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Largest Lyapunov Exponent for Many Particle Systems at Low Densities
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The largest Lyapunov exponent” for a dilute gas with short range interactions in equilibrium is
studied by a mapping to a clock model, in which every particle carries a watch, with a discrete time that
is advanced at collisions. This model has a propagating front solution with a speed that detariines
for which we find a density dependence as predicted by Krylov, but with a larger prefactor. Simulations
for the clock model and for hard sphere and hard disk systems confirm these results and are in excellent
mutual agreement. They show a slow convergence ofwith increasing particle number, in good
agreement with a prediction by Brunet and Derrida. [S0031-9007(98)05472-6]

PACS numbers: 05.20.Dd, 03.20.+i, 05.45.+b,

Recently, there has been great interest in the relatioriustrate this on the somewhat simpler case of the random
ship between statistical mechanics and the theory of dykorentz gas, consisting of a single light particle moving
namical systems [1-3]. Calculating dynamical propertieamong a random array of fixed scatterers interacting
such as Lyapunov exponents for statistical mechanicakith the light particle through a spherically symmetric
systems usually requires numerical simulations. For th@otential. Between collisions the velocity deviation does
Lorentz gas, however, Dorfman, Van Beijeren, and othnot change and the position deviation changes according
ers [3,4] have obtained analytical expressions for the Lyato

unov spectrum and Kolmogorov-Sinai entropy at low S - -
(Fj)ensitiesr,) both in equilibrium gnd for the fieId—drFi)\Yen case. 87 (1) = 87 (to) + (r — 10)8v(to). (2)

In this paper we present an analytic calculation of theln a collision the velocity changes frointo v’ given by
largest Lyapunov exponent in the low density limit for o e ona .
a gas at equilibrium consisting of particles with short v =0~ 20 9)h = Miv. (3)
range interactions. Our method is based on arguments denotes the unit vector in the direction from the center
from kinetic theory and similar in spirit to the method of the scatterer to the point of closest approach. The
of Refs. [3,4]. We compare our results to those fromchange of6# in a collision is obtained from Eq. (3) by
computer simulations on hard disk and hard spherexpanding bothy + 87 and i + &7 to linear order in
systems and pay special attention to the dependence f@ife deviations. The difference in impact times for the two
the largest Lyapunov exponent on the total number ohearby trajectories leads to a shiftdfi. Since deviations

particles. follow linearized dynamics, one always has

We consider a gas consisting &f atoms of diameter
o, defined as the (strictly finite) range of interaction, <57’> _ < A 2P><5?> @)
and massm in d dimensions, in a volum&/. The ov’ -2Q B J\év )"

LT . d :
reduced density: is defined asvVo“/V and will serve For hard sphere scatterers with radimst turns out that,
as a small parameter. To calculate the largest Lyapuno:

exponent we follow two nearby trajectories in phaselY] any number of dimensiond, = B = M;, P = 0, and
space. For the first one, the reference trajectory, theQ = [o(7 - )] '[(7 - )1 + AD] - [(A - D)1 — DA],
positions and velocities of the particles are denoted by

(7:,v;). In the second trajectory they are denoted by ()

(f; + 87;,v; + 8v;). Thedeviations(67;, 6v;) will be  with 1 the identity matrix. A derivation of these results
taken to be infinitesimally small. For a chaotic system,in two dimensions can be found in [5]. From the above
they will grow exponentially with time at a rate equal equations we infer that at low density, just after t#ta

to the largest Lyapunov exponent . Since the whole collision, with k very large,6% ands7 will typically have
vector (87, 6v;) in phase space grows exponentially, sOincreased to

will a generic projection; hence, one has 55'(00) ~ wla/i). 57(0) = ola/i). (6)

| 850l with v the speed of the light particle and a constant
AT=Im —Inl Sy |- (1) . . ) :
1= 2t i 189,(0)]12 of order unity. This follows from an inductive argu-
ment: Suppose Eq. (6) is valid after theh collision,
Therefore, in order to calculat*, one has to find out then according to Egs. (2) and (6) one ha&t;.) =
how §v;(¢) typically increases with time. We will first 87/(tx) + 1,080’ (tx) = o(a/ii)**!, where we replaced
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te+1 — i by its average value, the mean free timg.  The synchronization of thé& values prohibits a direct
In the last approximate equality we neglectéd’(r,) identification with the number of collisions which we
since it is one order ofi smaller thans,,;60'(1;). Ac- could do in the Lorentz gas.
cording to Egs. (4) and (6), after tié + 1)th collision We will use a mean field approach to calculate the
80/ (tr+1) = 80(tx) — 2Q87(t+1) = v(a/fi)™!, where clock speedw. We denote the number of particles that
we neglectedv(z;) since it is one order of smaller than have a given clock valué by N, and assume that they
the second term and used the typical size of the matrix elare distributed uniformly inv. In collisions involving
ements ofQ as(v/o), as is seen explicitly in Eq. (5). particles with clock valué, N, decreases. It is increased
Now, because = k1,,s = k/v, with v the single particle by two in collisions in which the largest incomirig was
collision frequency, it follows from Egs. (1) and (6) that k — 1. So the rate equations for tié, become
the Lyapunov exponent is E—1

dNy

AT =—vIni + vIna, o > Rup — 2Reiy +2 D, Ru-1p)-
J=—

[=—x
1#k

with « to be determined by an averaging procedure over
free flight times and collision dynamics. This estimateRr ; are the rates by which collisions betweé&nand
was already obtained by Krylov [6]. Notice that the value/ take place. We use a StoRzahlansatz: The rate of
of a is not important for the dominant first term in". collisions between particles with clock valugsand /
These considerations can be generalized to systems ©f proportional toN;N;/N%. Since all rates are also
identical moving particles by noting that in a collision, proportional tor, we will express time in units of the
say, between particles 1 and 2, Egs. (3)—(5) are stilnmean free time,r = vt. We use the fractions; =
applicable to the relative velocity = v, — v,, the Ny /N to eliminate theV dependence:
relative velocity deviationdv = v, — 6v,, and the

k—2
relative position deviatiodr = 87, — 87,. In addition dfk )
. . ! _ = — + _ + .
one needs the corresponding relations for the center dr fie + 2 11:Z_x frt Jia
of mass coordinatey = (v; + v,)/2 and R = (| + ;
72)/2, which are For the cumulative€, = > /__.. f;, this reduces to
V=V, 8§V =6V, SR =6R. (7) dCy

—= + C=C,. (9)

. . . dr

Assume now that the deviations for particles 1 and 2, just

after their last collisions before the present one, were of he solution is given by the recursion relation

the form (6) with exponents, and k,, respectively, and T

with v the mean relative velocity. By a reasoning similar Ci(t) = e 7Cr(0) + ] eT”TC,f_l(T’)dr’.

to that for the Lorentz gas, it follows that just before colli- 0

sion v and SV are both of ordefa /ii)™**1#), whereas I C; is zero atr = 0 it remains zero. Thus the starting

87 and 8R are of order(a/ii)™**-k)T1  As a conse- point of this recursion is the smallesfor which C;(0) #

quence of (4) and (7), right after the collisia®;; andév; 0. Inductively, we see that alC; are polynomials in

(i = 1,2) will then also be of ordeta /ii)™>*kk)*1 S0 =7 of which the degree grows exponentially with

on average, IhW7;| also increases by units of(ka/71) at  We calculated these polynomials with initial conditions

collisions, but in contrast to the Lorentz gas this increaseorresponding tof;(r = 0) = §;;. The exponentially

may involve several of these units, in case the other partigrowing degree of the polynomials enables only a limited

cle involved in the collision has a high&rvalue. number ofC; to be computed, even on a computer. The

The values of Inx in an actual realization of the dy- results up tok = 30 at several time values are shown

namics will fluctuate strongly from collision to collision. in Fig. 1. The initial distribution broadens and moves to

However, their distribution becomes independent of denthe right. We expect the distribution to asymptotically

sity and increasingly narrow relative to(ly7i) as density become a front propagating at a constant speedThen

gets closer to zero. Therefore the essence of the dynamioge have

determining the largest Lyapunov exponent is captured in N

the following simple clock model: Think of each parti- Z 185: (1)1
i=1

Z fk(T)Uzeizk In(i/ar)

cle i as carrying a watch, whose clock valuejs When k=—o

two particles collide, they synchronize their watches to the %

larger of the two clock values, and advance them by one ~ Z Fr(0)p?e 2kwnnG@/a)
unit. The largest Lyapunov exponent will be determined k=—o

by the speedv by which the watches run, on average, an

will be of the form dThis result should be proportional t3'*" so one indeed

recovers Eq. (8). It agrees with Krylov's conjecture [6],
AT =w(=vini + vina). (8) except for the appearance of. Several years ago
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10 — / o w = —1/W(—1/2e) = 431107... .

/ / // e This value is in accordance with estimates from Fig. 1.
08 r / / / / 1 Solutions with initial conditions with finite support select

/ / / / this minimum speed. The same type of velocity selection
o6t | / / / F ] occurs in other systems, a number of which have been
e / / / / / / proved [9].

oa // // v VAN / We compared the result = 4.311 ... with those from
i / / / / simulations done by Dellago, Posch, and Hoover [5], with

/ / / / / / S/ 64 hard disks. They made a fit of the largest Lyapunov
02 ,,/ S/ / yay ays e exponent toan In(n/b) indicating a value ofw = 3.3.

// 7 /////////////’ The difference to our value turns out to be due to large
00 = //gc//;;/g’/g/'zlo/ = - finite N effects. We will first show this numerically.

We takeN watches and give them some initialvalues.
S _ In each time step we pick two watches at random and
FIG. 1. The cumulative distribution of clock valugsat times  54yance theik values according to the rules of the clock
7=07=17=2..7=10(fromeft to right). model. We compute the average growthkoper watch
per time step, and findy. We did this for a number of
atches ranging from to 2'°. In Fig. 2 the results were

Stoddard and Ford [7] obtained results that are of the sal )
itted to an algebraic curve,

form when expanded if.
The speedw should be independent of the initial wy = 4311 — AN B, (11)

conditions. Physical initial conditions will have finite ]

support, because there is always a particle with smalleé good fit, except for the smallest values of, was

k and a particle with highest. ThenC,(0) is bounded ©btained by choosingg = 0.277 and A = 3.466. No

by two step functions. Using Eq. (9), one can show thaf00d fit could be obtained foB = 1 or on replacing

they will remain bounded by the solutions correspondingh€ algebraidV dependence by an exponential one. The

to these two initial conditions. If these tend to somevalue B = 0277 is in reasonable agreement with the

uniformly moving solution with speed, so will the real ~ €Xponent of-1/3 obtained by Dellago and Posch [10]. In
system. Thus is unique for this set of initial conditions. ©Order to obtain a better comparison between clock model

We put the propagating front ansaf(r) = F(k —  Predictions forwy and simulation results on actual dilute
wr) into Eq. (9) to obtain a differential-difference equa- 98s models, we performed a number of new simulations
tion [8] for the shape of the cumulatives: using the same methods as in Refs. [5,10], both on

hard disk and hard sphere systems for different particle
W d_F(x) +F() = F(x — 1). (10) numbers at a number of low densitigs= 1077, 10™4,
dx
F has to be monotonically increasing, tending toas 5.0 -
x — —o and tol asx — . This means thak' = 0 has /
to be unstable anfl = 1 has to be stable. Itis easy to see / — -
that these are fixed points of Eq. (10). Their stability is 40 | / e T :
determined by linearized equations. The behavior around // o
a fixed point is always exponentiak(x) = > ; pje®*, / %ﬁ
in which thes; are roots of the so-called characteristic " 30 | /
equation angp; are polynomials inc of a degree less than L/
the multiplicity of roots; [8]. For an unstable fixed point, A /
some of thes; have positive real parts. Arounél = 0, 2o ST
this is true ifw > 0. For a stable fixed point, the term /- /
with least negatives;, lets call this—v, will dominate I/' / / . ‘
the largex behavior. Ify were complex, we would see 10,0 107 10° 10°
oscillatory behavior, violating monotonicity, sp has to N
be real. Inserting the asymptotic behavibfx) = 1 —  FIG. 2. Number dependent coefficiemt. The circles are

exp(—yx) into Eqg. (10) and neglecting quadratic termsclock model results. The bars are new molecular simulation
produce the characteristic equatipm + 1 — 2¢? = 0. results: wide error bars for hard spheres and narrow error bars
This gives a relation between andy: w(y) = (2¢” — for hard disks. The dashed line is Stoddard and Ford® In

1 It t t that th . e f it prediction. The dash-dotted curve is a fit of the mean field
)/ urns out that there IS a minimum 10r poOSIIVE  aq1t5 to the algebraic expression (11). The thick line gives

real values ofy WhiCh can be expressed in terms of the analytic result foN — . The solid curve is the prediction
Lambert’'sW function of Eq. (12).
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1073, and 1072. For eachN the results for the largest may be allowed to vanish exponentially. This Letter
Lyapunov exponent were fitted tewwIn(ii/a). The shows that the calculation of dynamical properties of
results forw are also plotted in Fig. 2. One sees thatmany particle systems is feasible and that the calculation
the results of the clock model are in excellent agreememf the largest Lyapunov exponent in dilute gases requires
with those of the simulations. the solution of a nonlinear front propagation equation.
Stoddard and Ford [7] used crude arguments to gethe method will be extended in future work in order to
wy = InN. This relation is also plotted in Fig. 2. One obtain the© (7)) term of the Lyapunov exponent. This
sees that this gives only a good fit for very small  term will depend on the details of the interaction at a
In simulations of 100 particles with a cutoff Lennard- collision, and is of considerable physical interest.
Jones interparticle potential, Stoddard and Ford [7] found We thank Professor J. R. Dorfman and Professor H. A.
agreement with their predicted value, which lies somePosch for valuable discussions, Professor Th. W. Ruijgrok
what above our asymptotic value of 4.311 and much moréor pointing out useful references, and Professor A. Zang-
above the simulation results for 100 particles, both in thewill for providing us with a copy of the doctoral thesis
clock model and for hard spheres and disks. Stoddard araf Stoddard. The work reported here was supported by
Ford [7] acknowledged that the error increasesiggets FOM, SMC, and by the NWO Priority Program Nonlin-
smaller and that their simulation results for lawshould ear Systems, which are financially supported by the “Ned-
not be expected to fit their theory. But thieat which the erlandse Organisatie voor Wetenschappelijk Onderzoek
error becomes too big is not sharply defined. If one take§NWO).” H. van Beijeren and R. van Zon acknowledge
it low enough, the data support their prediction; but if onethe hospitality and support of the Institute for Physical
takes it a little higher, the results are more in line withScience and Technology at the University of Maryland
those from the clock model simulations. during the first stages of their research. Ch. Dellago
In a recent paper, Brunet and Derrida [11] present aratefully acknowledges support from the Austrian Fonds
way to compute theVv dependence of the velocity in a zur Forderung der wissenschaftlichen Forschung, Grant
similar model by treating it as a discretization effect. InNo. J01302-PHY.
our case, there are at least two particles with higltest
in any realization. This means we have to take- 2/N
in Eq. (7) in [11]. Inserting our expression fer(y), we
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