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Anomalous Mesoscopic Fluctuations of Transport Coefficients above the Critical Temperature
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We show in this Letter that above the critical temperature of superconductor-metal phase transition
both the longitudinal and the Hall conductivity exhibit strong temperature dependent mesoscopic
fluctuations, with amplitudes much larger than the mesoscopic fluctuations in noninteracting normal
metals. Such an enhancement of the mesoscopic fluctuations arises from pairing correlations and is
strongly dependent on dimensions. [S0031-9007(98)07724-2]

PACS numbers: 74.40.+k, 71.30.+h, 73.23.Ps

It is well known that the conductance of a nor- Coulomb blockade regime, the amplitude of the conduc-
mal metal exhibits mesoscopic fluctuations if the sampleance fluctuation is also of the order of or less thénvi.
size L is smaller than the dephasing length, [1-3]. In this paper we study the effect of pairing correlations
At zero temperature, the amplitude of the mesoscopion the mesoscopic fluctuations of the conductance. We
fluctuations is of ordere?/h, independent of the di- show that above the critical temperature, in the presence
mensionality of the sample. These mesoscopic flucef pairing correlations, mesoscopic fluctuations of con-
tuations originate from quantum interference of electronsiuctance can greatly exceed/s of UCF. Such an ef-
and are sensitive to changes in external magnetic field$éect increases when the critical temperature is approached.
impurity configurations, or gate voltages. It also strongly depends on dimensionalities of samples,

Universal conductance fluctuations (UCF), of orderoriginating from the fact that pairing correlations due to
e?/h, are closely connected with the universality of thermal fluctuations strongly depend on dimensionalities.
Wigner-Dyson statistics o$ingle electron levels in dis- The qualitative mechanism for this phenomenon
ordered metals. For a normal metal, the conductance is as follows. AboveT, the critical temperature of
equal toe?// timesN, the number of single electron lev- superconductor-metal phase transitions, there is a finite
els inside an energy band of the width of the Thoulesamplitude for electrons to form superconducting pairs with
energyEr centered at the Fermi surface. The Thoulessa certain relaxation time. Thus transport coefficients in
energy is the inverse of the time required for an electromormal metals can be written as a sum of classical Drude
to diffuse across the sample [4]. While the average numeonductivities and contributions arising from pairing
ber of levels within such an energy band depends on theorrelations. The amplitude of thermal fluctuations of
dimensionality 6 N the fluctuation of the number of single superconducting pairs is determined by a competition
electron levels within such a band is universally of anbetween the entropy and the condensation energy and be-
order of 1 [5]. This leads to UCF. comes divergent when the temperature approathé&sm

At finite temperature, the transport currents are carabove. The typical relaxation time is given as the time
ried by the quasiparticle excitations of energy of orderscale for pairs to diffuse over the Landau-Ginzburg length
kT. While the total number of electron levels involved scale and is also divergent when the critical temperature is
is NT/E7, the amplitude of the fluctuation of the num- approached. As a result, the conductivity is enhanced via
ber of levels is(L/Ly)%? = (T /Er)**, due to the fact Sor d9Q 1 T \@é-a)2
that the mesoscopic fluctuations of the density of states ~—— * | 5.7 AelQ7Q = *< _ >

Y o 2m) ga\T — T

are correlated at a length scdle < L and contributions

from different blocks should be summed up randomly [5]. , , = _ V_1<T — T n DQ2>1 (1)
Here,L7 = \/D/T is the normal metal coherence length Q T T ’

at temperature’, and D is the diffusion constant. The I

relative amplitude of the fluctuation of the number of lev- Q=

els decreases as the temperature is increased. Therefore DO+ T —T.

the amplitude of the conductance fluctuation is smallewhere v is the density of states in normal metags, is
thane? /i when the temperature is higher thap [5]. the dimensionless conductance of the sized.gf and d

The above statement about mesoscopic fluctuations @ the dimensionality. The dimensionless conductance in
the conductance remains true in weakly correlated eleeach dimension ig; = 272hoLy/e?, g» = 4mwhot/e?,
tron systems. For instance, the electron-electron intera@nd g, = 6mhica®/Lre?; t is the film thickness in 2D
tion in normal metals barely affects universal conductancand a is the diameter in 1D.o = ¢?vD is the Drude
fluctuations. For strongly correlated systems (could beonductivity. Integral[d?Q/(2w)? is [d’Q/(27)? in
fractional quantum Hall systems), or quantum dots in the8D, (1/¢) [ d*>Q/(2#)?in 2D, and(1/a?) [ dQ/2 in 1D.
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Equation (1) is valid as long as the correction is small, i.e.Substituting Eq. (2) intéd¢ in Eq. (1), we obtain an es-
So/o K 1. timate of mesoscopic fluctuations of the conductance, of
However, the condensation energy has mesoscopic fluthe same order as that given in Eq. (8). Mesoscopic fluc-
tuations, as emphasized in Ref. [6]. The fluctuation amtuations of the conductance in this regime are therefore
plitude is1/g, and its correlation length is mih7, &}.  determined by mesoscopic fluctuations of pairing correla-
Here, & = /ED /T, is the coherence length of super- tions. This results in anomalous mesoscopic fluctuations
conductors at zero temperature. This effectively lead®f transport coefficients in such systems.
to mesoscopic fluctuations of the critical temperature Furthermore, we express the conductivity of a given
8T, /T. = g; ' (&/L)*9/2, where we take into account sample above7, as o, = o + 8o + doM. 6o
thatL > &, and fluctuations from different blocks of the represents the contributions from Aslamazov-Larkin
size of & should be summed up randomly. Thereforeand Maki-Thompson corrections due to thermal fluc-
the pairing amplitude calculated in Eq. (1) develops giantuations, studied in Refs. [7,8]. It is divergent as the
mesoscopic fluctuationsAy 8 A¢ near the critical point ~ temperature approachdg, as shown in Eq. (1). The

SAMSAM 1 4-d/2 T mesoscopic fluctuations of the conductivie as a
g7e%7Q (_> <@> <—2> (2) function of gate voltag&, are given in terms of diagrams
AQAq 8a)\ L T —T.+ DQ | in Fig. 1(a):

(805 (Vo8 (V) = (80X (V) 80X (Vo)) + (8ayiz(Ve)Soyr(Vea)),

(S (Ve)Sal (Vo)) = (%)2(8%) (d;?); (d;?)f, Q1Q2f+oo dw)dw, cotr<2T>cotI'<;)T2>

2

o, M L (w1, 0} Im L (w2, 03) (Im 8 LF (w1, 0F) Im 6 LR (w2, 03))}, 3)

4 2\2 d d
(St (Vo) olhe(Ven)) = (%) D? (dzg; ("2732 Co(0DCo(02) j do dos cotl'<2T>cot!-<2T2>

82 1 X005} 1 Lw) R 2 R
Imb|l — + Imb| — + IméL Imé&L
aw]awz[ (2 47TT> (2 477'T>< (@1, 07) (02,01

Here the subscript AL and MT represent mesoscopic flhcnormal guasiparticles as the temperature is clos&.to
tuations of Aslamazov-Larkin and Maki-Thompson cor-{---) denote the average over impurity scattering poten-
rections to the conductivity, respectively. We neglecttials. ¥ is the digamma function. IBL% = (§L% —
mesoscopic fluctuations of conductivities associated V\{iﬂ‘ﬁLA)/Zi. The propagatorg?4, § LR are defined as

-1
T —-T 7 DQ? *+ iw w 9InT,
LR’A<“”Q2>:<TC+?#+7 ver )

8L N w.0%) = L*(w,0%)? f de tanr<2kiT>i f dr dr'
X eXF[lQ (r - r/)]{Ge+w(r rl)GA (r r/) - <Ge+w(r’rl)Gée(r9r/)>}a

whereV is the volume of the sampleG® are the exact retarded and advanced Green functions in the presence of disorder.
SLRA(wy, 07), SLRA(w,, 03) are evaluated in the presence of gate voltaggsand V,,, respectively. (§LF4) =
0, and the correlation function is given as

+e 1 1 € € 1
A 2 A 2\\ A 23\2 s 2\2
<5LR (wl,Q1)3LR (wQOz»_LR (w1,07) LRA((UZ,QQ) f,‘ dede' ?ftam(ﬁ)tanl‘(ﬁ)rzvz[drdr’
x {ReCZ__(r,r") + ReD?Z__(r,r')} (5)

in the leading order off — T./T,. D._o(r,r') = v YGR(r,r)Go(r,r')) and Cc_o(r,r') = v GR(r, 1) X
G2 (r,r")) are the diffusions and cooperons. Generally, they satisfy

(4)

iw + iep(r) — iedy(r) + D<ihV — %Al(r) * %Ag(r)>2]D(C)w(r,r/) =8 —r'), (6)

andD = C = 0 at the boundary for open geometry samples [1,2].») is the electrical potential induced via the gate
voltage V,1(2), and A () is the vector potential in the presence of a magnetic fiel@(Q?) in Eq. (3) is the Fourier
transformation oy (r, r’). The last term in the expressionbf in Eq. (4) is from the dependence of the Fermi energy,
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conductances can be much larger tkavi. For instance,

] for a 2D film of the size ofé(T), at the temperature
T —-T.~T./gowhendo/o ~ 1,
)

62
VGai?) = =Ly (10)

(a)
S +
> is parametrically larger than UCF in normal metals.
M ) The anomalous fluctuations can be probed in experi-

1 ments where resistances are measured at different gate

I ' voltages. Let us consider a 2D film where a gate voltage

U SN VU U is applied to the top of the film with capacitan€e The

N e } electric field induced by the gate is normal to the film and
® is screened over a Debye screening lengtks (e2v)~ /2.

FIG. 1. Diagrams for anomalous mesoscopic fluctuations ofSubstituting Egs. (5) and (6) &t = A, = 0into Eq. (3),

transport coefficients above the critical temperature. (a),(bjve obtain the gate voltage dependence of the mesoscopic
The solid lines represent electron Green functions and the wavyj,ctuations
lines represent propagatdr®4; the wavy lines with shaded '
boxes represen{SLEASLRA), given in Eq. (5). (b), The
arrows represent external magnetic field vertices. Triangles <[50'%(Vg1) - 50)%(Vg2)>
stand for current vertices and external electrical field vertices. |vg | = vg2|cr§
= (6o t)F| ———— |, (1)

Gol‘LzT

er, of the critical temperatur. and is inversely propor-

tional to . It is important only when the Hall conduc- Where
tivity is concerned [9,10].
At V,1 = V,, in the absence of magnetic fields, Eq. (5) Flx)oc |5 * <1 (12)
yields I, x> 1°
(L% (w1, 01)OL™ (2. 03)) Following Eg. (11), in this case, the characteristic

oA S s aq Ly 4-d gate voltageV,, at which §c¥(V,) are correlated, is
= L% (w1, 07 L™ w2, 00)" 5 | (7)  €°TLt/eriC. The mesoscopic fluctuations discussed

84 here are also sensitive to external magnetic fields. At
Here a, are the constants dependent on the geometrffr = D/L*> < DH < T — T,, we can neglect the
and the dimensionality of the sample. Wheér) = magnetic field dependence bf in the leading order of
/D/(T — T,) > L, in the open geometry in which we DH/(T — T.). Asaresult, the correlation of conductance
are interested, the most divergent contribution to thdluctuations as a function of magnetic field is determined
Aslamaov-Larkin and the Maki-Thompson corrections toby EqQ. (3), with(Im §L*(V,;)Im §L*(V,,)) replaced with
the conductivity is determined by the fluctuations with{Im 8L*(H)Im 6L"(0)). Taking into account Egs. (5)
Q = n/L, i.e., LR(w,Q0 = 7/L). Substituting Eq. (7) and (6) atp; = ¢», we obtain conductance fluctuations of
into Eq. (3), we obtain the amplitude of mesoscopic fluc-2 2D film as functions of a magnetic fieli perpendicular
tuations of the conductivity above the critical temperaturefo the film,

(8a2)”) _ Ba ( T )““”/2(@)” ®) ([60l(H) — 50(0)F) DH
a? g \T - T. L (boMsoM T

XX
whenL > £(T), and saturates as

(13)

Equation (13) is valid wherEr < DH < T — T, and
(Ba™)?y By T \892 saturates whenDH > T — T.. Equation (13) shows
- o T 7z <E_r> 9  that o(H) diffuses in H space, with diffusion constant
§d (8™} /Dy, and the mean free tim@®,L 2, &, =
when L > &(T). Here 853 « 1, B, x maxXIn[L/&(T)], hc/e, is the flux quantum. However, the average pairing
1}, andB; « maxXL/&(T), 1}. We want to emphasize that correlation is also suppressed in the presence of external
the mesoscopic fluctuations discussed here strongly ddéelds [7—10], with the characteristic magnetic field corre-
pend on the dimensionality of a sample, which is in con-sponding to one flux per area of the siZgT). Thus, in
trast to the theory of UCF. This is a direct consequence&onductivity measurements, the dependence of mesoscopic
of mesoscopic fluctuations of pairing correlations. fluctuations on magnetic fields should be differentiated
Equations (8) and (9) are valid as far@s¥ < §o <  from the average magnetoresistance. The other possibil-
o. Following Egs. (8) and (9), mesoscopic fluctuations ofity for observing the anomalous mesoscopic fluctuations
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of transport coefficients is to measure the conductancEig. 1(b),

during different thermal cycles. DeAy - Q
Let us now turn to mesoscopic fluctuations of the Hall L¥ (0,07 T L(0,0), (14)

conductivity. Again, one can write, for a given sample,proportional to Ay - Q. This leads to one more

Oxy =700 + 80y + 80-%. The first term is the LR (w,Q?) in the expression for Hall conductivity than

Hall conductivity obtained from the classical Boltzmannin Eq. (3) and yields a more divergent temperature de-

transport equation, wherd), = ¢H/mc is the cy- pendence oﬁafg asT. is approached. Her&yy is the

clotron frequency. The second term is the correctiorvector potential of the external magnetic fidll= q X

to the classical result due to pairing correlations aboveAy; E is the electrical field. Noticing thaAy - QE -

Te, 805 * 7Q.0/ga(T/T — T,)¢ /2 as calculated in qQ = Q’E X H, and taking into account the gradient of

Refs. [9,10]. 6 represents mesoscopic fluctuations of7, at the Fermi surface in the fluctuation propagators, as

the Hall conductivity. The propagator in the presence oshown in Eq. (4), in the leading order 6f/r, we obtain

an external magnetic field is determined by diagrams| ilmesoscopic fluctuations of the Hall conductivity,

4 4 d d +o0
M2\ _ e (7D dQr d“Qy 5 w1 W)
(o)) = (rQde) ﬁ2<8T2> f Qm)d 2m)d UL ]700 dwrdwr G o 2T sint(ws/2T)

X {Im LR (wy, 07 P[Im LR (w2, 03)P(ReS LR (w1, 0F) ReSLE (w1, 03))
+ 9[Im L*(wy, 1) PIIM LR (w2, 03)FF ReL® (w1, 0F) ReL¥ (w2, 03)
X (IMmSLR (w1, 0) Im SLR (w,, Q3))}. (15)

We neglect the Maki-Thompson contribution to the Hélllabove their critical temperatures [11,12]. We believe that
conductivity because it is less divergent than the resufthe mechanism discussed in this paper is relevant for
in Eg. (15). Note that the diagrams in Fig. 1(a) do notthose phenomena. At zero temperature, it was shown that

contribute to{(6 afg)2>. mesoscopic fluctuations of the condensation energy could
Substituting Eq. (5) into Eq. (15), we obtain lead to a superconducting glass state [6].
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