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I. INTRODUCTION 

T HE electrical action of the heart may be described to a certain approxima- 
tion by one single vector, the heart vector. The classical equilateral triangle 

of Einthoven and associates’ provided a means of finding this vector from the 
extremity leads. The true relation between the heart vector and leads, however, 
is a more complicated one. As has been pointed out previously,2v4 the potential 
difference VPQ between two electrodes P and Q is a linear function of the com- 
ponents X, Y, Z of the heart vector 

VPQ = aX + bY + CZ . (1) 

The coefficients a, b, c remain constant during the heart beat and depend 
on the shape and conductive properties of the trunk. They can be determined 
on a phantom or on dead human bodies. But apart from this experimental 
method, it may be useful to treat the problem mathematically. This can only 
be done, however, by making some very simplifying assumptions. If the trunk 
is treated as a homogeneous sphere with the heart vector (dipole) acting in its 
center, the solution can be readily given and is a three dimensional generalization 
of the Einthoven triangle. If the position of the heart is not central, however, 
a more complicated mathematical treatment is required. Wilson and Bayley5 
have treated this case, and they have given explicit formulas for the potential 
distribution. 

The shape of the human trunk, however, is more like a cylinder than like a 
sphere. It was thought desirable, therefore, to calculate the potential distribu- 
tion on a cylinder generated by a dipole. To avoid too complicated calculations, 
the cylinder is chosen circular, and the dipole is placed on its axis. Furthermore, 
it is assumed to be homogeneous, since a theoretical treatment of the conduction 
in a heterogeneous cylinder seems to be hardl,y possible. The shape of the 
cylinder is seen from Fig. 1. The ratio of the radius to the height, as well as the 
position of the dipole (heart), can be chosen arbitrarily. However, since a numeri- 
cal calculation is required and the result cannot be given in explicit formulas, 
we had to decide upon these ratios. We have chosen a cylinder with radius R 
and the upper and lower boundary plane at z = - 1.5 and z = 2.2 R, respec- 
tively. (The position of the dipole, the heart, is chosen as the origin.) 

The closed cylinder may be a fairly good approximation of the actual case. 
However, the body is flattened and the heart is eccentrically placed. To give a 
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qualitative discussion of differences in the shape of the model on the potential 
distribution, we also discuss the potential distribution on the open (infinite) 
cylinder, and on two parallel planes, caused by a dipole. 

II. GEOMETRICAL REPRESENTATION BY MEANS OF AN IMAGE SURFACE 

In a previous paper4 one of us, in collaboration with J. B. van Milaan, devel- 
oped a geometrical representation of the relation between the heart vector and 
leads, the boundary of the trunk, and its heterogeneity being quite arbitrary. 
This representation can be deduced from Equation (l), in which X, Y, 2 are 
components of a vector, the heart vector, and Vpo is a potential difference and 
therefore a scalar quantity. It can be shown from this that the coefficients 

--+ 
a, b, c must have the character of vector components. So there is a vector a, b, c. 
The relation, Equation (l), can be interpreted geometrically: the potential 

--+ 
difference Vpo equals the projection of the heart vector X, Y, Z on the vector 

, 
a, b, c times the length of the latter. It is the so-called scalar product of both 
vectors. 

We take for Q a fixed point on the body surface. Then to each point P on 
-4 

this surface a vector a, b, c corresponds according to Equation (1). This vector 
may be drawn from a fixed origin. The terminus P’ of this vector can be con- 
sidered as an image of the point P. To each point P of the body belongs a point 
P’ in the image space. The locus of all points P’ is the image of the real body 
surface. The potential distribution on the real body surface can be deduced 
from the image surface, if the correspondence of the points P and P’ everywhere 
on the surface is known, and so for any arbitrary direction of the heart vector. 
To find the potential difference of two points P and Q we have only to find the 
corresponding points P’ and Q’ on the image surface and to project the heart 
vector on the line P’Q’. The product of the projection and the length of P’Q’ 
is equal to the potential difference between P and Q, 

In the following sections we shall calculate the image surface for some mathe- 
matically single cases (body surface is an open cylinder, a closed cylinder, and 
two parallel planes, respectively). By some examples we shall show how the 
image surface can be used. 

III. THE POTENTIAL DISTRIBUTION ON AN OPEN (INFINITE) CYLINDEsR 

The dipole can be decomposed into two components, one along the axis of 
the cylinder and the other perpendicular to it. We calculate the field separately 
for both cases and calculate the field in an open infinite cylinder (without bounda- 
ries at the top and at the bottom). 

We shall use cylindrical coordinates r, 9, z; their relation to the Cartesian 
coordinates, x, y, z is shown in Fig. 1. Inside the cylinder the potential cp (r, 9, z) 
is a function of the cylindrical coordinates r, 8, z (or of the rectangular coordi- 
nates x, y, z). This function obeys a differential equation, expressing that there 
is no electric charge inside the cylinder. In rectangular coordinates this equation 
has the simple form: 
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G + dy2 + c2 = 0, or abbreviated Ap = 0. 

The way in which this is expressed 
found in Appendix I. 

in the cylindrical coordinates r, 0, z can be 

Fig. 1. Fig. 2. 

Fig. I.-Shape of the cylinder for which the potential distribution is calculated. The position of 
the dipole (the heart) is taken as the origin of the coordinate system. The relations between the Car- 
tesian coordinates (z, g, z) and the cylindrical coordinates (r, t9, z) are also shown. 

Fig. Z.-The potential p“(R, z), caused by a dipole parallel to the axis of the infinite cylinder on 
its surface, as a function of I. The dotted line shows the potential at the same places, if the entire space 
is filled with the conducting medium. 

At the origin, where the dipole is assumed to be acting, cp must become 
infinite and no longer satisfies A(p = 0. We require that cp obey the following 
expression near the origin: 

(3 P p = ; co5 y/p= 
(2, 

(I; is the dipole moment and “p the radius vector, y is the angle between the vectors 

“p and “p). At the surface of the “trunk,” i.e., at the cylindrical surface, the 
+ normal component of the current density is zero, thus - = 0 (n being the direc- 
bn 

tion normal to the surface). 
In Appendix I the general mathematical treatment is given. In Appendix 

II the calculations are carried out for a dipole parallel to the axis of an infinite 
cylinder. The potential does not depend on 6 since rotational symmetry exists 
and we can write cp” (r,z). The results for the surface of the cylinder and for a 
dipole of unit moment are given in Fig. 2. (For comparison, we have also drawn 
the potential which would be caused by the same dipole in infinite space at the 
same places.) 

In Appendix III the formulas are given for the potential of a unit dipole 
perpendicular to the axis of an infinite cylinder. If the dipole is directed along 
the x-axis, we shall denote the potential by cp’(r, 8, z). It appears to be the prod- 
uct of a function F’(r,z) of r and z only and cos 6, so on the surface of the cylinder: 

p* (r, iy, z) = F’ (z) cos d . (3) 
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Fig. 3.-The potential F+ (I). caused by a dipole in the x-direction perpendicular to the axis of 
the infinite cylinder. on the generating line x = 0. y = 1 of its surface, as a function of 8. The dotted 
line shows the potential at the same places if the entire space is filled with the conducting medium. 

1 -a- 

5 
-t- 

i a- 

Fig. 4.-The image surface of an infinite cylinder. The correspondence between a point P of the 
cylinder and P’ of the image surface is indicated by a straight line. I. Intersection of the cylinder with 
the x-z plane. II, Intersection of the image surface with the a-c plane. 



BURGER ET AL.: POTENTIAL DISTRIBUTION ON BODY SURFACE 253 

The function F’ (z) is represented in Fig. 3 (again the potential of the same 
dipole in infinite space is drawn for comparison). 

We now give the results for the potential distribution by means of an image 
surface. If X, Y, 2 are the components of the heart vector, the potential cp can 
be composed of contributions from each of these components. Z, parallel to the 
axis of the cylinder gives: 

cp, = Zq” (r, z) . 

X and Y, perpendicular to the axis of the cylinder give: 

‘J’X = Xv’ (I-, 8, z) = XF’ (z) cos i) 
VY = YF* (z) sin ti . 

So the total value of the potential is: 

‘p = Pr + (PY + ‘pz = XF’ (z) cos 8 + YF’ (z) sin 8 + Z,p” (r, z) 

Comparing with Equation (1) we conclude that the coefficients a, b, c for the 
surface of the cylinder are given by 

c CR, 2) = ‘p” (R, z) 
a (R, 6, z) = F’ (z) cos 8 $1 
b (R, 19, z) = F’ (z) sin d . (6) 

The directions of the a, b, c axes are parallel to those of the X, Y, Z axes. The 
origin of the a, b, c space (image space) may be chosen at will. The reference 
potential, with which the potential of a point P is compared, is the mean value 
of the potential at z = + ~0 and z = - m. 

It follows from Equations (5) and (6) that the image surface has the c-axis 
as the axis of rotational symmetry. In Fig. 4 we have drawn the intersection of 
the infinite cylinder with the x-z plane and, in the same figure, the intersection 
of its image surface with the a-c plane. The correspondence between a point P 
of the cylinder surface and the point P’ of the image surface is indicated by a 
straight line joining P and P’. 

The parts of the cylinder that are a great distance from the dipole have their 
image approximately in two points of the image surface, namely, Pi and P 2. 

IV. THE POTENTIAL DISTRIBUTION ON A CLOSED (FINITE) CYLINDER 

In Appendix IV we have given the method of calculation for the potential 
distribution on the surface of a cylinder bounded by two planes z = - 1.5 R and 
z = 2.2 R. This can be done starting from the results of Appendices II and III 
using the method of electrical images. The results are represented in Figs. 5 
and 6 for a dipole parallel to the axis, and in Figs. 7 and 8 for a dipole perpen- 
dicular to the axis of the cylinder. Notations are analogous to those for the 
infinite cylinder, but the index b denotes that we have a closed cylinder. We 
have, for example: 

VI,* (r, 6, Z) = FbA cos 8 (7) 

It should be noted that the planes z = - 1.5 R and z = 2.2 R are now part 
of the surface of the body while they are situated in the interior of the body for 
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Fig. 5. Fig. F. 

Fig. 5. -The potential (~bn(R+ 2). caused by a dipole parallel to the axis of the Anite cylinder on 
its surPac.2, as a function of z. 

Fig. B.-The potential, caused by a dipole parallel to the axis of the flnite cylinder on the boundary 
plane z = -1.5 R, as a function of r. 

Fig. 7. B’ig. 8. 

Fig. ?.-The potential Fi (2). caused by a dipole in the x-direction on the generating line x = 0, 
y - 1 of the surface of the flnite cylinder, as a function of z. 

Fig. S.-The potential. caused by a dipole in the x-direction on the boundary plane e = -1.5 R. as 
a function of x (on the line y = 0. z = -1.5 R). 
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the infinite cylinder. We see from the figures that the differences with the infinite 
cylinder are not very great. (Compare Fig. 5 with Fig. 2 and Fig. 7 with Fig. 3.) 

In Fig. 9 and Fig. 10, we have given diagrams of the equipotential lines on 
the surface of the cylinder for the parallel and the perpendicular dipoles, respec- 
tively. 

Flg. 9. Fig. 10. 

Fig. 9.-Equipotential lines on the cylinder surface for a dipole parallel to the axis. Two succeeding 
equipotential lines have a potential difference of 0.2. 

Fig. 10:-Equipotential lines on the cylinder surface for a dipole perpendicular to the axis. Two 
succeeding equipotential lines have a potential difterence of 0.2. 

We can again represent the potential distributions by means of an image 
surface. The center of the lower boundary plane (z = 2.2 R) will be taken as 
reference point Q, where the potential of the finite cylinder is taken to be zero. 
As in Section III, the values of a, b, and c for the surface of the cylinder follow 
from the potential distributions caused by dipoles in the x, y and z directions. 
Likewise, the image surface has rotational symmetry about the c-axis. In Fig. 
11, we have drawn the intersection of the cylinder with the x-z plane and in the 
same figure, the intersection of its image surface with the a-c plane. The corre- 
spondence between points of body and image surface is indicated in the same 
way as in Fig. 4. 

The image surface does not differ very much from a sphere. It is remarkable 
that no visible edges of the image surface correspond to the edges of the cylinder. 
The lower end of the cylinder (especially the lower boundary plane) has its image 
nearly in one point-the lowest point of the image surface. This means that this 
part of the cylinder shows hardly any potential differences. 
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V. THE POTENTIAL DISTRIBUTION ON TWO PARALLEL PI.INES 

The field of a dipole (at the origin of a Cartesian coordinate system) between 
two parallel planes y = A and y = -3 A can be calculated with the method of 
electrical images discussed in Appendix IV. We have represented the results 
by means of an image surface in the same way as in Sections III and IV (Fig. 12). 
The two parallel planes can be considered as a model of an extremely flattened 
trunk. The heart is placed at one-fourth of the distance between the front plane 
and the back plane. It is seen that this results in a large asymmetry of the image 
surface. The image surface has the b-axis as the axis of rotational symmetry. 

Fig. Il.-The image surface of the finite cylinder shown in Fig. 1. I. Intersection of the cylinder 

with the x-z plane. II,, Intmsectlon of the image with the a-c plane. The correspondence between a 

point P of the cylinder and P’ of the image surface is indicated by a straight line. 

VI. EXAMPLES OF THE USE OF THE IMAGE SURFACE 

With the aid of the image surface, several problems can be numerically 
solved. Its use is analogous to that of the Einthoven triangle. The potential 
difference between two points of the body surface is equal to the projection of the 
heart vector on the line joining their images (not the points themselves) muEti@ied 
ty the length of this image-line. In the following paragraphs, a few examples are 
given for the finite, closed cylinder (Fig. 11). 

A.-It is easy to draw in Fig. 11 the triangle analogous to that of Einthoven. The arms 
correspond to the points A and B in the symmetry plane, about 0.1 R below the upper boundary 
plane of the cylinder, the (left) foot corresponds to the center F of the lower boundary plane. It 

appears that the triangle A’B’F’ is not equilateral but very narrow. As a consequence of this, 
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the potential difference between A and B (Lead I) is relatively small, for it is equal to the product 
of the projection of the heart vector on A’B’ and the length of A’B’. This length is much smaller 
than A’F’ = B’F’. Conversely, if the leads are given it is concluded from the narrow triangle 
that the horizontal component of the heart vector is large. 

The analogue of the equilateral tetrahedron can also be constructed, accepting that the back 
electrode is situated just behind the dipole (heart). Although in Fig. 11 only a plane drawing is 
given, the rotational symmetry of the cylinder permits the position of the image of the back 
electrode to be found. To this end, the points C and C’ have to be rotated 90 degrees about the 
symmetry axis till they lie behind the dipole. C’ must then be combined with the apices of the 
triangle A’B’F’, mentioned previously. 

Fig. 12.-The image surface of two parallel planes with an eccentric dipole. I, Intersection of the 
two planes with the y-z plane. II. Intersection of the image surface with the b-c plane. The planes 
are placed at y = +3; the dipole at y = 1.5. I = 0. 

B.-If the heart vector is perpendicular to the axis of the cylindrical trunk, its projection 
on a vertical generating line is zero. The conclusion that the potential difference between the 
ends A and B of such a line (Fig. 13) be zero should be incorrect. The projection of the heart 
vector has to take place on the line A’B’ in the image space, and it appears that the potential 
difference between A and B is 50 per cent of that between the diametral points A and a of the 
top surface. 

C.-We can calculate the potential difference between two diametral points p and P (Fig. 13) 
of the cylinder at the same height as a function of their height, the heart vector being horizontal, 
This potential difference is not independent of this height, as is the projection of the heart vector 
(dipole) on the line joining the diametral points. Its variation ranges from 27 per cent for aA 
to 0 per cent for bB of its maximum value, which is attained nearly at the same height as the 
heart. This potential difference is not inversely proportional to the square of the distance of the 
electrodes to the heart, nor to the square of the distance of the line joining them to the heart. 
This may be easily verified by the reader. 
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D.-If it is assumed that the projection of the heart vector on a line joining two electrodes 
is a measure of the potential difference between these electrodes, an error is made that depends 
on various circumstances. The following numerical example gives an idea of the error that can 
be made. 

i\ heart vector making an angle of 45 degrees with the symmetry axis of the cylinder (pointing 
downward) gives potential differences between the “arms” (see A) and between an arm and the 
feet of 130 and 330 in an arbitrary measure. This can be deduced from Fig. 11. If we do not 
remember that these values have to be deduced, using the image surface in the correct manner, 
we may be inclined to suppose that the ratio of the aforementioned values 130/330 is the ratio 
of the projection of the heart vector on a horizontal and a vertical line, respectively. In this way 
the angle of the vector with the vertical line is computed to be 21 degrees instead of 4.5 degrees. 

Fig. 13:-Illustration of the use of the image surface for a flnite (closed) cylinder. 

VII. DISCUSSION 

Our models differ from the human body in many respects. Their shape and 
the position of the heart are not in accordance with the facts and a serious dis- 
advantage is that the electrical heterogeneity of the human body is not taken 
into account. A much better approximation is the model we used previously.3 
The models referred to in the present paper, however, have an advantage in that 
the caIcul,ations give the image surface in a simple mathematical form, in such a 
way that it can be evaluated numerically. 

The Einthoven triangle and its spatial generalization, the regular tetrahe- 
dron,7 are based on the assumption of a homogeneous body, either extending 
infinitely or spherical. They are just as correct models as any other, though 
very imperfect ones. If a geometric shape has to be chosen, the closed cylinder 
is a much better approximation to the body shape than the sphere. 

Our mathematical considerations allow us to draw some general conclusions 
as to the relation of the shape of the image surface to the shape of the body 
surface. A protruding part of the body surface, such as an arm or a leg, nearly 
corresponds to a single point in the image space. This is shown in the case of 
the infinite cylinder, the infinitely long ends of which are represented as one 
point (Pr and Pz) of the image surface (Fig. 4). In the case of the extremity 
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leads it is therefore arbitrary where the electrode is placed on arm or leg. All 
points of the arm (or leg) are in the image space identical, as if shriveled up to 
one point. 

An inward displacement of the body surface causes an outward displacement 
of the image surface at the same side. This is seen when the open and the closed 
cylinders are compared. Analogous to an inward ‘displacement of the body 
surface is a displacement of the heart towards it. The outward displacement of 
the image surface caused by it is shown by Fig. 12 for the parallel planes, where 
this surface has a protruding part at the side nearest the heart. This gives an 
idea of the deformation of the image surface to be expected if the heart were 
situated eccentrically in a cylinder. The same must be true in the human body 
where the heart is situated near the frontal thoracic wall. The image surface 
of the human body has a protruding part at the frontal side. Consequently, there 
is a large potential difference between a precordial electrode and an indifferent 
electrode anywhere on the body surface according to the rules given in the pre- 
ceding pages. The nearer the “heart,” that is the dipole, is situated to the body 
surface the more protrudes the corresponding part of the image surface. The 
shape of the latter will, therefore, depend for the greater part on the position of 
the dipole. This position may vary considerably inside the heart and as its 
dimensions cannot be neglected, the image surface differs appreciably for different 
parts of the heart. This is especially true for the protruding part and therefore 
for precordial electrodes. It is to be expected that for these cases the description 
of the phenomena with a single image surface will not be a sufficient approxi- 
mation. 

It should be possible to calculate the image surface in a simple case, the 
heart lying near the body surface by proceeding from the case of the parallel 
planes. With two other pairs of planes the space might be bounded such that a 
rectangular prism is ‘formed in which the heart is situated close to one of the 
planes. This requires, however, rather extensive calculations, which we have 
not carried out. 

SUMMARY 

A mathematical treatment of the dipole field in a bounded space is given 
for a few simple cases. The potential at the surface is calculated for an open and 
for a closed cylinder with the dipole on its axis, and for an infinite layer bounded 
by two parallel planes, the dipole being situated nearer to one plane than to 
the other. The medium is assumed to be homogeneous. The image surface 
introduced in a previous paper is calculated and represented in Figs. 4, 11, 12. 
and 13. A few examples illustrate the use of this surface. 

APPENDIX I. MATHEMATICAL FORMULATION OF THE PROBLEM: 

METHOD OF SOLUTION 

We now give the method used to calculate the potential ‘p in an infinite cylinder, discussed 
in Section II. cp must satisfy the potential equation which we write in cylindrical coordinates 

(A 1) 



260 AMERICAN HEART JOURNAL 

The boundary condition for a cylinder of radius R reads 

=o 
r=R 

c-4 2) 

In the neighborhood of the origin p must obey the expression 

.=;. 
3 

P/P3 = p cos -/PC N 0 (A 3) 

(G is the radius vector from the origin; p = 1! rs + 9.) Using the standard method of separation 
of the variables r, 6, z, in (A l), we obtain a potential which satisfies (A 1) everywhere. This 
potential can be expressed in the following form (Fourier series and Fourier integral) 

co 
tp (r, 8, 2) = Y 

n Z- m 
exp (in 0) ~A.,, I,, (ar) exp (ioz) da (A 4) 

--co 

A.,a depends only on n and a. I, (ur) is a Bessel function of order n (see notation of Ref. 6, p. 25 
ff.). We desire a solution (A 4) which satisfies the boundary condition 

= g (6, 2) * 
r=R 

(A 5) 

Assuming g (6, z) can be expanded in a Fourier series 

g (8, 2) = : Im Bnra exp (in 9) exp (iaz) drr (A 6) 
n=-co -co 

then, from (A 4), (A 5) and (A 6), the value of An,a follows 

A ma = ILab If, (4 . (A 7) 

This value of AD,a substituted in (A 4) gives a potential cp (r, 8, z) which satisfies the potential 
equation (A 1) everywhere within the cylinder and which satisfies the boundary condition (A 5). 
However, we want to calculate a potential cp which satisfies (A 1) everywhere within the cylinder 
except in the origin, where it must have the singularity (A 3). 

Furthermore, the boundary condition (A 2) must be satisfied. This problem can be 
reduced to the preceding one by putting 

cp = ‘p, + ‘p, (A 8) 

‘p, = ; . z/p* (in entire space). (A 9) 

$ is a solution of (A 1) with the singularity (A 3) and the boundary condition (A 2). It follows 
that ~1 is a solution of (A 1) without the singularity and with the boundary condition (A S), where 

g (9, z) = - [PC” *I’d] r=R. 

Hence our problem has been reduced to finding the Fourier expansion (A 6) of this expression and 
calculating (A 4) with the coefficients obtained. 
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APPENDIX II. POTENTIAL DISTRIBUTION OF A DIPOLE PARALLEL TO THE AXIS 

OF AN INFINITE CYLINDER 

The problem of Appendix I is specialized to the extent that the vector i; of (A 9) is now a 
vector in the direction of the z-axis, and P, can be expressed as 

90 = pz (r* + 2*)-i . (A 11) 

According to (A 10) the function g (6, z) becomes 

g(9,z) =3pRz(Rt+ ze)-8. (A 12) 

To obtain the Fourier expansion of g (6, z) we use the formula given in Ref. 6, p. 163 

1 1 
--!-fexp(-iaz)($)V& Ky(RJal)da, 

i (z’+ RI) I+ + -27 
(A 13) 

-al 

where Rev>-+ . 

From (A 13) we obtain, by partial integration and the use of some appropriate formulas for the 
KV functions (see Ref. 6, p. 29) 

CD 

3pRz (R’ + z+ 
ipR 

=- 
%T f 

exp (icrz) % K~(Rjal)g/Rg 1 da --03 
= - ‘p exp (iaz)alalKr(Rlal) da. (A 14) 

--cc 

The coefficients B,,, according to (A 6) that are derived from (A 14), are 

B 
C 

-(ip/r)alalKr(Rja]), if n = 0 
ma = 

0 , if n # 0. 
(A 15) 

Hence we see that the Fourier series has only a single term. 
according to (A 1.5) and (A 7), using the formula 

From the values for Bn,a we get, 

IA = Il(aR) (see Ref. 6, p. 29), 

A 
-(iplal/~)K1(RIal)/I1(Ra), if n = 0 

n,a = 
0 , if nf 0. 

For Pr we obtain, after a simple transformation from (A 4) 

(Pr(r, z) = (2p/~)o~aK~(aR)[I~(ar)jl~(aR)] sin az da. 

(A 16) 

(A 171 

The complete solution of our problem is given by (A 8). The value of cpr (r, z) was calculated 
numerically for a series of values of z for r = R and for a series of values of r for z = z0 = - 1.5 R. 

The results for 9 (R, z) are given in Fig. 2. (The error is less than 1 per cent.) In these results 
we have taken p = 1. We remark that 

lim ar(R, z) = 2; 
z= m 

z im_ co VI@, z) = -2 (A 18) 

This can be deduced rigorously from (A 17), but it can also be proved without any explicit cal- 
culation. 
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APPENDIX III. POTENTIAL DISTRIBUTION OF A DIPOLE PERPENDICULAR TO THE 

AXIS OF AN INFINITE CYLINDER 

We take G in the direction of the x-axis. (A 9) then becomes 

9, = pr cos iy(r2 + z’) -;. (A 19) 

The function g (r9, z) consequently has the form 

g (8, z) = -p cos d(R’ + zI)-;(z2 - 2R*). (A 20) 
By partial integration and the use of appropriate formulas for the K,- functions,8 we find the 
Fourier expansion of g (Ip, z) from (A 13) and (A 14), which we give by the coefficients B,o: 

(p/2T)[02Ko(Rjal) + la/K~(Rl~l)/Rl, if *I= * 1 
B “,a = 

0 , if InI # 1. 
(A 21) 

After some reductions (see Ref. 6, the formulas on p. 29), A,,, becomes, according to (A 7), 

P ~*Ko(W) + l~lK(Rb/)/R 
__---__----- , if II- +l 

-4 cuIo(Ra) - I,(Rcu)/R (-4 22) 

,if /nl # 1. 

We obtain from (A 4), after some reductions, the expression for +‘,: 

m  

f 

2a aKu(Ra) + Ki(Ra)/R 
p,(r, ii, 2) = p cos 8 - --------- II(ar) cos az da. 

T aIo(Ra) - Ir(Ra)/R 
0 

(A 23) 

The integral in (A 23) was calculated for a number of values of z for r = R and for a number of 
values of r for z = zO = - 1.5 R. The results for (p (r = R, 9 = o, z) and p (r, 9 = o, z = ZO) are 
represented in Fig. 3. (The error is less than 1 per cent.) 

APPENDIX IV. POTENTIALS OF DIPOLES IN A FINITE CYLINDER: METHOD OF 

ELECTRICAL IMAGES 

If we have the solution of the potential problem for an infinite cylinder with a dipole s placed 
at the origin, we can derive the solution of the problem for a finite cylinder from it. Suppose 
the boundary planes are z = a and z = b (a < o < b) and that +D (r, 19, z) is the solution for the 
infinite cylinder. The solution for the finite cylinder is given by the sum (1 = a + b) 

m 
‘p$ 8, z) = -2 

[ 
q(r, 19, z - 2111) + p(r, 19, 2a - z - 2nl) 

n=--m 1 (A 24) 

This series gives the sum of an infinite series of electrical images. We assume that the potential 
in any term is zero at a certain point of the body, for example, the center of the lower boundary 
plane. It can then be shown that no convergence difficulties exist. The potential (A 24) repre- 
sents the potential of a series of dipoles as shown in Fig. 14. Hence, it satisfies the potentail 
equation in the interior of the finite cylinder and has the prescribed dipole singularity at the origin. 

As each of the terms in (A 24) satisfies the boundary condition 
0 

z 
r=R 

= 0, it is also satis- 

fied for the sum cp (r, 8, z). The series of images has now been chosen in such a way that the 

= 0 is also satisfied for the upper and lower boundary planes. 
z = zo 
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The dipole, with its images, is a distribution of current sources symmetrical with respect to both 
the z = a and the z = b planes, from which the boundary condition follows. For the actual cal- 
culation of the potential in the finite cylinder with the aforementioned dimensions, it is sufficient 
to consider only a few image dipoles. By an estimation of the behavior of the potential in the 

infinite cylinder, it can be proved that the other image dipoles make only a negligible contribution 
to the sum. 

Fig. 14.-Illustration of the method of electrical images. The full lines indicate the intersection of 
the cylinder with a plane through the axis. The arrow indicates the dipole. The dotted lines indicat.e 
the electrical images, the dotted arrows the images of the heart vector. 

The same method of electrical images has been used to calculate the field of a dipole between 
two parallel planes. In that case, we must calculate the sum of the fields in free space of a series 
of dipoles. 
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