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Sparse Arrangements and the Number of Views
of Polyhedral Scenes*

M. de Berg! D. Halperin? M. Overmars' M. van Kreveld'

Abstract

Given a collection of n low-degree algebraic surface patches in 3-space with the prop-
erty that any vertical line stabs at most k of them, we wish to determine the maximum
combinatorial complexity, D(n, k), of the entire arrangement that they induce. We show
that D(n, k) = ©(n%k). We extend this result to collections of hypersurfaces in 4-space
and to collections of (d— 1)-simplices in d-space. We apply these results to obtain upper
bounds on the maximum number of views of a polyhedral terrain consisting of n edges
and vertices. Our bounds are O(n*)4(n)) for views from infinity and O(n”Ay(n)) for
perspective views, where A4(n) is a near-linear function related to Davenport-Schinzel
sequences. Furthermore, we show that these bounds are almost tight in the worst case.

In the special case of an arrangement of k convex polyhedra having a total of n
faces, we show that the worst case complexity of the arrangement is ©(nk?). For the
number of views of a collection of k convex polyhedra with a total of n faces, we show
a bound of O(n*k?) for views from infinity and O(n®k?3) for perspective views.

1 Introduction

In this paper we study several instances of the so-called aspect graph problem, which has
recently attracted much attention, especially in computer vision. Aspect graphs are often
studied in the context of three-dimensional scene analysis and object recognition. The
complexity of an aspect graph is determined by the number of combinatorially different
views of a scene. To bound this number, we investigate arrangements of curves and of
surfaces that have a certain sparseness property.

1.1 Background

At a high level, the aspect-graph! problem can be formulated as follows: Given a three-
dimensional scene consisting of one or more three-dimensional objects, how many qualita-
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tively different two-dimensional images can the scene induce and how efficiently can one
compute and represent a partitioning of the viewing space into maximal connected portions
having the same view each. A concrete instance of the problem is specified by determining
(i) the type of objects in the scene; (ii) the viewing space; and (iii) what makes a pair
of images of the scene qualitatively different. Koenderink and van Doorn introduced the
notion of aspect graphs more than a decade ago [12],{13]. Since then, aspect graphs have
attracted a lot of interest, mainly in the computer vision community, e.g., [4], [5], [11], [14],
[21], [22]. We also mention the works of Plantinga and Dyer [16] and of Gigus et al. [9] that
have a computational geometry flavor.

Here we give the basic terminology needed in the sequel. For a broader introduction
and a survey of recent research on aspect graphs see, e.g., [3], from which we borrow most
of the subsequent terminology. In this paper, we restrict ourselves to polyhedral scenes,
where every face of an object is flat and any induced image of an object is a straight line
drawing. We will consider two types of viewing spaces. One is views from infinity which
can be modeled by the viewing sphere or sphere of directions (a view from infinity is also
called an orthographic view). Conceptually, we place a very large sphere centered at the
origin around our scene, and each point on the surface of the sphere represents the direction
of view from that point towards the origin. For every direction, the view of the scene is the
result of an orthographic (parallel) projection of the visible portions of the objects in the
scene onto a plane far from the scene. The other, more general model of viewing space is
where we allow the viewing point to be anywhere in the 3D space of the scene, and a view
from a point p is the perspective projection of the scene as seen from p. (The perspective
view of a scene from a point p can be illustrated by considering an infinitesimally small
sphere s centered at p, onto which the scene is projected.)

A fixed view of the scene can be regarded as a planar straight edge arrangement consist-
ing of faces, edges and vertices. We consider two views to be the same if the combinatorial
structure of their respective arrangements is the same. We wish to partition the viewing
space into maximal connected regions such that inside one region all the views are the
same (these will be referred to as general viewpoints) and as we cross from one region to
the other the view changes. Thus, for views from infinity, we aim to partition the sphere
of directions into maximal faces of general viewpoints separated by critical curves, which
represent accidental viewpoints. For perspective views we aim to partition the entire space
of the scene into maximal connected 3D regions having the same view and separated by
critical surfaces.

The term aspect graph originates from a certain representation of the viewing space as
a discrete graph where each node of the graph represents a maximal connected component
of the space having the same aspect (or view). Plantinga and Dyer [16] have shown that
the maximum number of views of a convex polyhedron with n vertices is ©(n?) for views
from infinity and ©(n3) for perspective views. Later, it has been shown that for a general
polyhedron, or more generally, for a collection of n non-intersecting triangles in space, the
maximum number of views can be as high as ©(n®) for orthographic views and O(n®) for
perspective views [17]. Snoeyink [20] has shown that even if we restrict the objects to be



axis-parallel polyhedra, the bound for orthographic views remains ©(n®).

1.2 Summary of Results

In this paper we study two instances of the aspect-graph problem where better bounds
can be shown: (i) The case where the scene consists of a polyhedral terrain with a total of
n edges; and (ii) where the scene consists of & convex polyhedra with a total of n edges.
A polyhedral terrain is the graph of a piecewise-linear (polyhedral) continuous function
z = F(z,y) defined over the entire zy plane. Cole and Sharir [8] have studied a variety of
visibility problems for polyhedral terrains, and showed that the maximum number of distinct
views when the viewpoint moves along a fixed vertical line is considerably smaller than the
number of distinct views when the viewpoint moves along a line in any other direction. To
bound the overall number of views of a polyhedral terrain, we need additional machinery
and we consider a special type of arrangements. An arrangement of surfaces in d-space is
the partitioning of d-space induced by a collection of surfaces. Arrangements play a central
role in computational geometry, and the analysis of many geometric algorithms relies on
the complezity of an arrangement or of portions of an arrangement. The complexity of an
arrangement of surfaces in 3-space, for example, is the overall number of faces of dimensions
0,1,2 and 3 in the partitioning of space induced by these surfaces. We obtain the following
result which we believe to be of independent interest (Proposition 2.3):

Given a collection of n low-degree algebraic surface patches in three-dimensional
space such that every vertical line stabs at most k£ of them, k£ > 1, the arrange-
ment induced by these surface patches has complexity ©(nk).

This generalizes and improves a result by Sharir [19], who gives an O(n%ka(n/k)) bound for
the case of triangles?. We generalize the result even further to collections of hypersurfaces in
4-space and collections of (d — 1)-simplices in d-space with a low ‘vertical stabbing number’.

Using the above result and an analogous result in the plane we show that the maxi-
mum number of views of a terrain with n vertices is O(n*Ay(n)) for views from infinity
and O(n7\4(n)) for perspective views, where Ay(n) is a near-linear function related to
Davenport-Schinzel sequences, A4(n) = O(n2*(") [1). Furthermore, we show that these
bounds are almost tight in the worst case. We also investigate arrangements of k convex
polyhedra having a total of n faces—where any line stabs only 2k faces—and we obtain an
improved and tight bound ©(nk?) on the maximum complexity of such an arrangement.

Finally, we study another instance of the aspect-graph problem where the scene consists
of k opaque convex polyhedra having a total of n faces. This time we show that the number
of curves (or alternatively surfaces) determining the partitioning of the view space is only
O(n%k) (instead of ©(n3) in the general case) and thus we obtain a bound O(n*k?) on the
maximum number of views from infinity and O(n®k3) for perspective views.

The paper is organized as follows: In Section 2 we derive a collection of combinatorial
results concerning sparse arrangements in two-, three- and higher dimensions. We then

2Here and throughout the paper, a(n) is the extremely slowly growing functional inverse of Ackermann’s
function.



apply some of these results, in Section 3, to obtain near-tight bounds on the maximum
number of views of polyhedral terrains. In Section 4 we consider arrangements of convex
polyhedra. In Section 5 we bound the number of views of collections of convex polyhedra.
Some concluding remarks and open problems are presented in Section 6.

2 Arrangements of Surfaces with Low Vertical Stabbing
Number

This section deals with arrangements of surfaces where any vertical line intersects only a
subset of them. In Subsection 2.1 we obtain several combinatorial results for the three-
dimensional case that we will be using in the next section. In Subsection 2.2, we extend
these results to arrangements of hypersurfaces in 4-space and to arrangements of (d — 1)-
simplices in d-space, for any fixed d.

2.1 Combinatorial Analysis

We start with the easier case of arrangements of curves in the plane and then proceed to
handle arrangements of surfaces in 3-space.

Consider an arrangement of n simple curves in the plane, where a pair of curves intersects
at most s times for some constant s. The maximum complexity of the entire arrangement
in such a case is clearly ©(n?). We are interested in arrangements of curves that have the
additional property that every vertical line intersects at most k of the curves. The following
result has been previously obtained by several authors (we are aware of a simple and tight
bound by Pach, and an almost tight bound by Sharir—both can be found in [19]). We
present another simple proof that gives a tight bound. Later we will use a generalization of
it for the three-dimensional case.

Lemma 2.1 Given a collection of n Jordan arcs in the plane, where every pair intersects
at most a constant number of times and any vertical line stabs at most k of the arcs, then

the mazimum complezity, B(n,k), of the partitioning of the plane induced by these curves
is O(nk).

Proof. Partition the plane into n/k vertical slabs such that each slab contains at most
2k endpoints of the curves. Inside each slab we have at most 2k curves: We consider
the intersection of a curve with the vertical boundary of the slab as an endpoint; we thus
have at most 4k potential endpoints at our disposal—2k inside the slab and 2k on its
boundaries, therefore we can “pay” for at most 2k curves. Hence, there are at most O(k?)
intersection points inside each slab. The total number of intersection points is therefore
n/k - O(k*) = O(nk). The number of intersection points obviously serves as an upper
bound on the complexity of the arrangement.

The lower bound follows from the lower bound in Proposition 2.4 with d = 2. 8]



Next, we consider arrangements of algebraic surface patches (2-manifolds with bound-
ary) in three-dimensional space. We assume the surface patches that we deal with to be
algebraic of maximum degree b, where b is a small constant. Also we assume that the
boundary of each surface patch consists of a small constant number of algebraic curves, all
of maximum degree b. There are a few ways to extend the two-dimensional problem to the
three-dimensional case. A straightforward extension is the following:

Lemma 2.2 Given a collection of n low-degree algebraic surface patches in 3-space such
that every plane parallel to the yz plane intersects only k of them, then the mazimum
complezity, B'(n,k), of the entire arrangement induced by these surface patches is O(nk?).

But for our purposes (as will be discussed in the next section) we need a different
extension whose proof requires the use of a more powerful divide-and-conquer technique.

Proposition 2.3 Given a collection of n low-degree algebraic surface patches in three-
dimensional space such that every vertical line stabs at most k of them, k > 1, then
the mazimum complerity, D(n,k), of the arrangement induced by these surface patches

is ©(n?k).

Proof. First we decompose each surface patch into a constant number of surface patches,
with the property that any vertical line intersects any patch in at most one point. We
denote the resulting collection of surface patches by S. Then we project the boundaries of
the patches onto the zy-plane. This gives a set C of O(n) low-degree algebraic curves.

Next, we use random sampling (see [7]) to control the divide-and-conquer process. We
choose a sample of curves R C C of size r, and consider the arrangement A(R), which
admits a vertical decomposition into m = O(r2) faces f1, f2,..., fm- Let n; be the number
of curves in C crossing the face f;. ;From the analysis of Clarkson and Shor (7], it follows
that for any fixed integer v > 0, there is a sample R C C of size r for which the following
holds:

m
Y ¥ = 0(r?(n/r)"). (1)
i=1
We choose a sample R of size r for which ™, n3 = O(n3/r). Consider one face f; in the
decomposed arrangement and let S; be the subset of surfaces of S whose projection onto
the zy plane fully contains the face f;. Let Sz be the subset of surfaces of § for which the
projection of their 1D boundary crosses f;.
By the assumption of low vertical stabbing number, we know that |S;| < O(k). By
definition |S2| = n;. Therefore, the complexity of the arrangement above the face fiis
O((k + n;)3). Hence

D(n,k) = O(i(k +n;)%) = O(f:(ls:3 + k2n; + kn? 4+ nd)).

i=1 =1

It can be easily verified, that if Equation (1) holds for a certain v, then it also holds for any
p, 1 < p < v (by using Holder’s inequality [10], for example). Therefore, "2, n? = O(n?)
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and 3", n; = O(nr). Choosing r = } leads to the desired bound
D(n, k) = O(n?k).

That the bound is tight follows from the lower bound in Proposition 2.4 with d = 3. O

Obviously, if £ = 1, then the surfaces are pairwise disjoint and therefore the complexity
of the entire arrangement is ©(n). See also Remark 2.5 below.

2.2 Extension to Higher Dimensions

The proof of the previous results relies on “good” partitioning schemes in (d—1)-dimensional
space. Such partitionings are available for arrangements of simplices in any dimension and
for arrangements of low-degree algebraic surfaces in 3-space.

Proposition 2.4 Given a collection of n (d — 1)-simplices in E? for a fized d, such that
any vertical line (i.e., a line parallel to the X4 azis) stabs at most k of them, then the
arrangement induced by these simplices has mazimum complezity O(n?~1k). Furthermore,
this bound is tight for k > d — 2.

Proof. Project the simplices onto the hyperplane Xy = 0 and construct a (1/r)-cutting?
of size O(r9-1) for the projected objects (see [15]). Taking r = n/k we can bound the
complexity Dg(n, k) of the entire arrangement as follows:

Dy(n, k) = O(+% 1 (k + n/r)?) = O(n? k).

For the lower bound, construct a “grid” made of n (d — 2)-simplices on the hyperplane
X4 = 0 that has complexity Q(n4-1). Extend each (d — 2)-simplex in the X, direction into
a “long” (d — 1)-simplex. Finally, cut the resulting (d — 1)-simplices by additional k —d + 1
(d — 1)-simplices, all parallel to the hyperplane X4 = 0. 0

Remark 2.5 The reason why the above lower bound holds only for k > d — 2 is that the
grid of the construction has edges parallel to the Xg-axis each of which is the intersection

of d — 1 (d — 1)-simplices. Consequently, the grid itself requires that the vertical stabbing
number be at least d — 1.

Proposition 2.6 Given a collection of n low-degree algebraic hypersurfaces in four-dimensional
space such that every vertical line (i.e., a line parallel to the X4 axis) stabs at most k of
them, the arrangement induced by these surfaces has complezity O(n3k B(})), where B(-) 1s

an eztremely slowly growing function. Moreover, for k > 2, the complezity can be as large

as Q(n3k).

3Given a set S of n (d — 1)-simplices in E?, a (1/r)-cutting for S is a collection Z of (possibly unbounded)
closed d-simplices which together cover E¢ and such that the interior of each simplex in E is intersected by
at most & (d — 1)-simplices of S. For more details, see, e.g., [15].

*The function 8(n) is defined in [6]: B(n) = 2*(")°, where c is a constant depending on the degree of the
surfaces that are the projection of the original hypersurfaces onto the hyperplane X, = 0.



Proof. The proof is similar to the proof of Proposition 2.3, and it uses random sampling
and the stratification scheme of Chazelle et al. [6]. The lower bound follows from the lower
bound of Proposition 2.4 for the case d = 4. ]

3 The Number of Views of Polyhedral Terrains

In this section we apply the results of the previous section to obtain upper bounds on
the number of views of polyhedral terrains when viewed from infinity or from anywhere in
3-space. We also show that our bounds are almost tight in the worst case.

A polyhedral terrain is the graph of a piecewise-linear (polyhedral) continuous function
z = F(z,y) defined over the entire zy plane. We assume that the graph has n edges. Since
the projection of the terrain onto the zy plane is a planar map, the number of vertices
and faces of the polyhedral terrain is O(n). Cole and Sharir 8] study a variety of visibility
problems for polyhedral terrains. In particular, they consider the number of views of a
terrain when the viewpoint is restricted to move along a given vertical line. We will be
using their result, which we now state (in a slightly modified manner):

Theorem 3.1 (Cole and Sharir [8]) The mazimum number of different views of a polyhedral

terrain with n vertices when the viewpoint moves along a given vertical line is O(nA4(n)),
that is O(n?22(")).

We extend this result to larger view spaces. In the following subsection we handle the
views from infinity and in Subsection 3.2 we deal with perspective views.

3.1 Views from Infinity

To bound the number of views from infinity we partition the sphere of directions into max-
imal connected components such that the view from any two points inside one component
is combinatorially the same. Our goal is to obtain a bound the maximum number of these
components. The partitioning is induced by certain curves. There are three types of these
curves: One type is defined by the plane through a face of the terrain—this curve is a circle
on the sphere of directions which is the intersection with the plane through the center of the
sphere of directions, that is parallel to the face. Another type is defined by a vertex-edge
pair of the terrain. It is also a circle on the sphere of directions resulting from intersecting
the sphere of directions with a plane through the center that is parallel to the plane that
passes through the vertex and the edge. The third type is a curve describing the union
of directions of lines that pass through the same three edges of the terrain. (See [9] for a
detailed study of these curves.) By definition, there are O(n) curves of the first type, O(n?)
curves of the second type and O(n3) curves of the third type. These are all algebraic curves
of low degree. An immediate, naive bound on the number of different views is O(n®) which
is the maximum number of faces in a partitioning of a plane (or a sphere) by O(n3) curves,
each pair of which does not intersect more than some constant number of times. But for a
polyhedral terrain, we can obtain an improved bound.



We assume, without loss of generality, that the terrain has a minimum z-value z = 2.
We fix the center of the sphere of directions to lie on the plane z = 2o and so we are only
interested in the upper hemisphere. It is not difficult to see that in terms of views from
infinity, Theorem 3.1 can be rephrased to give the same bound on the maximum number of
views when letting the viewpoint move along a fixed meridian on the sphere of directions.
This implies that as we move the viewpoint along the meridian, although there are O(n?)
curves on the sphere, it does not cross more than O(nA4(n)) curves on its way. Noting that
a meridian to the hemisphere is like a vertical line to the plane, we may employ Lemma 2.1
when the total number of curves in this case is O(n3) and the “vertical” stabbing number
is O(nAg(n)). This proves the upper bound in the next theorem. Anticipating the lower
bound result that we give below, we have:

Theorem 3.2 The mazimum number of combinatorially distinct views of a polyhedral ter-
rain with a total of n edges, when viewed from infinity, is O(n*A4(n)). Moreover, the number
of views can be as large as Q(n3a(n)).

Our approach to designing lower bound constructions for the number of views consists of
building a separate construction for every degree of freedom of the viewpoint such that when
fixing one degree of freedom, all the views for the other degree(s) of freedom are attainable.
Thus, the number of views of the whole construction is the product of the number of views
for each degree of freedom. (This approach will be further exemplified in Section 5.)

For views from infinity, we may regard our viewpoint as moving on the sphere of di-
rections, that is, it has two degrees of freedom. Since our construction will use viewpoints
belonging to only a certain portion of the sphere of directions, we may alternatively think
of our viewing space as represented by a vertical plane placed far away from the scene.
Using this plane as our viewing space model, we can employ terms like nearer to or further
away from the viewpoint space. In this model, the equivalent of a meridian of the sphere
of directions is a vertical line on the viewing plane. The equivalent of a parallel of latitude
(the intersection of a plane parallel to z = 0 with the sphere of directions) of the sphere
model, is a horizontal line on the viewing plane. We will be using both models alternately.

One construction, for walking up and down a vertical line on the viewing plane, we
adapt from [8] (see Figure 1): We take n segments whose upper envelope complexity is
Q(na(n)) (as in [23]). These segments are put on parallel vertical planes (parallel to our
viewing plane) and a thin wedge is drawn downwards from each of them. Further away
from the viewing plane we construct a “hill” consisting of parallel horizontal slabs. We take
the horizontal edges of the hill to be parallel to the viewing plane. The upper envelope of
the thin wedges is constructed such that when moving the viewpoint up a vertical line, the
last time a vertex of the upper envelope coincides with an edge e of the hill is before the
first time a vertex of the upper envelope coincides with the edge lying immediately below
e on the hill. Thus, while moving up a vertical line, we get Q(n?a(n)) different views. We
call the above construction the vertical construction.

The second construction, the horizontal construction, is for walking along a horizontal
line on the viewing plane. This construction is an adaptation of a part of a construction by



Figure 1: A construction with Q(n2a(n)) different views when moving vertically

Canny [17] for the lower bound for the number of views of arbitrary polyhedra. Far from
the viewing plane we construct a hill similar to the previous one, only this time the edges
defining the hill are slanted. See Figure 2. Before the hill, nearer to the viewing plane, we
construct a collection of n pyramids in a row which we denote by S. So far we have created
a slanted grid—for a fixed view, a vertex of the grid is created by the intersection (of the
projection) of a visible edge of a pyramid and an edge of the hill. Finally, farther from the
grid and nearer to the viewing plane we construct a collection of » almost flat prisms which
we denote by S’. When viewed from our viewing plane, the prisms of S’ resemble wide
rectangles, and every edge of a prism that extends from the horizontal plane upwards is
very steep, almost vertical. The distance between the adjacent quasi-vertical edges of two
neighboring prisms is chosen to be very small. The distances are chosen such that when
we move the viewpoint on a horizontal line, we see all the intersection points of the grid
through one interval between a pair of prisms of S’, before we see any other intersection
point of the grid through another interval between another pair of prisms of 5’. Consider
one such interval between a pair of prisms of S’. The edges that define this viewing “crack”
are almost vertical, whereas the edges of the pyramids have a smaller slope. As we move
the viewpoint horizontally, each vertex of the grid will coincide with the say, left edge of
the interval at a different viewpoint, inducing Q(n?) different views for one interval. Since
there are Q(n) distinct intervals between adjacent prisms, we get Q(n?) distinct views when
moving on a horizontal line.

If we choose the proportions of the two constructions (the horizontal and the vertical)
carefully—in particular we make the hill in the vertical construction sufficiently long and
the pyramids and prisms in the horizontal construction sufficiently high—then when fixing
one degree of freedom of the viewpoint we can achieve all the views for the other degree of
freedom. Therefore, in total the number of views of a polyhedral terrain when viewed from
infinity can be Q(n®a(n)) in the worst case.



Figure 2: The horizontal construction for a polyhedral terrain, with Q(n%) views

Recall that A\4(n) = ©(n22(") [1], thus there is only a small gap between the lower and
upper bounds that we have shown.

3.2 Perspective Views

For perspective views the viewpoint may be anywhere in 3-space. The surfaces that we have
previously used to define curves on the viewing sphere now serve to partition the space into
maximal connected (three-dimensional) cells where the perspective view does not change.
By the same arguments as for views from infinity we have O(n?) such surfaces. Theorem 3.1
implies that when we let the viewpoint move along a fixed vertical line, it does not cross
more than O(n\4(n)) of these surfaces. This is an upper bound on the vertical stabbing
number of the arrangement of O(n3) surfaces. Plugging these quantities into Proposition 2.3
we get the upper bound in the next theorem.

The lower bound construction is similar to the construction of the previous subsection.
In fact, we start with the same construction as for orthographic views, and for the extra
degree of freedom that we now have, we use a displaced duplicate of the Q(n®) construction
that induces changes in view as the viewpoint moves forwards or backwards. This results
in a scene with Q(n8a(n)) different views.

Theorem 3.8 The mazimum number of combinatorially distinct perspective views of a

polyhedral terrain with a total of n edges, is O(n”A4(n)). Moreover, the number of views
can be as large as Q(nBa(n)).
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4 Arrangements of Convex Polyhedra

We next study arrangements defined by a collection of convex polyhedra in 3-space. These
arrangements have the special property that a line in any direction stabs only a subset of
the surfaces. Note that we consider the interior of each polyhedron as a portion of the
arrangement. We prove the following theorem®

Theorem 4.1 The mazrimum complezity of an arrangement induced by k convez polyhedra
with a total of n vertices is ©(nk?).

Proof. For the upper bound, note that the set S of k convex polyhedra has stabbing number
2k in any direction. Consider a segment f N g for f, g faces of polyhedra in S. Then, either
an edge ey of f intersects g, or an edge e, of g intersects f. By the stabbing property, each
edge intersects at most 2k faces and hence there are at most 2nk segments f N g, over all
faces f,g of all the polyhedra in S. Using the stabbing property once more, we see that
each segment f N g is intersected by at most 2k faces, and the upper bound follows.

To see that this bound is tight in the worst case, assume k¥ < n/3 and take a convex
polygon P; with n/k vertices lying in the yz-plane. (If £ > n/3 it is trivial to construct
an arrangement with Q(nk?) = Q(n3) vertices.) Denote the number of vertices of P, by
| Pz|. Duplicate P, |k/2| — 1 times to obtain polygons P, ..., P|x/7) and rotate P; slightly
relative to P;; (see Figure 3). This results in a planar arrangement (in the yz plane) with
complexity 3 ¥..:(|Pi| + | P;|) = Q(nk). Next, extend this arrangement in the z direction,
and slice the resulting arrangement of cylinders with additional |k/2| triangles, all parallel
to the yz plane to get a subdivision of space with complexity (nk?). The overall number
of polyhedron vertices in the construction is n/2 + 3k/2 < n. (m]

5 The Number of Views of Convex Polyhedra

In this section we study the number of views of a three-dimensional scene consisting of k
non-intersecting opaque convex polyhedra having a total of n vertices. Again we consider
two types of viewpoint space: The space related to orthographic views (from infinity) and
the space related to perspective views. In [16] it was shown that for one convex polyhedron
these bounds are ©(n?) and ©(n3). We first derive upper bounds on the maximum number
of views of k convex polyhedra and then give lower bounds.

In Subsection 3.1 we have considered three different types of curves (corresponding to
accidental viewpoints) that appear on the sphere of directions in the case of a polyhedral
terrain. The same types of curves may occur in the case of convex polyhedra. As before,
the curves of the third type dominate the complexity of the arrangement, so we restrict our
attention to them. Recall that a curve of the third type represents a collection of viewing
directions for which the views of a fixed triple of edges of the polyhedra meet at one point.

5Independently, Aronov et al. [2] have obtained a similar result, generalized to arrangements of polytopes
in d-dimensional space for a fixed d.
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Figure 3: An arrangement of k convex polyhedra having (nk?) complexity

Let e;,e; and ¢ be such a triple of edges. Assume for simplicity that each edge belongs
to a distinct polyhedron P;, P; and P; respectively. Each point on the curve represents a
line L in the viewing direction that touches the three edges simultaneously. It is easy to
verify that each such line L is tangent to at least two of the polyhedra P;, P;, ;. In other
words, it may cross the interior of at most one of these polyhedra, as the polyhedra are
opaque. Suppose that this is indeed the case and it crosses through P;. Then, necessarily,
the contact between L and P lies farther from the viewpoint than the contacts with P; or
P;.
’ Next, we fix ¢; and bound the possible number of curves of the third type, induced by
e; and pairs of edges—one edge of the polyhedron P; and one of P;. Denote the number of
vertices of P, by |P;|.

Lemma 5.1 The mazimum number of pairs of edges, one from P; and one from P;, such
that together with e; they define a critical curve on the sphere of directions and such that e
lies farthest from the viewpoint is O(| Pi| + | Pj|).

Proof. Suppose first that there is a plane II; that contains ¢; such that both P; and P; lie
on one side of II;. Take a plane Il parallel to II;, far away from the scene and such that
e; is farther from II than P; or P;. Let ¢ = ¢(0) be an endpoint of e; and draw on II the
intersection of all the lines through ¢(0) that are tangent to P;. The resulting curve on
1l is evidently the boundary of a convex polygon, which we denote by Q; = Q;(0). The
polygon Q;(0) has at most O(|P;|) edges. As we let ¢(t) move along e; towards the other
endpoint ¢(1), @; will change continuously. Still, it will always remain a convex polygon.
Furthermore, it will change its (combinatorial) structure only when the line through ¢()
coincides with a plane of a facet of P;. Thus it will not have new edges appearing (or
else have edges deleted) more than |P;| times. The same arguments hold for P; and its
corresponding “shadow” Q; on II.

12



An intersection point of an edge of @;(t) and an edge of Q;(t) along some interval
0 <t <t<t"<1 represents a curve of the third type on the sphere of directions. How
many pairs of edges, one from each polygon, intersect on the boundary of the union of
the two polygons? At t = O there are at most (|Q;(0)| + |Q;(0)|) = O(|P;| + | P;j|) such
intersection. As t varies, every new pair of edges that intersect must be the result of a
critical event that either makes the vertex of one polygon meet the edge of another, or that
an edge of a polyhedron inducing a shadow edge is substituted by another edge of the same
polyhedron. The first kind of critical event corresponds to the plane through a vertex of
one polyhedron and the edge of the other polyhedron crossing e;. For a fixed vertex of one
polyhedron there are at most two edges of the other polyhedron that can participate in
such an event, because we take the line through the vertex v and as we move it in contact
with ¢; it may be tangent to the other polyhedron, not containing v, at most twice. The
second kind of critical event occurs when the line through ¢(t) coincides with a plane of a
facet of either polyhedron. This kind as well may incur at most two new intersections with
the shadow of the other polyhedron. Therefore only O(|P;| + |P;|) critical events occur as
Qi(t) and Q;(t) move. And thus the overall number of potential curves involving e;, P; and
P; is at most O(|P;| + | P}|).

To relax the assumption that there is a plane II; such that both polyhedra P;, P; lie on
one side of it we do the following: We arbitrarily choose a plane II; containing €; and cut
each polyhedron that intersect II; by the plane II; into two. We repeat the analysis above
for either side of II; and the polyhedra portions on that side. The only difference between
the new situation and the previous one is that one or both of the corresponding Q; and Q;
are now unbounded, but the entire analysis holds verbatim. a

Now we can state

Theorem 5.2 The mazimum number of combinatorially distinct views of a scene consisting
of k convex non-intersecting polyhedra with a total of n vertices, when viewed from infinity, is
O(n%k?). The number of distinct views of such a scene where the viewpoint can be anywhere
in space is O(n®k3).

Proof. Let E(k,n) be the maximum number of curves of the third type that may appear
on the sphere of directions in the current setting. Lemma 5.1 implies that for every edge
e; of a polyhedron P; the number of critical curves of type three that it may induce due
to interaction with a fixed pair of two additional polyhedra P; and P; is O(| P + | P;|).
Summing over all edges ¢; we get

E(k,n) < Y |PI-O(IP| +|Pl) < 2 > O(IP;l - | Bil) = O(n®k).
i#j#£l i=1j3=11=1 ’
The two bounds of the theorem immediately follow. a

Finally, we exhibit lower bound constructions for the number of views of convex poly-
hedra.
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Figure 4: A vertical construction giving Q(n? 4+ nk?) different views

Theorem 5.8 A scene consisting of k convez polyhedra with a total of n vertices may
induce Q(nt +n2k?) distinct views from infinity and Q(n® + n3k®) views when the viewpoint
can be anywhere in space.

Proof. Following the idea presented in Section 3 we first present a construction for one
degree of freedom of the viewpoint that gives Q(n? + nk?) different views when moving
along a vertical line. This construction is a superpositioning of two simpler constructions.
The first consists of a “hill” with n horizontal edges in front of which there is a very small
convex polygon with n edges. As we move the viewpoint up all the vertices of the polygon
meet one edge of the hill in the view before they meet another edge (see Figure 4, on the
left-hand side of the hill).

For the second construction we place a small slanted grid of roughly k/2 x k/2 segments
such that an edge of the hill meets all intersection points of the grid before another edge of
the hill does so as the viewpoint moves up (see Figure 4, on the right-hand side of the hill).
We position the polygon and the grid such that no two viewing events coincide as we move
the viewpoint up or down.

We duplicate this construction and rotate the duplicate by 90° degrees to obtain a sim-
ilar effect when moving from left to right. To obtain the bounds for perspective views we
repeat the basic construction once again. 0

6 Conclusion

In this paper we have shown almost-tight combinatorial bounds on the maximum number of
qualitatively different views of polyhedral terrains. The bounds are an order-of-magnitude
lower than the corresponding bounds for general polyhedra. We obtain these results by
investigating arrangements of objects (curves or surfaces) that have the special property
that every vertical line stabs only a small number of the objects. We believe that our results
for this type of arrangements are of independent interest. We also presented extensions of
these results to higher dimensions. Furthermore, we have presented bounds on the number
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of views of a scene consisting of k convex polyhedra with a total of n vertices.
We suggest the following open problems:

1. Tighten the gap between the lower and upper bounds on the number of views of k
convex polyhedra with n vertices in total. A possible approach to improve the upper
bound would be to obtain a low stabbing number in the spirit of the result by Cole
and Sharir stated as Theorem 3.1 here.

2. What is the complexity of arrangements of surfaces that have a low stabbing number
in more than one direction? For example, it would be interesting to have such a
bound as a function of n, kyin and kyaz, where ky,i, and kyuq, are the minimum and
maximum stabbing number in any direction.

Our paper has concentrated on the combinatorial questions concerning aspect graphs of
certain polyhedral scenes. We have not addressed the related algorithmic issues. Efficient
computation of a sparse 2D arrangement is straightforward using plane sweep (see, e.g.,
[18]). We believe that computing a sparse 3D arrangement of surfaces in time that is roughly
proportional to the maximum combinatorial complexity of the arrangement is fairly simple,
imitating the proof of Proposition 2.3, although there are several technical details that still
need to be studied. A somewhat more challenging problem is to compute an arrangement
of convex polyhedra efficiently.

Acknowledgement

The authors thank Pankaj Agarwal and Micha Sharir for several helpful comments on the
contents of the paper.

References

[1] P. K. AGARWAL, M. SHARIR AND P. W. SHOR, Sharp upper and lower bounds on

the length of general Davenport-Schinzel sequences, J. Combinatorial Theory, Series
A 52 (1989), pp. 228-274.

[2] B. AroNov, M. BErRN AND D. EPPSTEIN, Arrangements of polytopes and the 1-
Steiner problem, manuscript.

[3] K. W. BowYER AND C. R. DYER, Aspect graphs: An introduction and survey of
recent results, manuscript. To appear in Int. J. of Imaging Systems and Technology.

[4] G. CASTORE, Solid modeling, aspect graphs and robot vision, in Solid Modeling by
Computer (Pickett and Boyse, Eds.), Plenum Press, New-York, 1984, pp. 277-292.

15



[5] I. CHAKRAVARTY AND H. FREEMAN, Characteristic views as a basis for three-
dimensional object recognition, Proc. SPIE: Robot Vision, Vol. 336 (1982), pp. 37—45.

[6] B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS AND M. SHARIR, A singly-exponential
stratification scheme for real semi-algebraic varieties and its applications, Proc. 16th

ICALP, (1989), pp. 179-192. Also in Theoretical Computer Science 84 (1991), pp.
77-105.

[7] K. L. CLARKSON AND P. W. SHOR, Applications of random sampling in computa-
tional geometry, II, Discrete and Computational Geometry 4 (1989), pp. 387-421.

[8] R. CoLE AND M. SHARIR, Visibility problems for polyhedral terrains, Journal of
Symbolic Computation T (1989), pp. 11-30.

[9] Z. Gigus, J. CANNY AND R. SEIDEL, Efficiently computing and representing aspect
graphs of polyhedral objects, IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (1991), pp. 542-551.

[10] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, 2nd edition, Cam-
bridge, 1952.

[11] M. HEBERT AND T. KANADE, The 3D profile method for object recognition, Proc.
IEEF Conference on Computer Vision and Pattern Recognition, 1985, pp. 458—463.

[12] J. J. KOENDERINK AND A. J. VAN DooORN, The singularities of visual mapping,
Biological Cybernetics 24 (1976), pp. 51-59.

[13] J. J. KOENDERINK AND A. J. VAN DooORN, The internal representation of solid shape
with respect to vision, Biological Cybernetics 32 (1979), pp. 211-2186.

[14] D. J. KRIEGMAN AND J. PoNcCE, Computing exact aspect graphs of curved objects:
Solids of revolution, International Journal of Computer Vision 5 (1990), pp. 119-135.

[15] J. MATOUSEK, Approximations and optimal geometric divide-and-conquer, in Proc.
23rd ACM Symp. Theory of Comp., (1991), pp. 505-511.

[16] W. H. PLANTINGA AND C. R. DYER, An algorithm for constructing the aspect graph,
in Proc. 27th IEEE Symp. Foundations of Computer Science, (1986) pp. 123-131.

[17) W. H. PLANTINGA AND C. R. DYER, Visibility, occlusion and the aspect graph, Int.
J. of Computer Vision 5 (1990), pp. 137-160.

[18] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry—An Introduction,
Springer Verlag, New York, 1985.

[19] M. SHARIR, On k-sets in arrangements of curves and surfaces, Discrete and Computa-
tional Geometry 6 (1991), pp. 593-613.

16



[20] J. SNOEYINK, The number of views of axis-parallel objects, Algorithms Review 2
(1991), pp. 27-32.

[21] T. SRIPRADISVARAKUL AND R. JAIN, Generating aspect graphs for curved objects, in
Proc. IEEE Workshop on Interpretation of 3D scenes, New York, 1989, pp. 109-115.

[22] J. STEwMAN AND K. BOWYER, Creating the perspective projection aspect graph of
polyhedral objects, Proc. IEEE International Conference on Computer Vision, New
York, 1988, pp. 494-500.

[23] A. WIERNIK AND M. SHARIR, Planar realization of nonlinear Davenport-Schinzel
sequences by segments, Discrete and Computational Geometry 3 (1988), pp. 15-47.

17



