On the Treewidth and Pathwidth of
Permutation Graphs

T. Kloks, H. Bodlaender

RUU-CS-92-13
March 1992

Utrecht University

B S0
f (.2 Department of Computer Science
[- 4
\fp \(4) Padualaan 14, P.O. Box 80.089,
A7 WY
ny 3508 TB Utrecht, The Netherlands,

Tel. : ... +31-30- 531454

On the Treewidth and Pathwidth of

Permutation Graphs

T. Kloks, H. Bodlaender

Technical Report RUU-CS-92-13
March 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

On the Treewidth and Pathwidth of

Permutation Graphs

T. Kloks * H. Bodlaender '
Department of Computer Science, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In this paper we discuss the problem of finding the treewidth and path-
width of permutation graphs. If G[r] is a permutation graph with treewidth
k, then we show that the pathwidth of G[r] is at most 2k, and we give an algo-
rithm which constructs a path-decomposition with width at most 2k in time
O(nk). We assume that the permutation = is given. For permutation graphs
of which the treewidth is bounded by some constant, this result, together
with previous results ([9], [15]), shows that the treewidth and pathwidth can
be computed in linear time.

1 Introduction

In many recent investigations in computer science, the notions of treewidth and
pathwidth play an increasingly important role. One reason for this is that many
problems, including many well studied NP-complete graph problems, become solv-
able in polynomial and usually even linear time, when restricted to the class of
graphs with bounded tree- or pathwidth. Of crucial importance for these algo-
rithms is, that a tree-decomposition or path-decomposition of the graph is given
in advance. Much research has been done in finding a tree-decomposition with a
reasonable small treewidth. Recent results ([19]) show that an O(nlog n) algorithm
exists to find a suitable tree-decomposition for a graph with bounded treewidth.
However, the constant hidden in the ’big oh’, is exponential in the treewidth, limit-
ing the practicality of this algorithm. However, for many special classes of graphs, it

*This author is supported by the foundation for Computer Science (S.1.0.N) of the Netherlands
Organization for Scientific Research (N.W.0.), Email: ton@cs.ruu.nl.

tThis author is partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 3075 (project ALCOM), Email:hansb@cs.ruu.nl.

has been shown that the treewidth can be computed efficiently. In this paper we dis-
cuss the problem of finding an approximate path-decomposition for a permutation
graph.

Permutation graphs have a large number of applications in scheduling problems.
See for example [12], where permutation graphs are used to describe a problem
concerning the memory requirements of a number of programs at a certain time (see
also [14]). Permutation graphs also arise in a natural way, in the problem of sorting
a permutation, using queues in parallel. In [14] it is shown that this problem is
closely related with the coloring problem of permutation graphs.

We show that the pathwidth of a permutation graph is at most two times
the treewidth of that graph, and we give an algorithm which produces a path-
decomposition which is at most two times off the optimal one. If the treewidth
of the permutation graph is bounded by a constant, this result, together with ear-
lier results show that an optimal tree- and path-decomposition can be computed in
linear time.

2 Preliminaries

In this section we start with some definitions and easy lemmas. In the next section we
give an algorithm which approximates the treewidth and pathwidth of a permutation
graph and we show that it is correct. If the treewidth is bounded by a constant,
these results together with earlier results ([9], [15]) show that the exact treewidth
and pathwidth can be computed in linear time.

We think of a permutation m of the numbers 1,...,n, as the sequence
T = [71,...,7,). We use the notation 7! for the position of the number i in this
sequence.
Definition 2.1 If 7 is a permutation of the numbers 1,...,n, we can construct an

undirected graph G[r] = (V, E) with vertex set V = {1,...,n}, and edge set E:
(i,j) € E® (i —j)(x — ;') <0

An undirected graph is called a permutation graph if there exists a permutation «

such that G = G|r].

Notice that we can obtain the complement of G{r|, by reversing the sequence =.
Hence the complement of a permutation graph is also a permutation graph. It is
also easy to see that a permutation graph is a comparability graph (i.e there is a
transitive orientation of the edges). The following characterization of permutation
graphs appears in [18].

Theorem 2.1 A graph G is a permutation graph if and only if G and G are com-
parability graphs.

Figure 1: permutation graph and matching diagram

Permutation graphs are perfect, (i.e. for every induced subgraph the chromatic
number is equal to the maximum cliquesize), and can be recognized in time O(n?),
using the characterization of theorem 2.1 (see [22]). There exist fast algorithms for
many NP-complete problems like Clique, Independent set, Feedback vertex
set and Dominating set when restricted to permutation graphs (see [14], [13], [11]
and [10]). For further information and some applications the reader is referred to
[14].

In this paper we assume that the permutation 7 is given, and we show some
results on the pathwidth and treewidth of G[r], which is also called the inversion
graph of w. If the permutation 7 is not given, transitive orientations of G and G
can be computed in O(n?) time ([22]). Given these orientations, a permutation can
be computed in O(n?) time (see e.g. [14]).

A permutation graph G[r] is an intersection graph, which is illustrated by the
matching diagram of = ([14]).

Definition 2.2 Let © be a permutation of 1,...,n. The matching diagram of =
can be obtained as follows. Write the number 1,...,n horizontally from left to right.
Underneath, write the numbers wy, ..., m,, also horizontally from left to right. Draw
n straight line segments joining the two 1’s, the two 2’s, etc.

The following result follows immediately from the definitions:

Lemma 2.1 Let © be a permutation of 1,...,n. Two vertices i and j of G[x] are
adjacent if and only if the corresponding line segments in the matching diagram of
7 intersect.

In the following section we show how to use these matching diagrams in computing
an approximate path-decomposition for G[r|. Before we continue we give an example
of these concepts in figure 1.

Definition 2.3 A tree-decomposition of a graph G = (V, E) is a pair D = (S,T)
with T = (I, F) a tree and S = {X; |1 € I} a collection of subsets of vertices of G,
one subset for each node in T, such that the following three conditions are satisfied:

3

1. UiGIXl' = V

2. For all edges (v,w) € E there is a subset X; € S, such that both v and w are
contained in X;.

3. For each vertez x, the set {1t € I |z € X;} forms a connected subtree of T'.

A path-decomposition of a graph G is a tree-decomposition (S,T) such that T
is a path. The width of a tree-decomposition (S,T), with S ={X;|i€ I}, is
max;er(|X;| — 1).

Definition 2.4 The treewidth of G is the minimum width over all tree-
decompositions of G. The pathwidth of G is the minimum width over all path-
decompositions of G.

An alternative way to define the class of graphs with treewidth at most k is by
means of partial k-trees.

Definition 2.5 A k-tree is defined recursively as follows: A clique with k+1 vertices
is a k-tree. Given a k-tree T,, with n vertices, a k-tree with n + 1 vertices is con-
structed by making a new vertex x,41 adjacent to a k-clique of T, and nonadjacent
to the n — k other vertices of T,,. A partial k-tree is a subgraph of a k-tree.

Notice that k-trees are triangulated, and have maximum clique size k + 1. It can be
seen that if G is a partial k-tree with at least k+1 vertices, then there exists a k-tree
H with the same vertez set, such that G is a subgraph of H. It can be shown that
the class of graphs with treewidth at most k is exactly the class of partial k-trees
(see e.g. [21], [16]). There exist linear time algorithms for many NP-complete
problems, when restricted to the class of partial k-trees for some constant k and
when a tree-decomposition with bounded width is given (see e.g. [1], [5], [7], [3] and
[21]). Determining whether the treewidth or pathwidth of a given graph is at most
a given integer k is NP-complete ([2]). In view of this the results of Robertson and
Seymour on minor closed classes of graph are of great interest.

Definition 2.6 An elementary contraction of a graph G is the operation which
replaces two adjacent vertices u and v by a new vertex, and makes this new vertex
adjacent to all vertices which were adjacent to u or to v. A graph is called a minor
of G if there is a subgraph of G, which can be transformed into H by a series of
elementary contractions. A class of graphs is minor closed if for every graph G in
the class every minor of G is also in the class.

The following well known lemma is easy to check (see e.g [16]).

Lemma 2.2 For every fired k, the classes of graphs with treewidth at most k and
with pathwidth at most k are minor closed.

Robertson and Seymour proved the following result ([20]).

4

Theorem 2.2 Every class of minor closed graphs, is recognizable in O(n®) time.

It follows that for every constant k there is a polynomial algorithm that recognizes
graphs with treewidth at most k. In fact, for these classes faster algorithms exist.
We list some of the results.

1. For k = 2,3 there is a linear time algorithm for the treewidth problem using
rewrite rules (see e.g. [4] and [17]).

2. For fixed £ > 4 an O(nlogn) algorithm exists which constructs a tree-
decomposition with width k ([19], [9] and [15]).

3. If an (approximate) tree-decomposition with bounded width is given, the exact
treewidth, and a corresponding tree-decomposition, can be computed in linear
time ([9]). In this case, when also the pathwidth is bounded, also the pathwidth
and an optimal path-decomposition can be computed in linear time.

For an introductory overview of recent results dealing with treewidth and pathwidth,
the reader is referred to [6].

In the next section we show that, if a permutation graph G has treewidth at
most k then the pathwidth is at most 2k, and there exists an O(kn) algorithm to
find a path-decomposition for G with width at most 2k. For constant k, this shows
the existance of linear time algorithms to compute the treewidth and pathwidth of

G.

3 An approximate path-decomposition

In this section, let G[r] be a permutation graph with n vertices and with treewidth k.
We show there exists a path-decomposition of width at most 2k, and we give a linear
time algorithm to compute this. The algorithm outputs a set X; for 1 <:<n. A
vertex j is put in all sets X with 7rj'1 Sk<jorj<k<mw; !, The precise algorithm
is given in figure 2. For example, for the graph of figure 1, the computed sets are:
X: ={1,3}, X, = {1,2,3,5}, X5 = {2,5}, X4 = {4,2,5} and X5 = 0. Notice that
this path-decomposition is not optimal since the pathwidth of this graph is 2 and
the computed path-decomposition has width 3.

The next lemma shows that the constructed sets form indeed a path-
decomposition.

Lemma 3.1 Let S = {X; |1 < i < n} be the subsets of vertices constructed by
the algorithm. Let P = (1,...,n) be the path with n vertices. Then (S,P) is a
path-decomposition for the permutation graph Gr].

Proof. We first show that each vertex is in at least one subset of S. Consider a
vertex ¢. If 77! > ¢ then ¢ is in the subset X;. If 77! < i then 7 is in the subset
Xi—1. Next notice that the subsets containing 7 are consecutive. The only thing left

)

Procedure Pathdec (input 7; output X)
for : — 1 ton do
X,’ 4—-@
for j — 1ton do
if 771 = j then X; — X; U {j}
if 7rj“1 > j then
for k — j tor;' — 1 do Xi — Xi U {j}
if 771 < j then
fork«—vrj‘l toj—1do Xj — Xp U{j}

Figure 2: An algorithm to compute a path-decomposition of G[r]

to show is that every edge is in at least one subset. Consider again a vertex z and let

J be a neighbour of . Assume without loss of generality that ¢ < j. In the matching

diagram, the linesegment corresponding with j must intersect the linesegment of :.

Since ¢ < j, this implies that ﬂ'j_l < m;!. We consider the different orderings of 4, j,
.—1 d -1

7,7 and ;.

1. If i < j < 77! < 77!, then both ¢ and i are contained in the subset X.

2. If: < 7rj'1 < j < 77! then both are contained in X, 1.

2
3. If: < 7rj_1 < 77! < j, then both are contained in X, -t
7
4. If 7rj‘1 < i< 7! <j, then both are contained in Xj.
5. If 7rj'l < 77! <14 < j, then both i and j must be in Xﬂ_‘—l.
O

We now show that the width of this path-decomposition is at most 2k. The following
lemma will be useful (see also [8]).

Lemma 3.2 For the complete bipartite graph G = K{(m,n), the treewidth is
min(m, n).

Proof. Assume m < n. Let V be the set of vertices of G. Let V; be the independent
set with n vertices and let V, = V' \ V1. If we add all edges between vertices in V,
(making a clique of V%), then we obtain a m-tree. Thus the treewidth of G is at
most m. Since K,,4; is a minor of G, the treewidth of G is at least m. a

Lemma 3.3 Each subset produced by the algorithm has at most 2k + 1 elements.

Proof. Consider a subset X;. Notice that X; C S; U S; U {¢} where S; and S; are
defined by:

S = {li<gi<n;l}
Sy = {jlr;! <i<ij}

Note that, as 7 is a permutation, there must be as many lines in the matching
diagram with their upper point left of 2 and their lower point right of ¢, as lines with
their upper point right of 7 and their lower point left of :. Hence |S;| = |S;|. Every
vertex in S is adjacent to every vertex in S;, hence the subgraph induced by S; U S,
contains a complete bipartite subgraph K(m,m), with m = |S;|. By lemma 3.2,
this implies that £ > m. Hence X;| < |Sy| + |S2| +1 <2k + 1. 0

Notice that, by lemma 3.3 the algorithm can be implemented to run in O(nk) time,
since at each step one new element is put into a subset. Hence we have proved the
following theorem:

Theorem 3.1 If G[r] is a permutation graph with treewidth at most k, then the
pathwidth of G[r] is at most 2k, and the O(nk) time algorithm of figure 2 produces
a path-decomposition with width at most 2k.

In [9], an algorithm is decribed which, given a tree-decomposition of a graph G,
with width bounded by some constant, produces a tree-decomposition with width
equal to the treewidth of G, in linear time. Also, for every constant ¢, a linear time
algorithm is given, which produces a path-decomposition with width equal to the
pathwidth of G, for graphs G with pathwidth at most ¢. Using these results we
obtain the following theorem:

Theorem 3.2 Let k be some constant. If G[r| is a permutation graph with
treewidth at most k, then there ezists a linear time algorithm which produces a
tree-decomposition with width equal to the treewidth of G[r]. Also, a linear time al-

gorithm exists which produces a path-decomposition with width equal to the pathwidth
of G[r].

4 Conclusions

In this paper we described a very simple and efficient algorithm which produces an
approximate path-decomposition for permutation graphs which is at most a factor
two off the optimal one. There are classes of perfect graphs for which the treewidth
and pathwidth can be computed efficiently. For example cographs [8] and interval
graphs. The treewidth can also be computed efficiently for chordal graphs and circu-
lar arc graphs [23]. It would be of interest to know if there is a fast algorithm which
computes the treewidth of permutation graphs. Another interesting conclusion from
this paper is that the pathwidth and treewidth of a permutation graph differ at most

7

by a factor two. It would be of interest to know for which other classes of graphs
the pathwidth and treewidth differ by a constant factor. For cographs and interval
graphs the treewidth and pathwidth are equal ([8]).

5 Acknowledgements

We like to thank D. Seese and B. Reed for valuable discussions.

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — A survey. BIT, 25, 2 — 23, 1985.

(2] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embed-
dings in a k-tree, SIAM J. Alg. Disc. Meth., 8, 277 — 284, 1987.

[3] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms, 12, 308 — 340, 1991.

[4] S. Arnborg and A. Proskurowski, Characterization and recognition of partial
3-trees, SIAM J. Alg. Disc. Meth., T, 305 — 314, 1986.

[5] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math., 23, 11 — 24, 1989.

[6] H.L. Bodlaender, A tourist guide through treewidth, Technical report
RUU-CS-92-12, Department of computer science, Utrecht University, Utrecht,
The Netherlands, 1992. To appear in: Proceedings Tth International Meeting of
Young Computer Scientists, Springer Verlag Lecture Notes in Computer Sci-
ence.

[7] H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded
treewidth, Proceedings of the 15th International colloquium on Automata, Lan-
guages and Programming, 105 — 119, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 317, 1988.

[8] H. Bodlaender and R.H. Mohring, The pathwidth and treewidth of cographs,
In Proceedings 2nd Scandinavian Workshop on Algorithm Theory, 301 — 309,
Springer Verlag Lecture Notes in Computer Science vol. 447, 1990.

(9] H.Bodlaender and T. Kloks, Better algorithms for the pathwidth and treewidth
of graphs, Proceedings of the 18th International colloquium on Automata, Lan-
guages and Programming, 544 — 555, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 510, 1991.

[10] A. Brandstadt and D. Kratsch, On the restriction of some N P-complete graph
problems to permutation graphs, Fundamentals of Computation Theory, proc.
FCT 1985, 53 — 62, Lecture Notes in Comp. Science vol. 199, Springer Verlag
New York, 1985.

[11] A. Brandstadt and D. Kratsch, On domination problems for permutation and
other perfect graphs, Theor. Comput. Sci. 54, 181 — 198, 1987.

[12] S. Even, A. Pnueli and A. Lempel, Permutation graphs and transitive graphs,
J. Assoc. Comput. Mach. 19, 400 — 410, 1972.

[13] M. Farber and M. Keil, Domination in permutation graphs, J. Algorithms 6,
309 — 321, 1985.

[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[15] J. Lagergren and S. Arnborg, Finding minimal forbidden minors using a fi-
nite congruence, Proceedings of the 18th International colloquium on Automata,
Languages and Programming, 532—543, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 510, 1991.

[16] J. van Leeuwen, Graph algorithms. In Handbook of Theoretical Computer Sci-
ence, A: Algorithms an Complexity Theory, 527—631, Amsterdam, 1990. North
Holland Publ. Comp.

[17] J. Matousek and R. Thomas, Algorithms Finding Tree-Decompositions of
Graphs, Journal of Algorithms 12, 1 — 22, 1991.

(18] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and iden-
tification of permutation graphs, Canad. J. Math. 23, 160 — 175 1971.

[19] B. Reed, Finding approximate separators and computing treewidth quickly, To
appear in: Proceedings STOC’92, 1992.

[20] N. Robertson and P.D. Seymour, Graph minors—A survey. In I. Anderson,
editor, Surveys in Combinatorics, 153 — 171. Camebridge Univ. Press 1985.

[21] P. Schefler, Linear time algorithms for NP-complete problems restricted to
partial k-trees, Report R-MATH-03/87, Karl-Weierstrass-Institut Fiir Mathe-
matik, Berlin, GDR 1987.

[22] J. Spinrad, On comparability and permutation graphs, SIAM J. Comp. 14, No.
3, August 1985.

[23] R. Sundaram, K. Sher Singh and C. Pandu Rangan, Treewidth of circular arc
graphs, Manuscript 1991.

