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Anomalous Mesoscopic Fluctuations of Transport Coefficients above the Critical Temperature
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We show in this Letter that above the critical temperature of superconductor-metal phase transition
both the longitudinal and the Hall conductivity exhibit strong temperature dependent mesoscopic
fluctuations, with amplitudes much larger than the mesoscopic fluctuations in noninteracting normal
metals. Such an enhancement of the mesoscopic fluctuations arises from pairing correlations and is
strongly dependent on dimensions. [S0031-9007(98)07724-2]
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It is well known that the conductance of a nor
mal metal exhibits mesoscopic fluctuations if the samp
size L is smaller than the dephasing lengthLf [1–3].
At zero temperature, the amplitude of the mesoscop
fluctuations is of ordere2yh̄, independent of the di-
mensionality of the sample. These mesoscopic flu
tuations originate from quantum interference of electron
and are sensitive to changes in external magnetic fiel
impurity configurations, or gate voltages.

Universal conductance fluctuations (UCF), of orde
e2yh̄, are closely connected with the universality o
Wigner-Dyson statistics ofsingle electron levels in dis-
ordered metals. For a normal metal, the conductance
equal toe2yh̄ timesN , the number of single electron lev-
els inside an energy band of the width of the Thoule
energyET centered at the Fermi surface. The Thoule
energy is the inverse of the time required for an electro
to diffuse across the sample [4]. While the average num
ber of levels within such an energy band depends on t
dimensionality,dN the fluctuation of the number of single
electron levels within such a band is universally of a
order of 1 [5]. This leads to UCF.

At finite temperature, the transport currents are ca
ried by the quasiparticle excitations of energy of orde
kT . While the total number of electron levels involved
is NTyET , the amplitude of the fluctuation of the num
ber of levels issLyLT ddy2 ­ sTyET ddy4, due to the fact
that the mesoscopic fluctuations of the density of stat
are correlated at a length scaleLT ø L and contributions
from different blocks should be summed up randomly [5
Here,LT ­

p
DyT is the normal metal coherence length

at temperatureT , and D is the diffusion constant. The
relative amplitude of the fluctuation of the number of lev
els decreases as the temperature is increased. There
the amplitude of the conductance fluctuation is small
thane2yh̄ when the temperature is higher thanET [5].

The above statement about mesoscopic fluctuations
the conductance remains true in weakly correlated ele
tron systems. For instance, the electron-electron intera
tion in normal metals barely affects universal conductan
fluctuations. For strongly correlated systems (could b
fractional quantum Hall systems), or quantum dots in th
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Coulomb blockade regime, the amplitude of the condu
tance fluctuation is also of the order of or less thane2yh̄.

In this paper we study the effect of pairing correlation
on the mesoscopic fluctuations of the conductance. W
show that above the critical temperature, in the presen
of pairing correlations, mesoscopic fluctuations of co
ductance can greatly exceede2yh̄ of UCF. Such an ef-
fect increases when the critical temperature is approach
It also strongly depends on dimensionalities of sample
originating from the fact that pairing correlations due t
thermal fluctuations strongly depend on dimensionalitie

The qualitative mechanism for this phenomeno
is as follows. AboveTc the critical temperature of
superconductor-metal phase transitions, there is a fin
amplitude for electrons to form superconducting pairs wi
a certain relaxation time. Thus transport coefficients
normal metals can be written as a sum of classical Dru
conductivities and contributions arising from pairin
correlations. The amplitude of thermal fluctuations o
superconducting pairs is determined by a competiti
between the entropy and the condensation energy and
comes divergent when the temperature approachesTc from
above. The typical relaxation time is given as the tim
scale for pairs to diffuse over the Landau-Ginzburg leng
scale and is also divergent when the critical temperature
approached. As a result, the conductivity is enhanced

ds
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Z ddQ
s2pdd
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(1)

wheren is the density of states in normal metals,gd is
the dimensionless conductance of the size ofLT , and d
is the dimensionality. The dimensionless conductance
each dimension isg3 ­ 2p2h̄sLT ye2, g2 ­ 4p h̄stye2,
and g1 ­ 6p h̄sa2yLT e2; t is the film thickness in 2D
and a is the diameter in 1D. s ­ e2nD is the Drude
conductivity. Integral

R
ddQys2pdd is

R
d3Qys2pd3 in

3D, s1ytd
R

d2Qys2pd2 in 2D, ands1ya2d
R

dQy2p in 1D.
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Equation (1) is valid as long as the correction is small, i.e
dsys ø 1.

However, the condensation energy has mesoscopic flu
tuations, as emphasized in Ref. [6]. The fluctuation am
plitude is 1ygd and its correlation length is minhLT , j0j.
Here, j0 ­

p
h̄DyTc is the coherence length of super

conductors at zero temperature. This effectively lead
to mesoscopic fluctuations of the critical temperatur
dTcyTc ~ g21

d sj0yLd42dy2, where we take into account
that L ¿ j0 and fluctuations from different blocks of the
size of j0 should be summed up randomly. Therefor
the pairing amplitude calculated in Eq. (1) develops gia
mesoscopic fluctuationsdD

M
Q dD

M
Q near the critical point

dD
M
Q dD

M
Q
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Substituting Eq. (2) intods in Eq. (1), we obtain an es-
timate of mesoscopic fluctuations of the conductance,
the same order as that given in Eq. (8). Mesoscopic flu
tuations of the conductance in this regime are therefo
determined by mesoscopic fluctuations of pairing corre
tions. This results in anomalous mesoscopic fluctuatio
of transport coefficients in such systems.

Furthermore, we express the conductivity of a give
sample aboveTc as sxx ­ s 1 ds 1 dsM

xx . ds

represents the contributions from Aslamazov-Lark
and Maki-Thompson corrections due to thermal flu
tuations, studied in Refs. [7,8]. It is divergent as th
temperature approachesTc, as shown in Eq. (1). The
mesoscopic fluctuations of the conductivitydsM

xx as a
function of gate voltageVg are given in terms of diagrams
in Fig. 1(a):
kdsM
xxsVg1ddsM

xxsVg2dl ­ kdsM
ALsVg2ddsM

ALsVg2dl 1 kdsM
MTsVg1ddsM

MTsVg2dl ,

kdsM
ALsVg1ddsM
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µ
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,

(3)
en-

Here the subscript AL and MT represent mesoscopic flu
tuations of Aslamazov-Larkin and Maki-Thompson cor
rections to the conductivity, respectively. We neglec
mesoscopic fluctuations of conductivities associated w
c-
-
t

ith

normal quasiparticles as the temperature is close toTc.
k· · ·l denote the average over impurity scattering pot
tials. C is the digamma function. ImdLR ­ sdLR 2

dLAdy2i. The propagatorsLR,A, dLR,A are defined as
sorder.

te

gy,
LR,Asv, Q2d ­

√
T 2 Tc

T
1

p

8
DQ2 6 iv

T
1

v

2
≠ ln Tc

≠eF

!21

,

dLR,Asv, Q2d ­ LR,Asv, Q2d2
Z

de tanh

√
e

2kT

!
1

nV

Z
dr dr0

3 expfiQ ? sr 2 r0dg hGR
e1vsr, r0dGA

2esr, r0d 2 kGR
e1vsr, r0dGA

2esr, r0dlj ,

(4)

whereV is the volume of the sample.GR,A are the exact retarded and advanced Green functions in the presence of di
dLR,Asv1, Q2

1d, dLR,Asv2, Q2
2d are evaluated in the presence of gate voltagesVg1 and Vg2, respectively. kdLR,Al ­

0, and the correlation function is given as

kdLR,Asv1, Q2
1ddLR,Asv2, Q2

2dl ­ LR,Asv1, Q2
1d2LR,Asv2, Q2

2d2
Z 1`

2`

de de0 1
2e

1
2e0

tanh

µ
e

2T

∂
tanh

µ
e0

2T

∂
1

n2V 2

Z
dr dr0

3 hReC 2
e2e0sr, r0d 1 ReD 2

e2e0sr, r0dj (5)

in the leading order ofT 2 TcyTc. De2e0sr, r0d ­ n21kGR
e sr, r0dGA

e0sr, r0dl and Ce2e0sr, r0d ­ n21kGR
e sr, r0d 3

GA
e0sr, r0dl are the diffusions and cooperons. Generally, they satisfy(

iv 1 ief1srd 2 ief2srd 1 D

µ
ih̄= 2

e
c

A1srd 6
e
c

A2srd
∂2

)
D sC dvsr, r0d ­ dsr 2 r0d , (6)

andD ­ C ­ 0 at the boundary for open geometry samples [1,2].f1s2d is the electrical potential induced via the ga
voltageVg1s2d, andA1s2d is the vector potential in the presence of a magnetic field.C0sQ2d in Eq. (3) is the Fourier
transformation ofC0sr, r0d. The last term in the expression ofLR,A in Eq. (4) is from the dependence of the Fermi ener
4725
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FIG. 1. Diagrams for anomalous mesoscopic fluctuations o
transport coefficients above the critical temperature. (a),(b
The solid lines represent electron Green functions and the wav
lines represent propagatorLR,A; the wavy lines with shaded
boxes representkdLR,AdLR,Al, given in Eq. (5). (b), The
arrows represent external magnetic field vertices. Triangle
stand for current vertices and external electrical field vertices.

eF , of the critical temperatureTc and is inversely propor-
tional to eF . It is important only when the Hall conduc-
tivity is concerned [9,10].

At Vg1 ­ Vg2 in the absence of magnetic fields, Eq. (5)
yields

kdLR,Asv1, Q2
1ddLR,Asv2, Q2

2dl

­ LR,Asv1, Q2
1d2LR,Asv2, Q2

2d2 ad

g2
d

√
LT

L

!42d

. (7)

Here ad are the constants dependent on the geomet
and the dimensionality of the sample. WhenjsT d ­p

DysT 2 Tcd ¿ L, in the open geometry in which we
are interested, the most divergent contribution to th
Aslamaov-Larkin and the Maki-Thompson corrections to
the conductivity is determined by the fluctuations with
Q ­ pyL, i.e., LRsv, Q ­ pyLd. Substituting Eq. (7)
into Eq. (3), we obtain the amplitude of mesoscopic fluc
tuations of the conductivity above the critical temperature

ksdsM
xxd2l

s2 ­
bd

g4
d

µ
T

T 2 Tc

∂s82ddy2µjsT d
L

∂42d

(8)

whenL ¿ jsT d, and saturates as

ksdsM
xxd2l

s2 ­
bd

g4
d

µ
T

ET

∂s82ddy2

(9)

when L ¿ jsT d. Here b3 ~ 1, b2 ~ maxhlnfLyjsT dg,
1j, andb1 ~ maxhLyjsT d, 1j. We want to emphasize that
the mesoscopic fluctuations discussed here strongly d
pend on the dimensionality of a sample, which is in con
trast to the theory of UCF. This is a direct consequenc
of mesoscopic fluctuations of pairing correlations.

Equations (8) and (9) are valid as far asdsM
xx , ds ,

s. Following Eqs. (8) and (9), mesoscopic fluctuations o
4726
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conductances can be much larger thane2yh̄. For instance,
for a 2D film of the size ofjsT d, at the temperature
T 2 Tc , Tcyg2 whendsys , 1,

p
ksdsM

xxd2l ~
e2

t

th̄
p

g2 (10)

is parametrically larger than UCF in normal metals.
The anomalous fluctuations can be probed in expe

ments where resistances are measured at different
voltages. Let us consider a 2D film where a gate volta
is applied to the top of the film with capacitanceC. The
electric field induced by the gate is normal to the film a
is screened over a Debye screening lengthr0 ­ se2nd21y2.
Substituting Eqs. (5) and (6) atA1 ­ A2 ­ 0 into Eq. (3),
we obtain the gate voltage dependence of the mesosc
fluctuations,

kfdsM
xxsVg1d 2 dsM

xxsVg2dl

­ ksdsM
xxd2lF

√
jVg1 2 Vg2jCr2

0

e0tL2T

!
, (11)

where

Fsxd ~

Ω
x, x ø 1
1, x ¿ 1 . (12)

Following Eq. (11), in this case, the characterist
gate voltageVg, at which dsM

xxsVgd are correlated, is
e0TL2tyer2

0 C. The mesoscopic fluctuations discuss
here are also sensitive to external magnetic fields.
ET ­ DyL2 ø DH ø T 2 Tc, we can neglect the
magnetic field dependence ofLR,A in the leading order of
DHysT 2 Tcd. As a result, the correlation of conductanc
fluctuations as a function of magnetic field is determin
by Eq. (3), withk Im dLRsVg1dIm dLRsVg2dl replaced with
k Im dLRsHdIm dLRs0dl. Taking into account Eqs. (5)
and (6) atf1 ­ f2, we obtain conductance fluctuations o
a 2D film as functions of a magnetic fieldH perpendicular
to the film,

kfdsM
xxsHd 2 dsM

xxs0dg2l
kdsM

xxdsM
xxl

~
DH
T

. (13)

Equation (13) is valid whenET ø DH ø T 2 Tc and
saturates whenDH ¿ T 2 Tc. Equation (13) shows
that ssHd diffuses in H space, with diffusion constan
ksdsM

xxd2lL2
T yF0, and the mean free timeF0L22, F0 ­

h̄cye, is the flux quantum. However, the average pairi
correlation is also suppressed in the presence of exte
fields [7–10], with the characteristic magnetic field corr
sponding to one flux per area of the sizej2sT d. Thus, in
conductivity measurements, the dependence of mesosc
fluctuations on magnetic fields should be differentiat
from the average magnetoresistance. The other poss
ity for observing the anomalous mesoscopic fluctuatio
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of transport coefficients is to measure the conductan
during different thermal cycles.

Let us now turn to mesoscopic fluctuations of the Ha
conductivity. Again, one can write, for a given sample
sxy ­ tVcs 1 dsxy 1 dsM

xy . The first term is the
Hall conductivity obtained from the classical Boltzman
transport equation, whereVc ­ eHymc is the cy-
clotron frequency. The second term is the correctio
to the classical result due to pairing correlations abo
Tc, dsxy ~ tVcsygdsTyT 2 Tcds62ddy2, as calculated in
Refs. [9,10]. dsM

xy represents mesoscopic fluctuations o
the Hall conductivity. The propagator in the presence
an external magnetic field is determined by diagrams
a

p

a
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,

n

n
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f
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Fig. 1(b),

LRsv, Q2d
DeAH ? Q

T
LRsv, Q2d , (14)

proportional to AH ? Q. This leads to one more
LRsv, Q2d in the expression for Hall conductivity than
in Eq. (3) and yields a more divergent temperature de
pendence ofdsM

xy asTc is approached. Here,AH is the
vector potential of the external magnetic fieldH ­ q 3

AH ; E is the electrical field. Noticing thatAH ? QE ?

qQ ­ Q2E 3 H, and taking into account the gradient of
Tc at the Fermi surface in the fluctuation propagators, a
shown in Eq. (4), in the leading order ofTcyeF , we obtain
mesoscopic fluctuations of the Hall conductivity,
ksdsM
xyd2l ­ stVcd2 e4

h̄2

√
pD
8T2

!4 Z ddQ1

s2pdd

ddQ2

s2pdd
Q2

1Q2
2

Z 1`

2`

dv1 dv2
v1v2

sinh2sv1y2T d sinh2sv2y2T d
3 h Im LRsv1, Q2

1dg3f Im LRsv2, Q2
2dg3kRedLRsv1, Q2

1d RedLRsv2, Q2
2dl

1 9f Im LRsv1, Q2
1dg2f Im LRsv2, Q2

2dg2 ReLRsv1, Q2
1d ReLRsv2, Q2

2d
3 k Im dLRsv1, Q2

1d Im dLRsv2, Q2
2dlj . (15)
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hat
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We neglect the Maki-Thompson contribution to the Ha
conductivity because it is less divergent than the res
in Eq. (15). Note that the diagrams in Fig. 1(a) do n
contribute toksdsM

xyd2l.
Substituting Eq. (5) into Eq. (15), we obtain

ksdsM
xyd2l

s2 ­ stVcd2 gd

g4
d

µ
T

T 2 Tc

∂s122ddy2µjsT d
L

∂42d

,

(16)
whenL ¿ jsT d; whenL ø jsT d,

ksdsM
xyd2l

s2 ­ stVcd2 gd

g4
d

√
T

ET

!s122ddy2

. (17)

Here gd is a constant of order of unity, dependent o
dimensionalities of samples. Equations (16) and (17)
valid whendsxy ø tVcs, i.e., T 2 Tc ¿ Tcyg

2ys62dd
d .

For a 2D sample of the size of order ofjsT d, at the
temperatureT 2 Tc , Tcyg

1y2
2 ,p

ksdsM
xyd2l ~ tVc

e2

th̄
g

1y4
2 . (18)

Generally speaking, in a disordered mesoscopic sam
mesoscopic fluctuations of the transverse conductivity
nonzero even in the absence of an external magnetic fi
[3]. However, those contributions are small in the lim
when normal metal coherence lengthLT is much smaller
than the sample sizeL, due to thermal smearing effects
Close toTc, the most important contribution is determine
by Eq. (15). As usual, by reversing directions of extern
magnetic fields, one can measure the Hall conductiv
and its mesoscopic fluctuations as the asymmetrical
of sxysHd.

In conclusion, we would like to point out that in
few recent experiments giant mesoscopic fluctuations
conductance have been found in granular superconduc
ll
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above their critical temperatures [11,12]. We believe th
the mechanism discussed in this paper is relevant f
those phenomena. At zero temperature, it was shown t
mesoscopic fluctuations of the condensation energy cou
lead to a superconducting glass state [6].
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