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We present a general formalism for describing the diffraction of an atomic beam by a nearly resonant standing light wave, 
containing the correlation between the acquired transverse momentum, the number of emitted fluorescent photons and the inter- 
nal polarization state of the atoms. The formalism is applied in some special cases to yield explicit results for the momentum 
distribution. At the same time it is shown to give a unified description of various previous results for two-state atoms. 

1. Introduction 

The deflection of an atomic beam in a resonant 
standing laser wave has recently received much 
attention. Apart from potential applications, the 
interest in the effect stems mainly from the fact that 
that it is an explicit demonstration of transfer of the 
quantized photon momentum on a macroscopic 
scale. Equivalently, the deflection of atoms by a 
standing wave may be viewed as a diffraction of 
matter by a periodic intensity distribution of radia- 
tion, which serves as a grating. Several recent exper- 
iments have demonstrated the effect [ l-61. 
Theoretical treatments so far have mainly consid- 
ered atom models with two nondegenerate levels 
[7-l 41. Furthermore, the effect of spontaneous 
emission is usually ignored, which basically restricts 
the interaction time T to values small compared with 
the spontaneous lifetime. This leads to an essential 
simplification, since it allows the evolution of the 
atomic state to be described by Schriidinger’s equa- 
tion for the atomic wave function, whereas inclusion 
of spontaneous emission requires a density matrix 
description, which doubles the dimension of the evo- 
lution matrix. Finally explicit calculations for the 
deflection profile are mainly carried out either for 

’ Also Huygens Laboratorium, Rijksuniversiteit L&den, Post- 
bus 9504,230O RA L&den, The Netherlands. 

the case of exact resonance or in the limit of large 
detuning. 

In this paper we consider beam deflection by a 
standing wave, while accounting for a possible level 
degeneracy and for sponaneous decay. Our starting 
point is a general evolution equation for the Fourier- 
transformed momentum distribution, and by 
expanding the solution in powers of the operator for 
spontaneous decay. This formalism is particularly 
advantageous when the number of spontaneous 
emission is limited. We derive explicit results for the 
deflection profile in several special cases. 

2. Evolution of the density matrix 

We consider at atom in a beam, moving with uni- 
form momentum p. in the zdirection. The ground 
level and the excited level have angular momenta Jg 
and J,. The atomic beam crosses a standing wave of 
radiation with wave vector f k along the x-axis, and 
polarization a. During the interaction the atom will 
acquire momentum in the x-direction, since it will 
pick up photon momentum at spontaneous and 
stimulated transitions. We assume that the gain in 
momentum of the atom in the x-direction is suffi- 
ciently small as to make the Doppler shift R-p/m neg- 
ligible compared with the natural width A. 
Furthermore we assume that the motion of the atom 
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in the x-direction during the interaction time is small 
compared with the wavelength of the radiation. These 
assumptions imply that in the evolution of the atomic 
density matrix the commutator with the kinetic- 
energy operator can be ignored [ 131, and only the 
evolution due to the internal energy states of the 
atom, and its coupling to the radiation field remains. 

In order to study the momentum distribution of 
the atom, it is essential to evaluate the off-diagonal 
elements of the density matrix cr with respect to the 
position r of the atom. Hence it is convenient to study 
the evolution equation for the quantity 

a(r,s)=(r+$sIaIr-is), (1) 

which is still a matrix with respect to the internal 
states of the atom. The Fourier-transform of a( r, s) 
with respect to s gives the Wigner distribution func- 
tion [ 15 1. The light beam is described by a classical 
standing wave and the coupling of the atomic tran- 
sition to the field is proportional to the component 
of the reduced dipole operator D in the polarization 
direction. This dipole operator is defined by requir- 
ing the matrix elements of its spherical components 

D ,=-(Dx+iD,,)l$, D-, =(0x-iD,)l,h, 

Do=D, (2) 

to be given by Clebsch-Gordan coefficients accord- 
ing to the relation 

(UK I& V&f,) = (JJK V&g; la> . (3) 

The coupling strength is measured by the effective 
Rabi frequency 

Q=~o(~IIPII~M(~J~+ 1 )“2 , (4) 

in terms of the reduced dipole matrix element, with 
E,, the electric field amplitude at the antinodes of the 
standing wave. The component e-D of the operator 
D in the polarization direction is denoted by D. With 
these notational conventions, the evolution equa- 
tions for the submatrices of a( r, s) [ 13,14,16] are 

(~l~t)a,,=--Aa,+~~(~+Da~~-~~,D+c_), 

(a/8t)a,=Sa,+fi(d(c+D+~,,-a,Dc_), 

(alat)o,=-[fA-i(o-wo)]a, 
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+tiQ(c+Da,-o,,Dc_), 

+~iQ(c+D+a,,-a,D+c_). (5) 

Here A is the spontaneous-decay rate, o is the light 
frequency, and m. is the atomic transition fre- 
quency. The factors ck are defined by 

ct =cos[k-(rf fs)] . (6) 

The operator S describes the gain in the atomic 
ground state due to spontaneous emission, and the 
corresponding change in atomic momentum. It is 
defined by the equality [ 16 J 

S(S) o=A CM,(S) DiOmDj 9 (7) 
ij 

with Mij the elements of a Cartesian matrix (i, j=x, 
y, z), with matrix element 

Mij(s) =A(J)~ij+ [P1(0 -Pt(C)l~i~j~~2 * (8) 

The functions pt and m are transverse and longitu- 
dinal retardation factors, given by [ 161 

fi(~)=-3(cos{/~2-sin~/~3), 

P,(~)=j(sinL;l~+cosC/C2-sinfJlC3), (9) 

with (; =o,&. Note that we suppressed the argu- 
ments r and s in eq. ( 5). Furthermore the quantity 
rr,,( r, S, t) is still a matrix within the (W,+ l)- 
dimensional manifold of substates of the excited 
level, and a similar statement holds for the other 
submatrices of cr. 

The evolution equations (5) can be formally sep 
arated in the form 

(dldt)a(r, S, t) =L(r, s) a(r, s, t) 

= [Lo(r, S) +S(s)l dr, 8, 0 , (10) 

where the evolution operator Lo is defined by the 
terms in eq. (5) other than S. Hence the operator Lo 
describes the evolution of the density matrix for a 
fixed number of fluorescence photons. The operator 
L is simply a matrix for each value of r and I, and 
it contains no derivatives with respect to r and s. This 
indicates that the density matrix Q evolves indepen- 
dently for each value of r and s. This feature is a con- 



Volume 63, number 4 OPTICS COMMUNICATIONS 15 August 1987 

sequence of our assumption that free-flight effects 
and Doppler shifts are negligible during the inter- 
action time. 

The momentum distribution Z@, t) of the atom 
at time t, regardless its position r and its internal state, 
is found from a( r, s, t), after taking the Fourier 
transform with respect to s, integrating over r, and 
taking the trace over the internal states. Hence we 
write 

Z(p, t)=(27c#~)-~ s drd.r 

xexp( -iF.p/fi) Tr a(r, s, t) . (11) 

At time zero, the atom is supposed to have the initial 
momentum p in the z-direction, accordingly the ini- 
tial density matrix is 

o(r, 890) =ao(r, 8) 

= us W(r) exp( i.r*pJfi) , (12) 

with W a normalized distribution over the position 
r, and 6, specifying the normalized initial distribu- 
tion over the ground-state sublevels. 

3. Expansion of the momentum distribution 

When the number of spontaneous emissions dur- 
ing the interaction time T remains limited, it is use- 
ful to expand a(r, s, T) in powers of the decay 
operator S. As we did in a previous paper for the case 
of atoms in a travelling wave [ 161, we introduce the 
combined probabilities PN(r, s, T), which are the 
contributions to a(r, S, T) pertaining to the case of 
exactly N spontaneous emissions during the inter- 
action time T. Hence the Fourier transform of P,,, 
gives the probability distribution for the event in 
which the atom has spontaneously emitted N pho- 
tons in the interaction interval, and ends up in a 
specified internal state and momentum state at time 
T. The formal expression for PN becomes very sim- 
ple for the Laplace transform 

OD 

&(r, 8, v) = s dTexp( --VT) PN(r, s, T) , (13) 
0 

and we find [16] 

&(u)=[(u-L$YqN (u-L&’ uo , (14) 

where we suppressed the dependence on r and s for 
notational convenience. This result (14) is simply 
the Nth order term in the expansion of the Laplace 
transform of a(t) in powers of S. The momentum 
distribution (11) after the interaction time can be 
expressed as 

z(P, T) =Nro zN(P, T) 3 (1% 

where 

xexp( -is.plfi) Tr PN(r, s, T) , (16) 

is the joint probability distribution that after the 
interaction time T the atom has emitted precisely N 
photons, and ends up in the momentum p. 

We are only interested in the final distribution of 
atomic momentum in the x-direction, which is the 
propagation direction of the standing wave. Then it 
is sufficient to take the vector s in the x-direction. 
Furthermore, the initial distribution W over posi- 
tion must be very wide, since the initial momentum 
p. is well-determined. Since the operator Lo(x, s) 
with x and s the x-component of r and s is periodic 
in these variables, it is sufficient to replace the r-inte- 
gration in (11) and (16) by an integration over x 
extending over one wavelength 1= 2nlk of the radia- 
tion. The result for the Laplace transform of the dis- 
tribution (16), integrated over p,, and pz takes the 
form 

pN(p, u)=(hfi)-’ 7 dsexp(-ispifi) 
-cc 

x; dXTl-&(X,S, U) , c 
AJ 

0 

with 

(17) 

x [u-_Lo(x, s)] -‘us . (18) 

The Laplace transform of the full distribution Z(p, 
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7’) of x-momentum is again obtained, by a summa- 
tion of (17) over the photon number N. 

4. Special cases 

The general result (17 ) and (18) for the joint dis- 
tribution over momentum and photon number is 
valid for arbitrary values of the angular momenta J, 
and Jg, and for arbitrary polarization E. In order to 
arrive at explicit results, we now specialize these 
results in several explicit cases. 

4.1. J,=O, J,=I 

We first consider the case that J,= 0 and J, = 1, For 
a single polarization vector a, then only the excited 
sublevel 

le> o=e*Dlg> (19) 

is coupled to the nondegenerate ground state. Hence 
the system is effectively a two-level atom. From the 
explicit expression for Lo and S as specified in ( 5) 
we can evaluate the N-photon contribution to the 
momentum distribution in Fourier-Laplace trans- 
form, and we find 

Tr P,&G s, v) 

+$8*(c+ +c_)*(v+fA)-$iK?*(c: -cZ)}, 

(20) 

where 

+&P(C: +c?) (U+fA)}+&M2*(c: -c2) 

+&P(c: +c?) u(zJ+fA)+~Q4(C: -CT)* ) 

(21) 

and 

A=o-o, (22) 

is the detuning of the light frequency from reso- 
nance. In (20) the term p,( ks)/3 accounts for spon- 
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taneous emission. The other s-dependent factors are 
periodic in S, and represent stimulated transitions. 
The summation of (20) over N is simple, but the 
remaining Laplace-Fourier inversion is difficult, and 
we resort to special limiting cases. 

When the interaction time T is so small that spon- 
taneous emission is unlikely (AT+ 1 ), the main con- 
tribution to 2 comes from 2,. By Laplace inversion 
of (20) for N=O we find 

Tr P,(r, s, T) 

=(l/D+D_) {S*c+c_ sin(fD+T) sin(@_T) 

+ [D, cos( @+ 7) +id sin( @+ T)] 

x [D- cos( iD_ T) -i&sin fD_ T)]} , 

where 

(23) 

D+ = (A* +Q*c~+)“* . (24) 

The first term in (23) corresponds to the probability 
that the atom is in the excited state 1 e). at time T. 
In the momentum distribution Z,, this term yields a 
series of peaks proportional to S(p - mfik) with m 
odd. Likewise the remaining term in (23) gives peaks 
in Z, displaced by an even number of photon 
moments, corresponding to the probability that the 
atom is in the ground state at time T. 

Analytical results valid in two limiting cases, and 
that are known in the literature are easily recovered 
from (23). For excitation on resonance we may sub- 
stitute A=O, and we find for the momentum distri- 
bution [7] 

Z&, 7’) = 2 J&(QT/2) 6(p-mfik) , (25) 
m= --oD 

in terms of Bessel functions. The main contribution 
to Z, arises from the terms with m Q S;)T/2. For larger 
m-values, the Bessel functions become negligible. 

Another situation in which the result becomes 
simple occurs when the detuning A is large compared 
with the Rabi frequency a. Then we obtain either 
from (23) or from (20) the momentum distribution 
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Z&I, t) =,=g, J&(Q*T/8A) b(p-2mfik) . 

(26) 
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The probability that the atom is excited is small at 
all times, and only the even peaks remain. hkZ 

4.2. Jg=l, J,=O 

In the case that the excited state is non-degenerate, 
and the ground state has Jg = 1, only the state 

]g)o=&*-D+ le) (27) 

couple to the field [ 161. Spontaneous decay can occur 
to all three sublevels of the ground state, and after a 
few spontaneous emissions, the atom has decayed 
with certainty to a state in which it does no longer 
couple to the field. Hence, even in the limit of very 
long interaction times, the number of spontaneous 
emissions remains limited. The long-time limit of the 
momentum distribution is related to its Laplace 
transform by 

lim Z,(p, t) =lim &Qp, u) , (28) 
I--r03 VI0 

and a similar equation holds for p, and PN. By an 
analogous method as applied before for a travelling 
wave [ 161, we obtain the explicit result 

-6 -6 -4 -2 0 2 4 6 6 

PlRk 

Fig. 1. Momentum dlstnbutlon ot atoms with J8 = 1 and J, = 0, in 
the limit of long interaction time and low intensity. 

Then an explicit evaluation of Z&) can be carried 
out analytically. Since the result is cumbersome, we 
do not reproduce it here. It is however easy to eval- 
uate Z(p), and we plot the result in fig. 1. It is obvious 
that the peaks in the momentum distribution are now 
broadened by the photon recoil at spontaneous emis- 
sion. Surprisingly, even in this limit of low intensity, 
already the contribution from Z, contains peaks cor- 
responding to more than one stimulated transition. 

Tr P;(x, s, T-m) =O , 

Tr PN(x, s, T+w) 5. Conclusions 

+(idA)(c: -CT)] -Iv. (29) 

The factors pt and pI in (29) arise from spontaneous 
emission, whereas the factors c+ reflect stimulated 
transitions. The case of precisely N spontaneous 
emissions must correspond to N- 1 spontaneous 
decays to the state 1 g)o, which allows absorptive 
excitation back to ] e), and finally the Nth sponta- 
neous decay into a ground state orthogonal to ] g) o. 

In order to evaluate ZN(p, t-w) from (29) we 
still must take the Fourier transform with respect to 
s, and the average over x, as indicated in (17). In the 
case of resonant excitation (d=O) and moderate 
intensity (A % G?), we find that the lowest order con- 
tribution in G/A to (29) is independent of L2 and A. 

We have derived a general formalism giving the 
joint probability distribution of the momentum and 
the number of fluorescent photons for atoms cross- 
ing a standing light wave. The formal result is given 
in eq. (17), where PN as given by eq. (18) also 
describes the internal state of the atom. These formal 
results hold for any value of the angular momenta J, 
and Jg of the two levels of the driven transition, and 
for arbitrary polarization. For the case of Jg = 0, J, = 1, 
the model constitutes effectively a two-state atom, 
and our formalism gives a unification and general- 
ization of results which are known in the literature. 
For the case of Jg= 1, J, = 0, we arrive at closed 
expressions for the Fourier-transformed distribution 
over momentum and photon numbers in the long- 
time limit, where all atoms have been pumped to 
substates of the ground level that are not affected by 
the field. 
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