Isomorphisms between Predicate and State
Transformers

Marcello Bonsangue and Joost N. Kok

RUU-CS-93-09
March 1993

Utrecht University
Department of Computer Science

e0 O(“

<

© @

V\D ] Paduataan 14, P.O. Box 80.089,
7} 3

3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454



Isomorphisms between Predicate and State
Transformers

Marcello Bonsangue and Joost N. Kok

Technical Report RUU-CS-93-09
March 1993

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands






Isomorphisms between Predicate and State
Transformers

Marcello Bonsangue
CwWI .
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands .
' marcello@cwi.nl

Joost N. Kok
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

joost@cs.ruu.nl

Abstract

We study the relation between state transformers based on directed complete partial or-
ders and predicate transformers. Concepts like ‘predicate’, ‘liveness’, ‘safety’ and ‘predicate
transformers’ are formulated in a topological setting. We treat state transformers based
on the Hoare, Smyth and Plotkin powerdomains and consider continuous, monotonic and
unrestricted functions. We relate the transformers by isomorphisms thereby extending and
completing earlier results and giving a complete picture of all the relationships.
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1 Introduction

In this paper we give a full picture of the relationship between state transformers and predicate
transformers. For the state transformers we consider the Hoare, Smyth and Plotkin powerdo-
mains. We give a full picture in the sense that

* we consider algebraic directed complete partial orders (with an bottom element) (and not
only flat domains),

e we consider not only continuous state transformers, but also monotonic transformers and
the full function space,

e we do not restrict to bounded nondeterminism,

¢ we treat all the three powerdomains with or without empty set.

The first item is important when we want to use domains used in concurrency semantics. The
second and third item give more freedom in the sense that we can use these transformations
also for specification purposes without constraints on computability. Having the empty set
in a powerdomain can be important to treat deadlock. Our treatment includes the Plotkin
powerdomain. The motivation for also including full function spaces (not restricted to monotone
or continuous functions) stems a transfer lemma we have used in [BK92]. This lemma allows to
find by iteration least fixed points also for some non-monotonic functions. We will give a version
of this lemma in the section with mathematical preliminaries and hope that this lemma gives
motivation for studying the unrestricted function space.

For state transformers we use an extension of the standard powerdomains. For predicate trans-
formers we start from the (informal) classification of predicates in liveness and safety predicates
of Lamport [Lam77]. Later Smyth [Smy83] followed by [AS85, Kwi91] used topology to formalize
this classification. We use also topology for defining predicates and predicate transformers, and
obtain three kinds of them: safety and liveness predicate transformers and moreover, we con-

sider also predicate transformers with predicates that are the intersection of safety and liveness
predicates.



We prove that the Hoare state transformers are isomorphic to safety predicate transformers, the
Smyth state transformers are isomorphic to the liveness predicate transformers, and that the
Plotkin state transformers are isomorphic to the “intersection” predicate transformers. So for
the first time we are able to give a full picture of all the relationships filling several gaps that
were present in the literature.

Next we discuss how this paper is related to previous work. Powerdomains for w-algebraic
cpo’s were introduced in [Plo76], [Smy78] and [Plo81]. Our power domains are slightly more
general in the sense that we consider algebraic dcpo’s, no restriction to (Scott-) compact sets,
and we can add the empty set in all the three variants, where for the Smyth case is added
as a top element [Smy83, Plo81], in the Hoare case is added as a bottom element and in the
Plotkin case is added as an element apart, comparable only with itself and with the bottom
[HP79, MMT79, Plo81, Abr91]. Moreover we propose a variant of the Smyth power domain by
treating the empty set as an in the Plotkin case [BK92).

Predicate transformers were introduced in [Dij76]. We use a definition of predicate transiormer
that is more general because we only require monotonicity. Back and von Wright [Bac80,
vW90] use the same restriction on predicate transformers, but they consider only the flat case.
They use predicate transformers for refinement and provide a nice lattice theoretical framework.
Nelson [Nel89] has (for the flat case) used pairs of predicate transformers for giving semantics
to a language with backtracking. Smyth [Smy83] introduced predicate transformers (with the
Dijkstra healthiness conditions) for non-flat domains.

Isomorphisms between state and predicate transformers have been given for the flat case of the
Smyth power domain in [Plo79] (and for countable nondeterminism in [AP86]), for the flat case
of the Hoare power domain [Plo81]. Also de Bakker and de Roever [Bak80, RoeT76] study (from
a semantical point of view) for the flat case the relation between state transformer and predicate
transformer semantics. Moreover, for the flat case of the Plotkin powerdomain we have proposed
an isomorphism in [BK92].

For the general case of the compact Smyth powerdomain in the paper [Smy83] an isomorphism
is given for continuous state transformers. He uses a topological technique which Plotkin later
used in [Plo81] for the continuous Hoare state transformers and which we also use in this paper.
As far as we know no isomorphism was known for the non-flat Plotkin power domain (as for
example is remarked in the extended Pisa lecture notes [Plo81] and in [Smy83]). Recent work
includes an operational point of view in van Breugel [Bre93|.

2 Mathematical Preliminaries

We introduce some basic notions on domain theory and topology. For a more detailed discussions
on domain theory consult for example [Plo81], and for topology we refer to [Eng77].

Let P a partial order, z € P and A a subset of P. Define z T={ylye P A z C y} and
At=U{z T |z € A}. A set A is called upper-closed if 4 = A 7. A subset A of P is called an
w-chain if there is a enumeration To, 21, ... of the elements of A such that z; C Z;1+1 for every
i. A generalization of w-chain is the concept of directed set; A C P is said to be directed if it
is non empty and every finite subset of 4 has an upper bound in A. P is a directed complete
partial order (dcpo) if there exists a least element 1 and every directed subset A of P has least
upper bound (lub) [ | 4. A directed set A is eventually constant if | | A € A.

Clearly every directed complete partial order is a complete partial order. Their difference is a
question of cardinality since a partial order is a complete partial order if and only if it has all
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- least upper bound of countable directed sets [SP82].

An element b of a dcpo P is finite if for every directed set A C P, b C || A implies b C z for
some z € A. The set of all finite elements of P is denoted by Bp and is called base. A complete
partial order P is algebraic if for every element z € P the set {b|b € Bp A b L z} is directed
and has least upper bound z; it is w-algebraic if it is algebraic and its base is denumerable.

Let P, @ be two partial orders. A function f: P — @ is monotone (denoted by f : P —,, Q) if
for all z,y € P with z Cp y we have f(z) Cq f(y). If P, Q are two dcpo we say f is continuous
(denoted by f : P —, Q) if f(UA) = Uf(A) for each directed set A C P; moreover fis
stabilizing (denoted by f : P —,, Q) if it is continuous and for every directed set A C P f(A) is
an eventually constant directed set in Q. If f : P —, @ is continuous then f is monotone. We
say f is strict (denoted by f : P —, Q) if and only if f(Lp) =Lg; dually f is top preserving
(denoted by f : P —, Q) if and only if f(T p) = Tq. If f is onto and monotone then it is also
strict.

Let f : P — P, we denote by p.f the least fized point of f, that is, f(u.f) = p.f and for every
other z € P such that f(z) = z then u.f C z. For a monotone function [: P —, P, where P is
a dcpo, the least fixed point of f always exists and can be calculated by iteration, that is, there
exists an ordinal A such that u.f = f*, where the a-iteration of [ is defined by f* = f(|Jycq f ky
for every ordinal o [HP72]. If f is also continuous then \ < w. It can also be of interest to
consider also non-monotonic functions, at least when they are representation as quotient of some
monotonic functions between dcpo, as shown in [BK92]: let P be a dcpo and Q be a partial
order, f : P —,, P be a monotone function, A : P —, @ be an onto and continuous function and
9: @ — Q be a (possibly non monotone) function such that it is a representation as quotient of
[ with respect to A, that is, the following diagram commutes:

P f P

h * h

Q Q
g

Then for every ordinal o the a-iteration from the bottom element g% exists. Moreover, if for
each y € @ the partial order determined by A~1(y) C P is finite or has either the bottom or the
top element then the smallest fixed point p.g exists and p.g = h{u.f).

We now introduce some basic topological notions. A topology O(X) on a set X is a collection of
subsets of X that is closed under finite intersections and arbitrary unions. The pair (X, O(X))
is called topological space and the elements of O(X) are the open sets of the space X. A base of
a topology O(X) on X is a subset B C O(X) such that every open set is the union of elements
of B. The topologies on a set X form a complete lattice if ordered by inclusion, with bottom
element the trivial topology O¢(X) = {0, X} and top the discrete topology O4(X) = P(X). A
set S C X is dense if and only if X \ § contains no non-empty open sets. A Gg-set is a countable
(finite or infinite) intersection of open sets.

For example, given a partial order X y its Alezandroff topology O 4;(X) consists of all the upper-
closed subsets of X. If X is a dcpo, a finer topology of X is the Scott topology Og.(X), where
0 € Ogc(X) if and only if o is upper-closed and for any directed set S C X if | |S € o then
SNo#0.

We can describe a topology by its closed sets instead of its open sets. A subset of a set X is

4



closed if and only if it is the complement of an open set of a given topology on X. The collection
of closed sets of a topological space is denoted by C(X) and, dually to the case of open sets, is
closed under finite unions and arbitrary intersections. For every A C X there exists a closed set
c and a dense set d such that A =cnNd.

For example, given a partial order P the closed sets of the Alexandroff topology are all the lower
closed sets, while a set ¢ C P is closed with respect to the Scott topology if ¢ is lower closed
and for every directed set S C P if § C ¢ then | |S € c.

Let X be an algebraic dcpo and let O(X) be a topology on X. A subset A C X is compact in
O(X) if and only if for every collection of open sets o; € O(X) with i € I such that A C |J; o;
there exists a finite subcollection o; such that A C |J; 0;. For example A C X is compact in
04(X) if and only if it is a finite set. The intersection of a closed set with a compact one is
always compact.

A subset F C O(X) is a filter if and only if

1. Yo € F,00 € O(X): 01 C 0g = 09 € F,

2. Yoi,00 € F:01Nog € F.

A filter F C O(X) is proper if @ ¢ F (or equivalently X # F), while it is an open filter of O(X)
if F is open in the Scott topology of O(X).

3 Predicates and Predicate Transformers

A predicate P is a function from a set X to the boolean set {t, ff} or, equivalently, is a subset
of X. Topology provides an elegant way of expressing predicates of programs (see [Smy83],
[Kwig1]) in which the open sets of a topological space X are seen as the computable predicates.

Theorem 3.1 Let Bool = {tt, [f} with ff C tt. Then O4(X) is isomorphic to the set of all the
predicates from X to Bool, O 4(X) is isomorphic to the set of all the monotone predicates from
X to Bool and Og.(X) is isomorphic to the set of all the continuous (and clearly stabilizing)
predicates from X to Bool.

In this sense taking different topologies corresponds to different restrictions on the function
space. The theorem can be generalized as follows: take on the left hand side an arbitrary
topology X and on the right hand side the continuous (in topological sense) predicates from X
to Bool, where Bool is equipped with the Scott topology.

[Lam77] introduces two classes of predicates: safety and liveness predicates. In the topological
view of Smyth [Smy83, Smy] closed sets represent safety predicates while liveness predicates
are intersections of open sets. Due to computability, Smyth uses closedness under countable
intersection (such specifications are known in topology as Gs sets: countable intersections of
open sets). We take arbitrary intersections of open sets as liveness predicates. This differs from
[AS85] where liveness predicates are dense sets (the complement does not contain non-empty
open sets). In [Kwi91] liveness predicates are also Gs-sets.

In this paper we consider algebraic dcpo’s together with the Scott topology. The Scott-closed sets
are the safety predicates. The Scott-open sets of a dcpo Y represent the computable predicates
and are finitary in the sense that y € o if and only if there exists a b € By such that b € o and



b C y. In other words, a predicate P is finitary if we can test P holds for y by testing only the
finite elements smaller than y. Liveness predicates are the arbitrary intersection of Scott-open
sets (that is Alexandroff open sets).

An example might clarify this: con51der the sequence domain with the prefix ordering. Safety
predicate: always a is described by the set {z|z = a* V 2 = a“} which is Scott closed. Liveness
predicate: eventually a is described by the set {za|z € ¥*} 1 which is Alexandroff open.

Let P(Y) and P(X) be two collections of predicates on the space Y and X, respectively. We
define predicate transformers as the monotone functions from P(Y) to P(X). Another natural
restriction (besides monotonicity) in the case that Y € P(Y) is to require that a predicate
transformer must be top-preserving.

We now define a restricted version of the cartesian product on predicate transformers by requiring
monotonicity on the intersection.

Definition 3.2 Let P;(X), Po(X) be two collections of predicates on X and Q1(Y), @2(Y) be
two collections of predicates on Y. Define (P1(X) —m Q1(Y)) ® (P2(X) —m @2(Y)) as the
following subset of (P1(X) —m Q1(Y)) X (Po(X) —m Qa(Y)):

{(m,0)l V p,p' € Pi(X),q,q € Po(X):
pNgCp'ng =n(p)Np(g) Cn(p)Np(d)}

ordered componentwise.

If P(X) is a collection of predicates closed under arbitrary intersection, then a predicate trans-
former 7 : P(X) — P(Y) is multiplicative (denoted by = : P(X) —u P(Y) if and only if for
every index set I # @ and family of predicates P;, with ¢ € I, we have

W(ﬂp,-) =~
I I

(This is “intersection”-multiplicativity and not “meet”-multiplicativity.) Given a predicate
transformer 7 : P(X) — P(Y) its dual 7° : (X \ P(X)) — (Y \ P(Y)) is given by 7°(S) =
Y\7(X\S), for every S € (X \ P(X)). If P(X) is a collection of predicates closed under
arbitrary union, a predicate transformer is additive (denoted by = : P(X) — 4 P(Y)) if and only
if its dual is multiplicative.

Intuitively, multiplicative predicate transformers preserve the logical ‘v’ on predicates, while the
additive ones preserve the logical ‘3.

Now we come to the definition of safety and liveness predicate transformers used in this paper.
Definition 3.3 Let X and Y be algebraic dcpo’s. The liveness predicate transformers are
04(Y) = 04(X)
ordered pointwise by subset inclusion. The safety predicate transformers are
Csc(Y) = Ca(X)

ordered pointwise by superset inclusion



Note that we could have defined the safety predicate transformeré equivalently by the dual
O5c(Y) —44 04(X), ordered pointwise by subset inclusion.

An interesting restriction on the liveness predicate transformers is to consider only the continuous
ones with respect to directed sets S contained in the Scott topology of Y because they correspond
to finite nondeterminism [Smy83]. We denote this collection by O 4i(Y) —zim Oa(X)

4 State Transformers

In this section we give generalizations of the three ’classical’ power domains on w-algebraic
dcpo’s, the so-called Hoare, Smyth and Plotkin powerdomains ([Plo76], [Smy78] and [Plo81}).

Definition 4.1 Let X be an algebraic dcpo and A C X. Define

o A={zlVbeBx:bCz=>31,€ A:bC z},

o A*={z|(3r' € A:2'Cz) A (Vb€Bx:bCz=>3z,€ A: bC 13)}.

For every A C X we have A = A if and only if A € Cg.(X). Further A C A*, (4*)* = A*, and
A=A* & A=A1NA

Next we define the powerdomains:

Definition 4.2 Let X be an algebraic dcpo. Define

o the Hoare power domain H(X) = ({A|JAC X A A= A},Cy), where
ACH B if ACB,

o the Smyth power domain S(X) = ({A|[AC X A A= A1},Cg), where
ACs B ifAQ B,

o the Plotkin power domain P(X)

=({A|ACX A A= A*},Cp), where
ACpB ifAlCs Bt and ACq

An interesting variant of the Smyth power domain is the so called deadlock power domain
D(X) introduced in [BK92] and defined by ({A]JA C X A A= A 1},Cp), where A Cp B if
A=XV(A=B=0)v(42DB).

If we want to consider only bounded nondeterminism then we can restrict the powerdomains
above considering only those sets which are compact in the Scott topology (denoted by the
subscript comp). Since every Scott closed set of a dcpo is compact in the Scott topology we have
Heomp(X) = H(X). The standard definitions of the Hoare, Smyth and Plotkin powerdomains
are H(X),S%,,(X) and PZ,.(X), where the superscript * denotes that the powerdomains
should be taken without the empty set.

State transformers are functions (ordered pointwise) from an algebraic dcpo X to one of the
powerdomains over an algebraic dcpo Y.



5 Relations

In this section we give the isomorphisms between the state transformer and predicate transformer
domains. We start with the relation between safety predicate transformers and the Hoare state
transformers: C :

Theorem 5.1 Let X and Y be two algebraic dcpo’s. We have the following isomorphisms
between the partial orders: : .

L X = H(Y) = Cse(Y) —ur Ca(X),

2. X > HY(Y) 2 Cg(Y) —am Ca(X),
3. X —m H(Y) = Cs(Y) = Car(X),
4. X 5 H(Y) = Cs(Y) —im Cse(X)

In all cases the isomorphism is given by the function v:
v(m)(c) = {z|m(z) € c}

The function v is the generalization of the weakest liberal precondition and its inverse is given
by v X(p)(z) = N{c|z € p(c)}. Because the isomorphism is always the same we can combine
cases of the theorem (for example combining 2. and 4. we get the result of [Plo81]:

X = HY(Y) = Cg(Y) —atrr Cse(X)).
Now we relate liveness predicate transformers and Smyth state transformers:

Theorem 5.2 Let X and Y be two algebraic dcpo’s. We have the following isomorphisms
between the partial orders:

1. X 5 8(Y)=204(Y) - 04(X),

2. X = 8H(Y) 2 04(Y) —an 04(X),

3. X b d Scomp(Y) =4 OAl(Y) —etM Od(X),

4. X = S(Y) =2 04(Y) —im Oqi(X),

5. X —¢, S(Y) =2 04(Y) —im Ose(X).
In all cases the isomorphism is given by the function w:

w(m)(o) = {z|m(z) C o}

The function w is a generalization of the weakest precondition and its inverse is given by
w™(m)(z) = N{o|lz € w(0)}. Also in this case we can combine 2., 3. and 5. to obtain the

result of [Smy83]. We use stabilizing functions as counterpart of the finiteness condition of the
Scott topology. We can remove the stability condition if we consider only compact sets.

To nrove these theorems we need the following stability lemma due to Plotkin [Plo79, AP86]:
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Lemma 5.3 Let 7 : P(X) =y P(Y) be a multiplicative predicate transformer wzth P(X ) a
collection of predzcates closed under arbitrary intersection. Then

yer(p) & olyer()}Ch

for everype P(X) andy€ Y.

Finally we relate the Plotkin state transformers witl:h, pairs of safety and liveness predicate
transformers:

Theorem 5.4 Let X and Y be two algebraic dcpo’s. We have the following isomorphisms
between partial orders:

1. X =>P(Y)=(0u(Y) 2 04(X)) ® (Cse(Y) —im Ca(X))

X = PHY) 2 (0u(Y) —=am 04(X)) ® (Cse(Y) —am Ca(X)),
X = Peomp(Y) = (0a1(Y) —etmr 04(X)) ® (Cse(Y) —em Ca(X)),
X =nP(Y)2(04u(Y) =m Ou(X)) ® (Cse(Y) = Cai(X)),
X —e, P(Y) 2 (0a(Y) =in O5:(X)) ® (Cse(Y) —imr Cse(X)).

;o o e

In all cases the isomorphism is given by the function n:

n(m)(o, ¢) = ({z|m(z) 1C o}, {z|m(z) C c})
The inverse of 7 is given by

“H(m,p))(z) = (olz € (o)} n[{clz € p(c)}

To prove this theorem we need a different stability lemma:

Lemma 5.5 Let (m,p) : (P1(X) =m Qi(Y)) ® (Po(X) =p @(Y)) for Pi(X), Pa(X) two
arbitrary collection of predicates over X closed under arbitrary intersection and Q1(Y), @2(Y)
two collections of predicates over Y. Then for every y € Y, p € Pi(Y), and § € Po(Y) we
have:

1. yen(p) © N{plyen(p)}InN{aly € n(q)} C?
2. yep(q) & NMrlyen(p)}nN{gly € p(g)} € ¢

6 Conclusion and Future Work

We have given a formal definition of safety and liveness predicates and of predicate transformers,
given generalizations of the standard definitions of powerdomains and of state transformers, and
have given a complete series of isomorphisms between predicate and state transformers (including
the Plotkin state transformers). This gives us many insights in these concepts. One can say
that weakest (liberal) preconditions and state transformers are very tightly connected and not
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at all arbitrary concepts. The asymmetry between the definition in the Hoare and the Smyth
powerdomains (Scott closed versus Alexandroff open) is due to the fact that the intersection
of Scott closed sets is again a Scott closed set, while the intersection of Scott open sets is
not necessarily Scott open. Another example of an insight is that the Plotkin powerdomain is
equivalent to predicate transformers that act on combinations of safety and liveness predicates.
Further, it has been shown that monotonicity of predicate transformers is in some way necessary
and does not implies monotonicity of state transformers.

Future work includes:

e Definition of an OR between predicate transformers with a corresponding notion on state
transformers.

e Characterization of predicates that are not safe nor live nor belong to the intersection of
safe and live (and are they interesting at all?).

e Generalization of the results to arbitrary topological spaces.

e Applications of predicate transformers to non-flat domains for concurrency and communi-
cation.
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A Appendix: Some proofs

In this appendix we give the proof of the some of a selection of Theorems and Lemmas introduced
in section 5. We start by giving a proof of the two stability Lemmas.

Proof of Lemma 5.3
=) If y € () then P € {ply € 7(p)} and hence

N{rly € =(p)} < p.

< ) Since 7 is multiplicative we have

ye [ =(p)==("rly € n(p)})

yen(p)

Suppose N{p|y € 7(p)} C p. Since = € P(X) —u Q(Y) it is monotone, thus we have

y € 7((\{rly € n(p)}) C =(p),

that is y € 7(p).

Proof of Lemma 5.5
1. = ) If y € n(p) then p € {p|y € 7(p)} and hence

N{rly € 7(p)} n[{aly € p(a)} S ({ply € 7(p)} C p.

< ) Since , p are multiplicative we have

ye () n(p)==("{rly € n(p)})

yen(p)

and also

ye [ ola)=po(aly €n(9)}).

y€p(q)
Suppose N{ply € 7(p)} NN{qly € p(g)} C b, then
(ply € n(p)} [ Haly € p(0)} € 2 N[ {aly € p(0)}-

But (m,p) € (P1(X) =u Q:1(Y)) ® (P2 X) —u @2(Y)), thus we have

12



y € r(ply € 7(0)}) N p(aly € p(@)}) € (3) 0 o(Haly € p()}),
that is y € 7(p).
2. Similar as above.

a

Next we prove the Theorem 5.1. Other lemmas, necessary for this proof, are introduced and
proved. .

Proof of Theorem 5.1

51.1: X — H( Y) = Csc( Y) M Cd(X)

We need the following lemmas:

Lemma A.1 For every m € X — H(Y) the function y(m) is top preserving and multi-
plicative.

Proof: The function v(m) is top preserving since
Y(m)(Y) = {z|m(z) C Y} = X.
Let now I # 0 be an arbitrary index set and for every i € I let ¢; € Cs.(Y). If

z € N;v(m)(c;) then z € y(m)(c;), and hence m(z) C c;, for every ¢ € I. But then
m(z) € N c; and hence z € y(m)(N; ¢i)-

If, instead, z € v(m)(N; ¢;), then m(z) C N; ¢; C ¢; for every i € I. Thus z € y(m)(c:)
for every i € I, and hence z € N y(m)(¢;). a

Lemma A.2 The function v is monotone.

Proof: Let m; Ty mp, that is my(z) € my(z) for every £ € X. Thus, for every ¢ €
Csc(Y) if z € y(mg)(c) then my(z) C mp(z) C c. Therefore for every ¢ € Cs.(Y)

v(ma)(e) = {z|ma(z) C e} € {zlmi(z) € c} = 7v(m1)(c),

|

Lemma A.3 For every p € Cs.(Y) —u Ca(X) and for every z € X the function
7 (p)(z) € H(Y).

Proof: Clear, because the intersection of Scott-closed sets is again a Scott-closed set. O
Lemma A.4 The function v~! is monotone.

Proof: Let p1,pa € Cs.(Y) —em Cq(X) such that p1(c) 2 pa(c) for every ¢ € Cse(Y).
Then {c|z € p1(c)} 2 {c|z € pa(c)} for every z € X. Therefore

7 Y1) (z) = {clz € m(c)} S {clz € p2(c)} = 77 (p2)(2),
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that is v~1(01) T 77 (02)-. R o
Finally we have the required isomorphism: - '

Theorem A 5 The functwn v is an zsomorphtsm of partzal order between X - H(Y)
and Csc(Y) — M Cd(X ) with inverse the function y~*

Proof: We have shown that ~ and y~! are monotone, thus we have to prove they are
inverses of each other. :

o 7 Loy = idx-n(y)) )
Let m € X — H(Y). Then

v~ H(v(m))(z)
= { definition y~! }
Melz € (v(m))(e)}

= { definition v }
(elm(z) C c}

={ m(z) e H(Y)=Cs(Y) }
m(z)

o yoy7 = idiCg,(¥)—y Ca(X)) )
Let p € Cs.(Y) =M Ca(X). Then

Y(r~(p))(2)
= { definition v }

{zlv(0)(2) € 2}
= { definition y~* }

{zl(ele € p(c)} € 2}
= { stability lemma 5.3 }

{zlz € p(2)}
p(e).

51.2: X = HY(Y) = Cg(Y) —anm Ca(X).

It is enough to prove the following two lemmas:
Lemma A.6 Let m € X — H*(Y). Then y(m)(0) =
Proof: By an easy calculation we have

v(m)(9) = {z|m(z) C 8} = 0.
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because m(z) # 0 for every z € X. - , ' , o
Lemma A.7 Let p € Cgc(Y) —';tM Ca(X). Then v *(p)(z) # 0 for everyz € X. -

Proof: Assume 7~ (p)(z) = N{c|z € p(¢c)} = 0. Then we get following contradiction:

z € p((Yclz € 7(c)}) = p(0) = 0.

513: X -, H( Y) & Csc( Y) =M CA1(X)

We need to prove the following two lemmas:
Lemma A.8 Lev m € X =, H(Y). Then v(m)(c) € Cai(X) for every ¢ € Csc(Y).

Proof: Let z; € y(m)(c) and z; C 5. Then m(z1) Ex m(22), that is, m(z;) C m(zp) C ¢,
thus z; € y(m)(c). Therefore v(m)(c) is lower closed. o

Lemma A.9 Let p € Csc(Y) =i Car(X). Then v71(p) is monotone.

Proof: Let 7y C 2, and assume 2 € p(c). Then 71 € 2 |C p(c) € Cy(X). Thus
{c|z2 € p(€)} C {c|z1 € p(c)} and hence

77 (p)(m) = elaa € p(e)} 2 ez € p(e)} =77 (p)(m0),

that is, v (p)(21) Ea 7 (0)(22). o
5.1.4: X =, H(Y) = Cso(¥) = Cso(X).

It is enough to prove the following two lemmas:

Lemma A.10 Let m € X —. H(Y). Then y(m)(c) € Cgc(X) for every ¢ € Csc(Y).

Proof: If m is continuous then it is also monotone, thus y(m)(c) € C4(X) for every
¢ € Cg.(Y), and hence is lower closed. Let now § C X be a directed set and suppose
z; € v(m)(c) for every z; € S. Then m(z;) C ¢ for every z; € S and hence Uy es m(z;) C c.
Therefore, applying the Scott closure operator we obtain:

U m(m) = L] m(z) = m( |$)Ce

€S ;€S

because m is continuous, (.) is monotone and ¢ € Cg(Y). Thus | ]S € y(m)(c) and hence
v(m)(c) € Csc(X).

Lemma A.11 Let p € Cg(Y) =iy Cso(X). Then v~1(p) is continuous.

Proof: Since p(c) € Csc(X) € Cai(X) we have v~!(p) monotone. Thus
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L] v (0)(z:) Ea v (0)(L] S),

- z;€S

for every directed set S C X. Appling the stability lemma 5.3 we have z; € p(N{clzi €
p(e)}) = p(v~ (p)(:)) for every z; € §. But

Y o)@) € U v He)@) € U v e)@) = L] 77 e)(@) € Cael(Y),

€S €S z,€S

and thus, because p is multiplicative, and hence monotone, we have

z; € p(v" (o) (i) € p( L] 7o) (@),

€S
for every z; € S. Since p(c) € Csc(X) for every ¢ € Cs.(Y), we obtain

Vo€ Sz € p( L] v o)) = S en( L] v (0)(m))-

;€S Z;ES

Thus, applying again the stability lemma 5.3 we have

y o) 8) =NHellS e n(er € L v (p)(=),

;€S
thatis v (5)(LIS) Er Lnes 7~ (5)(#). Therefore L es 7™ (0)(@) =7 (9)(LIS). O

Next we prove Theorem 5.2 introducing other Lemmas when necessary.
Proof of the Theorem 5.2

52.1: X — S( Y) = OAI(Y) M Od(X)

We need the following lemmas:

Lemma A.12 For every m € X — S(Y) the function w(m) is top preserving and multi-
plicative.

Proof: The function w(m) is top preserving since
w(m)(Y) = {z|m(z) C Y} = X.

Let now I # @ be an arbitrary index set and for every i € I let o; € oY) If
z € N;v(m)(0;) then z € w(m)(o;), and hence m(z) C o;, for every i € I. But then
m(z) C (N 0; and hence z € w(m)(N; 0:).

If, instead, z € w(m)(N; 0;), then m(z) C N; 0; C o; for every i € I. Thus z € w(m)(o;)
for every i € I, and hence z € N w(m)(0;). a

Lemma A.13 The function w is monotone.

Proof: Let my Cg my, that is my(z) D me(z) for every £ € X. Thus, for every o €
04(Y) if £ € w(my)(o) then my(z) C my(x) C o. Therefore for every o € Ou(Y)
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w(m)(0) = {almi(z) € 0} € {alma(s) € ¢} = w(ma)(o),

O

Lemma A.14 For every m € OAI(Y) — 04(X) and for every z € X the function -
w™i(r)(z) € S(Y). '

Proof: It is enough to prove w™!(w)(z) is upper closed. Let y1 Ey %2 € Y with 1 €
w™(m)(z). Then y € N{olz € w(0)} and hence for every o € O.(Y) if z € (o) then
y1 € 0. But 0 € O4(Y), thus if z € (o) then y, € y1 1C 0. Therefore g € N{o|z €

7(0)} = w™H(m)(z). . -
Lemma A.15 The function w™' is monotone.

Proof: Let 71,73 € O4(Y) =i 04(X) such that m1(0) C ma(0) for every o € O4(Y).
Then {o|z € m1(0)} C {o|z € m2(0)} for every z € X. Therefore

w™l(m)(z) = (olz € m(0)} 2 N{olz € m2(0)} = w™ (m2) (),

that is w™1(m) Cg w™l(m). o

Theorem A.18 The function w is an isomorphism of partial orders between X — S (Y)
and O 4(Y) = O4(X) with inverse the function w™lL.

Proof: We have already proved w and w~! monotone, thus we have to prove they are
inverses of each other.

ewlow= id(x-»s(Y)) )

Let m € X — S(Y). Then
w™H(w(m))(z)
= { definition of w™! }
N{olz € (w(m))(0)}
= { definition of w }
(olm(z) € o}
= { m(z) € S(Y) which is equivalent to O 4(Y’) with the reversed order }
m(z).

o wow™ =140 4 (¥)-ryOu(x) )
Let m € OAI(Y) M Od(X) Then

w(w™(m))(d)
= { definition of w }
{zlw™!(m)(2) € 8}

= { definition of w™! }
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{lolz € ()} C 3}

= { stability lemma 5.3 }
{zlz e n(8)}

w(0).

52.2: X — S+(Y) = OAI(Y) > gtM Od(X)

It is enough to prove the following two lemmas:
Lemma A.17 Let m € X — ST(Y). Then w(m)(®) =0.

Proof: By an easy calculation we have
w(m)(8) = {z|m(z) C 0} = 0.

because m(z) # @ for every z € X. !
Lemma A.18 Let 7 € O4(Y) —an Oa(X). Then w™l(m)(z) # 0 for every z € X.

Proof: Assume w™1(7)(z) = N{o|z € 7(0)} = 0. Then we get following contradiction:

z €n([olz e n(0)}) =7(0) = 0.

5.2.3: X = Seomp(Y) 2 O0u(Y) —eenr 0a(X).

It is enough to prove the following two lemmas:

Lemma A.19 Let m € X — Scomp(Y) and let § C Os.(Y) be a directed set. Then
w(m)(U8) = Uses w(m)(o).

Proof: Let S C Ogs.(Y) be a directed set. Since w(m) is multiplicative, it is also mono-
tone, and we have

U w(m)(o) € w(m)(U 9).

o€ES

Consider z € w(m)(U ), that is m(z) € US. As m(z) is compact in O;.(Y) there exists
a finite subset S’ C S such that m(z) € US'. But § is directed, thus for every finite
§' C S we have'|JS' € S, that means there exists o € S such that US’' C o. Hence
m(z) C o and z € J,egw(m)(0). O
To prove the converse we need the following theorem which relates open filters with com-
pactness (see [IM81] and also [Smy83, Smy]):

Theorem A.20 Let P be an algebraic complete partial order. If F C O(X) is an open
filter of O(X) then (\F is compact in O(X).
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Lemma A.21 Letw€ OA;(YV) —zm O4(X). Then w™(m)(z) is compact in Osc(Y).

Proof: We prove first {0 € Os.(Y)|z € 7(0)} is an open filter:

1. Let 0, € {0 € Ogc(Y)|z € m(0)} and 01 C 02 € Ose(Y). Then z € m(01) C m(0g)-
because  is multiplicative, and hence monotone. Thus 0z € {0 € 0s:(Y)|z € 7(0)}.

9. Let 01,02 € {0 € Og(Y)lz € 7(0)}. Then z € m(01) and z € 7(02), that is
z € w(o01) N 7(02) = (o1 N 02), because = is multiplicative. Thus o N 02 € {0 €
Os.(Y)|z € (o)} : '

3. By 1., {0 € Os(Y)lz € 7(0)} is upper closed. If S is a directed set in Ogc(Y)
such that US € {o € Ogc(Y)|z € (o)}, then z € m(US) = Uoes (o) since 7 is
continuous with respect to directed sets in Osc(Y). Therefore z € (o) for some
o € S, that is, o € {0 € Os(Y)lz € 7(0)}.

Thus {0 € Os:(Y)|z € w(0)} is an open filter, and hence by theorem A.20 we have
N{o € Os.(Y)|z € m(0)} is Scott compact. Now we prove also w™(m)(z) = N{o €
O(Y)lz € m(0)} is Scott compact. Assume w™(w)(z) € Ui € Io; for o; € Osc(Y),
that is Ui € To; is a Scott cover of w~l(r)(z). Then by stability lemma 5.3 we have
z € m(Ui € To;), and hence Ui € Io; € {o € Os(Y)lz € m(0)}. But {0 € Ogc(Y)lz €
1(0)} C {0 € 04(Y)|z € m(0)} and hence

(HoeOu(Y)lze m(0)} (o€ Os.(Y)z € m(0)} C Uz € lo;.

Further, N{o € Osc(Y)lz € (o)} is Scott compact, thus there exists a finite J C I such
that

ﬂ{o € 04(Y)|z en(0)} C ﬂ{o € Os.(Y)|z € m(0)} C Ui € Jo;.

This proves w™(r)(z) is Scott compact. o
52.4: X —n S( Y) & OA;(Y) — M OAz(X)

It is enough to prove the following two lemmas:
Lemma A.22 Let m € X —m S(Y). Then w(m)(o) € O u(X) for every o € Oa(Y).

Proof: Let 7; € w(m)(o) and #; E z3. Then m(z1) Cs m(22), that is, m(22) C m(z;) C o,
thus 2, € w(m)(o). Therefore w(m)(o) is upper-closed. a

Lemma A.23 Let 7 € O 4(Y) = Oai(X). Then w~(m) is monotone.

Proof: Let z; C 7, and assume z; € m(0). Then 2, € . 1C w(0) € O4(X). Thus
{o|z; € w(0)} € {olz2 € 7(0)} and hence

wi(m)(a1) = {olz € 7(0)} 2 [Holaz € 7(0)} = wH(m)(22),

that is, w=1(7)(z1) Cs w™H(7)(22)- ]

5.2.5: X s S( Y) = OAz(Y) —M OSC(X)

It is enough to prove the following two lemmas:
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Lemma A.24 Let m € X —, S(Y). Then w(m)(0) € Osc(X) for every o € 04(Y).

Proof: If m is continuous and stabilizing, then it is also monotone, thus w(m)(o) €
0 4(X) for every o € O4(Y). Let now § C X be a directed set and || S € w(m)(o).
Then m(l|S) = U,,es m(2i) o because m is continuous. But it is also stabilizing, thus
there exists z; € S such that m(lS) = Uses m(z) = m(zx) C o, that is, 7 € w(m)(o).
" This proves w(m)(0) € Osc(X). a

The following example shows the condition of m to be étabilizing is necessary in order to
have w(m)(0) € Os.(X) for 0 € Ou(X):

Example: Let X = {z;]i € N}U {z,} ordered by z; Lx %; if and only if 1 < j or j = w,
andlet Y = {yfi € N}uU{yw, L} ordered by y; Ex if and only if y; =1 or y; = ¥;.
Define m: X —.8(Y) by

m(z.) = {4}
m(zn) = {w}U{nli € N\{0,...n}},

for every n € N. Then

m(zo) 2 m(z) 2 ... 2 m(%w) = m( |=) = || m(z).
Thus m is continuous, but not stabilizing. Consider {y.} € O a(Y) and we have:

w(m)({w}) = {zlm(z) € {w}} = {z.} & Osc(X),
even if {z,} € O 4(X).

Lemma A.25 Letm € O4(Y) = Ose(X). Then w~1(x) is continuous and stabilizing.

Proof: Since m(0) € Ogc(X) € O4(X) we have w~!(m) monotone. Thus

|| wi(m)(@) s w0 (m(LS),

z;€S
for every directed set S C X. Consider y € L;es wl(m)(z;) = Nw™(m)(z:) then
Vz; € S,Vo € O4(Y): z; € (o) = y € 0.

But if | | S € 7(0) then there exists zx € S such that z; € 7(0) because it is Scott open.
Hence by above we have:

Vo € OAI(Y):US € 7(0) = Jzx € m(0) > y € 0.

Hence y € N{o| U S € 7(0)} = w™ (7)(LI S), that means W)U S) 2 Uges w™H{m)(zi),
or equivalently w=1(7)(Ll §) Es Ugesw ™ (m)(z). It remains to prove that w™(r) stabi-
lizes for every directed set S C X. By stability lemma 5.3 we have || S € 7(N{o|US €
7(0)}). Hence there exists zx € S such that z; € m(N{o|US € m(0)}) because it is Scott
open. Hence again by stability lemma 5.3 we obtain

T) € w(ﬂ{ol |__|S e n(0)}) = ﬂ{olxk e (o)} C ﬂ{ol LIS € (o)}

that is, w~L(m)(US) Cs w™*(n)(zm) for some z; € §. But w~1(m) is monotone, and
i C LIS, thus w™()(zk) Es w(7)(Ll S) and hence wl(m)(z) = w™H{m)(U S). m]
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Finally we prove only the first item of the Theorem 5.4. The other items are a combination of
the results of the Theorem 5.1 and Theorem 5.2 and are left to the reader.

Proof of Theorem 5.4

In this part of the appendix we only prove only the first item of the Theorem 5.4. The other
items are left to the reader and are just a combination of the results of the Theorem 5.1 and
Theorem 5.2. Other lemmas, necessary for this proof, are introduced.

5.4.1: X — 'P(Y) = (OAI(Y) —M Od(X)) X (CSc( Y) M Cd(X))

We need the following lemmas:

Lemma A.26 Let m: X — P(Y). Then

1. m(m) € Ou(Y) —im Oa(X),
2. ng(m) . Csc( Y) — M Cd(X),
3. for every 01,09 € O4(Y) and for every c1, c2 € Cs(Y) we have
o NeCoanes = m(m)(or) Nm(m)(er) S m(m)(o2) Nma(m)(ca).

Proof:

1. Similar to Lemma A.12.
2. Similar to Lemma A.l.
3. Let 01,00 € Oq(Y) and ¢1,¢2 € Csc(Y) such that o1 N ey S 02N €2 Then
m(m)(o1) N m2(m)(c1)
= {definition of 7 = (1, 72) }
{z|m(z) 1€ o1} N {z[m(z) € &}

{z|m(z) 1€ 01 A m(z) C el

{z|m(z) T Nm(z) C a1 N e}

{z|m(z) C o1 N1}

But m(z) CoyNep CoaNee C o, implies m(z) TC 02 and also m(z) Co1Nec €©
0o N cp C ¢y implies m(z) C ¢y, thus {zg}m(z) CorNe} C {z|m(z) 1C 02} and also
{z|m(z) C o1 N1} € {z|m(z) C ez}, that is

m(m)(o1) Nnz(m)(02)

{z|m(z) €<1 Ner}

N

{a|m(z) 1€ 02} N {zIm(z) € e2}
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m (m)(02) N na(m)(cz2)- "

Lemma A.27 The function n is strictly monotone.

Proof: Let us prove first 7 is monotone. Let my Ep ma, that is my(z) 12 me(z) T and
my(z) € me(z). Thus, for every o € 0 4(Y) we have

m(my)(0) = {zlmi(z) 1C 0} C {&lma(2) 1C 0} =m(m2)(0),
and for every ¢ € Csc(Y)
m(ma)(c) = {alma(z) C ¢} € {elmu(z) € e} = m(mi)(c),

that is (n1(ma),72(m1)) EN (m(me), n2(m2))-

Suppose now m; Zp mg. Then there exist an z € X such that mi(z) 12 mp(z) T or
my (z) € me(z). But my(z) T€ 04(Y) and ma(z) € Cs(Y), thus we have

m(my)(ma(z) 1) = {glm1(z) 1€ mi() 1} € {alma(z) 1€ mi(2) 1} = m(ma)(mi(2) 1),

or

na(mz)(ma(z)) = {o|ma(@) C ma(@)} € {slm(z) € ma(@)} = me(m1)(mala)).

O

Lemma A.28 For every (m,p) € Oq(Y) = 04(X) ® (Cse(Y) —m Ca(X)) and for
every z € X the function n~'((7,0))(z) € P(Y).

Proof: We have to prove that n~2((m, p))(z) is *-closed. By definition of * we have
7Y ((m,p)(z) € (0™ ((m, p))(2))"-
Let y € (n~1((m, p))(z))*. Then by definition
@y en((mp)(z): §Cy) A (YoEBy :bCY =3 € n((m, p))(x) : b T ve)-
Using the definition of n7!((7, p))(z) we obtain
Vo€ O4(Y):z€m(o)=>FEo,
and also
Ve € Cso(Y):z € p(c) =y € c.
But y € § 1C 0 as 0 € O4(Y) and hence
Voe Oy(Y):z€m(o)=>yEo,

22



that is y € N{olz € n(0)}. Moreover b' C y3 implies b’ € ¥ LC ¢ because ¢ € Cs.(Y),
hence ‘ '

Ve € Cse(Y):z € p(c) A bCy=>bec.
But Y is an algebraic dcpo, hence y = LI{b|b € By AbCy ¥} and all these finite elements

are elements of ¢. Since ¢ is Scott closed we obtain y = LI{s|b € By A bEy y} € ¢
This means y € (Y{c|z € p(c)}. Therefore :

y € (olz € ()} N elz € ()} =17 (@)-

]
Lemma A.29 For every ACY,0€0y(Y) and c € Cs.(Y) we have
1. ATCo& ACo,
2. ACc& ACec.
Proof: Trivial. o

Finally we have the required isomorphism:

Theorem A.30 The function 7 is an isomorphism of partial order between X — P(Y)
and (O4(Y) =M 04(X)) ®(Csc(Y) =M Cu(X)) with inverse the function nt.

Proof: We have already proved n strictly monotone thus we have to prove that n~! is the
inverse of n = (M, M2)-

o n~ton=idx_p(y) )
Let m € X —» P(Y). Then

0~ (m(m), m(m))(z)
= { definition of ™ } o
N{olz € (m(m))(0)} Nelz € (ma(m))(c)}
= { definition of n }
N{olm(z) 1€ o} N[ {cIm(z) < ¢}

m(z) 1 Nm(z)
= { because m(z) is *-closed }
m(z)

o non~! = id(0 (V)= a0 2(XNB(Cse(¥) 12 Ca(X)) )
Let (m,p) € (Oa(Y) = 04(X))® (Cse(Y) —im C4(X)). Then

n(n~*(m,))(5,2)
= { definition of n }

{zln~(x, p)(z) C 6}, {zln~" (7, p)(z) C &})
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= { definition of 77! } .
({zl(N{olz € T(0)} N Nelz € p(c)}) 1€ 0},
 A{el(N{olz € x(0)} NN{clz € p(c)}) S 2})
= { Lemma A.29 } | . '
({zIN{olz € (o)} NN{clz € p(c)} € 8},
{ziN{olz e n(0)}NN{clz € p(c)} S 2})
= { stability lemma 5.5 } '

({alz € n(8)}, {alz e 7(@)})

(m(8),7(2)).
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