, pages 165-175, Washington D.C.,
July 1988. Computer Society Press.

[Bac90] R.-J.R. Back. Refinement calculus, part II: Parallel and reactive programs. In J.W.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correciness, pages 67-93. Springer-Verlag,
1990.

[BKPR91] F.S. de Boer, J.N. Kok, C Palamidessi, and J.J.M.M. Rutten. The failure of failures
in a paradigm of asynchronous communication. In J.C.M. Baeten and J.F. Groote,
editors, CONCUR ’91, Proceedings of the 2nd International Conference on Concurrency
Theory, pages 111-126. Springer-Verlag, August 1991.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design ~ A Foundation. Addison-Wesley
Publishing Company, Inc., 1988,

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer-Verlag, Berlin, 1990.

17

PR O R T TR R e e e e

[Liu89]

[Mis90]
[Pac90]

[Pac92)

[San90]

[San91]

[Sin91]

Z. Liu. A semantic model for UNITY. Technical Report 144, Computer Science De-
partment, University of Warwick, August 1989.

J. Misra. The importance of ensuring. Notes on UNITY, 11-90, January 1990.

J. Pachl. Three definitions of leads-to for UNITY. Netes on UNITY, 23-90, December
1990.

J. Pachl. A simple proof of a completeness result for leads-to in the UNITY logic.
Information Processing Letiers, 41:35-38, 1992.

B.A. Sanders. Stepwise refinement of mixed specifications of concurrent programs. In
M. Broy and Jones C.B., editors, Proceedings of the IFIP Working Conference on Pro-
gramming and Methods, pages 1-25. Elsevier Science Publishers B.V. (North Holland),
May 1990.

B.A. Sanders. Eliminating the substitution axiom from UNITY logic. Formal Aspects
of Computing, 3(2):189-205, 1991.

A.K. Singh. Parallel programming: Achieving portability through abstraction. In 11th
International Conference on Distributed Computling Systems, May 1991.

18

