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Largest Lyapunov Exponent for Many Particle Systems at Low Densities
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The largest Lyapunov exponentl1 for a dilute gas with short range interactions in equilibrium is
studied by a mapping to a clock model, in which every particle carries a watch, with a discrete time tha
is advanced at collisions. This model has a propagating front solution with a speed that determinesl1,
for which we find a density dependence as predicted by Krylov, but with a larger prefactor. Simulations
for the clock model and for hard sphere and hard disk systems confirm these results and are in excelle
mutual agreement. They show a slow convergence ofl1 with increasing particle number, in good
agreement with a prediction by Brunet and Derrida. [S0031-9007(98)05472-6]
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Recently, there has been great interest in the relatio
ship between statistical mechanics and the theory of d
namical systems [1–3]. Calculating dynamical propertie
such as Lyapunov exponents for statistical mechanic
systems usually requires numerical simulations. For th
Lorentz gas, however, Dorfman, Van Beijeren, and oth
ers [3,4] have obtained analytical expressions for the Ly
punov spectrum and Kolmogorov-Sinai entropy at low
densities, both in equilibrium and for the field-driven case

In this paper we present an analytic calculation of th
largest Lyapunov exponent in the low density limit fo
a gas at equilibrium consisting of particles with shor
range interactions. Our method is based on argume
from kinetic theory and similar in spirit to the method
of Refs. [3,4]. We compare our results to those from
computer simulations on hard disk and hard sphe
systems and pay special attention to the dependence
the largest Lyapunov exponent on the total number
particles.

We consider a gas consisting ofN atoms of diameter
s, defined as the (strictly finite) range of interaction
and massm in d dimensions, in a volumeV . The
reduced densitỹn is defined asNsdyV and will serve
as a small parameter. To calculate the largest Lyapun
exponent we follow two nearby trajectories in phas
space. For the first one, the reference trajectory, t
positions and velocities of the particles are denoted b
s$ri , $yid. In the second trajectory they are denoted b
s$ri 1 d $ri , $yi 1 d $yid. The deviationssd $ri , d $yid will be
taken to be infinitesimally small. For a chaotic system
they will grow exponentially with time at a rate equa
to the largest Lyapunov exponentl1. Since the whole
vector sd $ri , d $yid in phase space grows exponentially, s
will a generic projection; hence, one has

l1 ­ lim
t!`

1
2t

ln

" PN
i­1 kd $yistdk2PN
i­1 kd $yis0dk2

#
. (1)

Therefore, in order to calculatel1, one has to find out
how d $yistd typically increases with time. We will first
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illustrate this on the somewhat simpler case of the rando
Lorentz gas, consisting of a single light particle moving
among a random array of fixed scatterers interactin
with the light particle through a spherically symmetric
potential. Between collisions the velocity deviation doe
not change and the position deviation changes accordi
to

d $rstd ­ d $rst0d 1 st 2 t0dd $yst0d . (2)

In a collision the velocity changes from$y to $y0 given by

$y0 ­ $y 2 2sn̂ ? $ydn̂ ; Mn̂ $y . (3)

n̂ denotes the unit vector in the direction from the cente
of the scatterer to the point of closest approach. Th
change ofd $y in a collision is obtained from Eq. (3) by
expanding both$y 1 d $y and n̂ 1 dn̂ to linear order in
the deviations. The difference in impact times for the tw
nearby trajectories leads to a shift ind $r. Since deviations
follow linearized dynamics, one always hasµ

d $r 0

d $y0

∂
­

µ
A 2P

22Q B

∂ µ
d $r
d $y

∂
. (4)

For hard sphere scatterers with radiuss it turns out that,
in any number of dimensions,A ­ B ­ Mn̂, P ­ 0, and

Q ­ fssn̂ ? $ydg21fsn̂ ? $yd1 1 n̂ $yg ? fsn̂ ? $yd1 2 $yn̂g ,

(5)

with 1 the identity matrix. A derivation of these results
in two dimensions can be found in [5]. From the abov
equations we infer that at low density, just after thekth
collision, withk very large,d $y andd $r will typically have
increased to

d $y0stkd ø ysayñdk, d $r 0stkd ø ssayñdk , (6)

with y the speed of the light particle anda a constant
of order unity. This follows from an inductive argu-
ment: Suppose Eq. (6) is valid after thekth collision,
then according to Eqs. (2) and (6) one hasd $rstk11d ø
d $r 0stkd 1 tmfd $y0stkd ø ssayñdk11, where we replaced
© 1998 The American Physical Society 2035
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tk11 2 tk by its average value, the mean free timetmf .
In the last approximate equality we neglectedd $r 0stkd
since it is one order of̃n smaller thantmfd $y0stkd. Ac-
cording to Eqs. (4) and (6), after thesk 1 1dth collision
d $y0stk11d ­ d $ystkd 2 2Qd $rstk11d ø ysayñdk11, where
we neglectedd $ystkd since it is one order of̃n smaller than
the second term and used the typical size of the matrix
ements ofQ as syysd, as is seen explicitly in Eq. (5).
Now, becauset ø ktmf ; kyn, with n the single particle
collision frequency, it follows from Eqs. (1) and (6) tha
the Lyapunov exponent is

l1 ­ 2n ln ñ 1 n ln a ,

with a to be determined by an averaging procedure ov
free flight times and collision dynamics. This estimat
was already obtained by Krylov [6]. Notice that the valu
of a is not important for the dominant first term inl1.

These considerations can be generalized to systems
identical moving particles by noting that in a collision
say, between particles 1 and 2, Eqs. (3)–(5) are s
applicable to the relative velocity$y ­ $y1 2 $y2, the
relative velocity deviationd $y ­ d $y1 2 d $y2, and the
relative position deviationd $r ­ d $r1 2 d $r2. In addition,
one needs the corresponding relations for the cen
of mass coordinates$V ­ s $y1 1 $y2dy2 and $R ­ s $r1 1
$r2dy2, which are

$V 0 ­ $V , d $V 0 ­ d $V , d $R0 ­ d $R . (7)

Assume now that the deviations for particles 1 and 2, ju
after their last collisions before the present one, were
the form (6) with exponentsk1 and k2, respectively, and
with y the mean relative velocity. By a reasoning simila
to that for the Lorentz gas, it follows that just before colli
siond $y andd $V are both of ordersayñdmaxsk1,k2d, whereas
d $r and d $R are of ordersayñdmaxsk1,k2d11. As a conse-
quence of (4) and (7), right after the collision,d $r 0

i andd $y0
i

si ­ 1, 2d will then also be of ordersayñdmaxsk1,k2d11. So,
on average, lnjd $yi j also increases by units of lnsayñd at
collisions, but in contrast to the Lorentz gas this increa
may involve several of these units, in case the other pa
cle involved in the collision has a higherk value.

The values of lna in an actual realization of the dy-
namics will fluctuate strongly from collision to collision.
However, their distribution becomes independent of de
sity and increasingly narrow relative to lns1yñd as density
gets closer to zero. Therefore the essence of the dynam
determining the largest Lyapunov exponent is captured
the following simple clock model: Think of each parti-
cle i as carrying a watch, whose clock value iski . When
two particles collide, they synchronize their watches to th
larger of the two clock values, and advance them by o
unit. The largest Lyapunov exponent will be determine
by the speedw by which the watches run, on average, an
will be of the form

l1 ­ ws2n ln ñ 1 n ln ad . (8)
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The synchronization of thek values prohibits a direct
identification with the number of collisions which we
could do in the Lorentz gas.

We will use a mean field approach to calculate th
clock speedw. We denote the number of particles tha
have a given clock valuek by Nk and assume that they
are distributed uniformly inV . In collisions involving
particles with clock valuek, Nk decreases. It is increase
by two in collisions in which the largest incomingki was
k 2 1. So the rate equations for theNk become

dNk

dt
­ 2

X̀
l­2`

lfik

Rsk,ld 2 2Rsk,kd 1 2
k21X

l­2`

Rsk21,ld .

Rsk,ld are the rates by which collisions betweenk and
l take place. We use a Stoßzahlansatz: The rate
collisions between particles with clock valuesk and l
is proportional toNkNlyN2. Since all rates are also
proportional ton, we will express time in units of the
mean free time,t ­ nt. We use the fractionsfk ­
NkyN to eliminate theN dependence:

dfk

dt
­ 2fk 1 2fk21

k22X
l­2`

fl 1 f2
k21 .

For the cumulativesCk ­
Pk

i­2` fi , this reduces to

dCk

dt
1 Ck ­ C2

k21 . (9)

The solution is given by the recursion relation

Ckstd ­ e2tCks0d 1
Z t

0
et02tC2

k21st0ddt0.

If Ck is zero att ­ 0 it remains zero. Thus the starting
point of this recursion is the smallestk for which Cks0d fi

0. Inductively, we see that allCk are polynomials in
e2t , of which the degree grows exponentially withk.
We calculated these polynomials with initial condition
corresponding tofkst ­ 0d ­ dk1. The exponentially
growing degree of the polynomials enables only a limite
number ofCk to be computed, even on a computer. Th
results up tok ­ 30 at several time values are show
in Fig. 1. The initial distribution broadens and moves
the right. We expect the distribution to asymptotical
become a front propagating at a constant speedw. Then
we have

NX
i­1

kd $yistdk2 ­
X̀

k­2`

fkstdy2e22k lnsñyad

.
X̀

k­2`

fks0dy2e22sk2wtd lnsñyad.

This result should be proportional toe2tl1

so one indeed
recovers Eq. (8). It agrees with Krylov’s conjecture [6
except for the appearance ofw. Several years ago
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FIG. 1. The cumulative distribution of clock valuesk at times
t ­ 0, t ­ 1, t ­ 2, . . . , t ­ 10 (from left to right).

Stoddard and Ford [7] obtained results that are of the sa
form when expanded iñn.

The speedw should be independent of the initial
conditions. Physical initial conditions will have finite
support, because there is always a particle with smalle
k and a particle with highestk. ThenCks0d is bounded
by two step functions. Using Eq. (9), one can show th
they will remain bounded by the solutions correspondin
to these two initial conditions. If these tend to som
uniformly moving solution with speedw, so will the real
system. Thusw is unique for this set of initial conditions.

We put the propagating front ansatzCkstd ­ Fsk 2

wtd into Eq. (9) to obtain a differential-difference equa
tion [8] for the shape of the cumulatives:

2w
dF
dx

sxd 1 Fsxd ­ F2sx 2 1d . (10)

F has to be monotonically increasing, tending to0 as
x ! 2` and to1 asx ! `. This means thatF ­ 0 has
to be unstable andF ­ 1 has to be stable. It is easy to see
that these are fixed points of Eq. (10). Their stability i
determined by linearized equations. The behavior arou
a fixed point is always exponential:Fsxd ­

P
j pjesjx ,

in which the sj are roots of the so-called characteristi
equation andpj are polynomials inx of a degree less than
the multiplicity of rootsj [8]. For an unstable fixed point,
some of thesj have positive real parts. AroundF ­ 0,
this is true if w . 0. For a stable fixed point, the term
with least negativesj, lets call this2g, will dominate
the largex behavior. Ifg were complex, we would see
oscillatory behavior, violating monotonicity, sog has to
be real. Inserting the asymptotic behaviorFsxd ­ 1 2

exps2gxd into Eq. (10) and neglecting quadratic term
produce the characteristic equationgw 1 1 2 2eg ­ 0.
This gives a relation betweenw and g: wsgd ­ s2eg 2

1dyg. It turns out that there is a minimumw for positive
real values ofg which can be expressed in terms o
Lambert’sW function
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w ­ 21yW s21y2ed ­ 4.31107 . . . .

This value is in accordance with estimates from Fig.
Solutions with initial conditions with finite support selec
this minimum speed. The same type of velocity selecti
occurs in other systems, a number of which have be
proved [9].

We compared the resultw ­ 4.311 . . . with those from
simulations done by Dellago, Posch, and Hoover [5], w
64 hard disks. They made a fit of the largest Lyapun
exponent toan lnsnybd indicating a value ofw ø 3.3.
The difference to our value turns out to be due to lar
finite N effects. We will first show this numerically.
We takeN watches and give them some initialk values.
In each time step we pick two watches at random a
advance theirk values according to the rules of the cloc
model. We compute the average growth ofk per watch
per time step, and findwN . We did this for a number of
watches ranging from4 to 219. In Fig. 2 the results were
fitted to an algebraic curve,

wN ­ 4.311 2 AN2B. (11)

A good fit, except for the smallest values ofN, was
obtained by choosingB ­ 0.277 and A ­ 3.466. No
good fit could be obtained forB ­ 1 or on replacing
the algebraicN dependence by an exponential one. T
value B ­ 0.277 is in reasonable agreement with th
exponent of21y3 obtained by Dellago and Posch [10]. I
order to obtain a better comparison between clock mo
predictions forwN and simulation results on actual dilut
gas models, we performed a number of new simulatio
using the same methods as in Refs. [5,10], both
hard disk and hard sphere systems for different parti
numbers at a number of low densities,ñ ­ 1025, 1024,

FIG. 2. Number dependent coefficientw. The circles are
clock model results. The bars are new molecular simulat
results: wide error bars for hard spheres and narrow error b
for hard disks. The dashed line is Stoddard and Ford’s lnN
prediction. The dash-dotted curve is a fit of the mean fie
results to the algebraic expression (11). The thick line giv
the analytic result forN ! `. The solid curve is the prediction
of Eq. (12).
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2],
1023, and 1022. For eachN the results for the largest
Lyapunov exponent were fitted to2wn lnsñyad. The
results forw are also plotted in Fig. 2. One sees tha
the results of the clock model are in excellent agreeme
with those of the simulations.

Stoddard and Ford [7] used crude arguments to g
wN ­ ln N . This relation is also plotted in Fig. 2. One
sees that this gives only a good fit for very smallN .
In simulations of 100 particles with a cutoff Lennard
Jones interparticle potential, Stoddard and Ford [7] foun
agreement with their predicted value, which lies som
what above our asymptotic value of 4.311 and much mo
above the simulation results for 100 particles, both in th
clock model and for hard spheres and disks. Stoddard a
Ford [7] acknowledged that the error increases asñ gets
smaller and that their simulation results for lowñ should
not be expected to fit their theory. But theñ at which the
error becomes too big is not sharply defined. If one tak
it low enough, the data support their prediction; but if on
takes it a little higher, the results are more in line wit
those from the clock model simulations.

In a recent paper, Brunet and Derrida [11] present
way to compute theN dependence of the velocity in a
similar model by treating it as a discretization effect. I
our case, there are at least two particles with highestk
in any realization. This means we have to takee ­ 2yN
in Eq. (7) in [11]. Inserting our expression forwsgd, we
find

wN ­ w 2
sw 2 1dp2

2 ln2sNy2d
, (12)

We also plotted this prediction in Fig. 2. The agreeme
is good forN . 100.

In the work by Searleset al. [12] a weak but persistent
increase inl1 with N was interpreted as a sign of a
logarithmic divergence. It was argued that the data we
not consistent with a1yN approach to a constant value
and a plot of l1 versus lnN looks quite linear over
an appreciable range. However, in their simulations o
dense hard sphere systems, Dellago and Posch [10]
not observe such a divergence and, in fact, it looks lik
the results of Searleset al. are entirely consistent with the
type of behavior predicted by Brunet and Derrida [11
The mean field analysis given here is not decisive thoug
since it completely ignores all effects of local density an
temperature fluctuations.

We conclude by stressing that the first term of th
density expansion of the largest Lyapunov exponent of
dilute gas that was calculated in this Letter is universal f
systems where the interaction is sufficiently short range
i.e., it strictly vanishes beyond its ranges, or perhaps
2038
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may be allowed to vanish exponentially. This Lette
shows that the calculation of dynamical properties
many particle systems is feasible and that the calculat
of the largest Lyapunov exponent in dilute gases requi
the solution of a nonlinear front propagation equatio
The method will be extended in future work in order t
obtain theO sñd term of the Lyapunov exponent. This
term will depend on the details of the interaction at
collision, and is of considerable physical interest.
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