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Abstract

It is shown, that for each constant & > 1, the following problems can be
solved in O(n) time: given a graph G, determine whether G has k vertex
disjoint cycles, determine whether G has k edge disjoint cycles, determine
whether G has a feedback vertex set of size < k. Also, every class G, that is
closed under minor taking, or that is closed under immersion taking, and that
does not contain the graph formed by taking the disjoint union of k copies of
K3, has an O(n) membership test algorithm.

1 Introduction.

In this paper we consider the following problem: given a graph G = (V,E), does G
contain at least k vertex disjoint cycles. If k is part of the instance of the problem,
then the problem is NP-complete, because then it contains PARTITION INTO
TRIANGLES as a special case (take k = |V|/3). (See [12].) In this paper we
consider the problem for fixed k. ;

The problem can be seen as a special case of the MINOR, CONTAINMENT
problem. A graph G is a minor of a graph H, if G can be obtained from H by a
series of vertex deletions, edge deletions and edge contractions (an edge contraction
is the operation to replace two adjacent vertices v, w by one vertex that is adjacent
to all vertices that were adjacent to v or w). Robertson and Seymour [16] showed
that for every fixed H there exists an O(n?) algorithm to test whether a given graph
G contains H as a minor. if H is planar, then they give an O(n?) algorithm. Using
recent results of Lagergren [13] or of Arnborg et. al. [2] it is possible to improve on
the O(n?) bound. In the former case, using an approximation for treewidth, one
arrives at an O(nlog®n) algorithm. In the latter case, using graph rewriting, one
gets an O(nlogn) algorithm, or an algorithm that uses O(n) time in the uniform
cost measure and polynomial (not linear) space. In [6] (extending results in [11]) a

*This work has been partially supported by the ESPRIT II Basic Research Actions Program of
the EC, under contract No. 3075 (project ALCOM).
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class of graphs is given for which minor tests can be done in O(r) time with the help
of depth first search. This class does not include the graph consisting of k disjoint
copies of K3, (here denoted as k - K3.) As a graph G contains k - K3 as a minor, if
and only if G contains k vertex disjoint cycles, it follows from this paper that testing
whether k - Kj3 is a minor of a given graph G can be done in O(n) time for fixed k.

We also consider the problem of finding k edge disjoint cycles in a graph G.
This problem is related to the problem of finding immersions: a graph G has k - K3
as an immersion, if and only if G contains k edge disjoint cycles. (A graph G is
an immersion of H, if G can be obtained from H by a series of vertex deletions,
edge deletions and edge lifts. An edge lift is the operation of replacing two edges
(v, ), (,) by an edge (v,z).

The problem in this paper is related to the (much more difficult) problem of
finding vertex or edge disjoint paths between a number of fixed pairs of vertices.
For an overview of recent results on this problem, see e.g. [17].

We also consider the problem of finding a minimum size feedback vertex set is
a graph. A feedback vertex set in graph G = (V, E), is a set W C V such that the
graph (V — W, E — {(v,w)jv € W vV w € W}) is cycle-free. The problem of finding
a minimum feedback vertex set is NP-complete [12]. Here we show that for fixed &,
the problem of finding a feedback vertex set of size < k, if it exists, is solvable in
O(n) time.

It must be pointed out that, although we give O(n) algorithms, these algorithms
may be far from practical, due to the large constant factor, hidden in the “©”
notation. However, we believe that with further optimizations, practical algorithms
can be derived, that have an O(n) worst case time bound. The purpose of this paper
is to show that there exist linear time algorithms for the considered problems, not
to derive the best possible algorithm. ‘

We end this introduction with some definitions and notations, used in this paper.

The subgraph of G = (V,E), induced by W C V is denoted by G[W] =
(W, {(v,w) € Elo,w € W}).

A tree-decompostion of a graph G = (V,E) is a pair ({Xi|i € I},T = (I, F))
with {X;|i € I} a family of subsets of V, and T a tree, such that UierXi = Vj;
Vivw)€ E:Fel:v,we X;;forallve V:{ieIve X;} forms a connected
subtree of T.

The treewidth of a tree-decompositon ({X;|i € I},T) is max;es |Xi| — 1. The
treewidth of a graph G = (V, E) is the minimum treewidth over all possible tree-
decompositions of G.

All graphs considered in this paper are assumed to be finite, undirected and
simple. n denotes the number of vertices of graph G = (V, E).
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2 Finding two vertex or edge disjoint cycles.

In this section we give a linear time algorithm to test whether a given graph contains
two vertex or edge disjoint cycles. We need the following lemmas.

Lemma 2.1

Let G = (V,E) be an undirected graph. Suppose G contains a cycle ¢ and four
vertex disjoint paths, that have their endpoints on ¢, and are edge disjoint from c.
Then G contains two vertex disjoint cycles.

Proof.

Let vj;,v;,(1 < i < 4) be the endpoints of the four paths. Fori =1,...,4, look at a
path formed by going from v;, to v;, over the cycle c. If one of these paths is entirely
contained in another, or two of these paths are disjoint, then G contains two vertex
disjoint cycles, as shown in Figure 1.

Figure 1: See Lemma 2.1

If this case does not appear for any pair i; # 5, then we are in a situation as
shown in Figure 2. Again G contains two vertex disjoint cycles. m]

Lemma 2.2
Let G = (V, E) be an undirected graph. Suppose G contains two cycles ¢, cp that
share exactly one vertex and suppose G contains a path p, that is vertex disjoint

from ¢;, has both endpoints in c;, and is edge disjoint from c;. Then G contains
two vertex disjoint cycles.

Proof.
The result is obvious from Figure 3. O



Figure 2: See Lemma 2.1

Figure 3: See Lemma 2.2

Theorem 2.3
There exists an algorithm, that uses O(n) time, and that given a graph G = (V, E),

either finds two vertex disjoint cycles in G or outputs a feedback vertex set X with
X[ <o

Proof.

First test whether G is cycle-free. If so, take X = @, and we are done. Otherwise
find a cycle cin G. Let W be the set of vertices on this cycle. Consider GV —w].
If G[V — W] contains a cycle we have two vertex disjoint cycles and we are done.
So suppose G[V — W] is a forest.

The algorithm now proceeds by trying to find the four paths, mentioned in
Lemma 2.1. A cycle which shares exactly one vertex with W is treated as a path
with both endpoints the same vertex in W, and is not handeled separately. In the
remainder of this proof, an ¢-path is a path, that has 3 endpoints in W and no other
vertex in W(i = 1,2).

The algorithm uses a counter o, that denotes the number of vertex disjoint 2-
paths, found so far. We also use a set X C V. Initially X C 0. An t-path is X-free,
if it does not contain a vertex in X.



Repeat the following procedure, until it stops.

1. If G is a cycle with possibly a number of trees attached to it (each tree
sharing exactly one vertex with the cycle), then take an arbitrary vertex v € W, and
let X = {v}. Now stop. Clearly G[V — X] is cycle-free.

2. If a = 4, then stop. By Lemma 3.1 or Lemma 3.2 we can find two vertex
disjoint cycles.

3. If G[V — X] is a forest, then stop. Now a < 3.

4. Otherwise, an X-free 2-path exists. We will find such an X-free 2-path p,
and then put at most 3 vertices from this path in X, such that all further X-free
2-paths are disjoint from p.

Let a junction be a vertex v € V — (W U X)), that is endpoint of three edge-
disjoint X-free 1-paths. (It follows that these paths are vertex-disjoint, except for
the endpoints.) See Figure 4 for an example.

‘ : vertices in X
% : junction

Figure 4: Example of junctions

Now one easily determines in linear time what vertices are a junction. If no
junction exists, then take an X-free 2-path p, and put its endpoints in X. Increase
a by 1, and continue with step 2. Note that all 2-paths, that are now X-free are
vertex disjoint from p, otherwise p would contain a junction.

In case there exists at least one junction, we search for a junction, such that at
least 2 of its X-free 1-paths do not contain other junctions. Such a junction can be
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found in the following way. Start in an arbitrary junction v,. Consider two of its
X-free 1-paths. If neither contains a junction, we are done. Otherwise, let v, # v,
be a junction on one of these paths.

Repeat the process with v,, instead of v,, and consider the two X-free 1-paths of
v1, that do not contain v,. As G[V — W] is cycle-free, this process ends after a
finite number of steps. It is not necessary to consult each edge more than a constant
number of times, so the procedure has a linear time implementation.

Let w;,w; be the other endpoints of the two found paths from junction v,.
Combining these two paths we have an X-free 2-path p from w; to w;. Now add
wy, wp and v; to X, and add 1 to .

We claim that all 2-paths, that are X-free (for the new set X), are disjoint from
p. Because if not, the first vertex v*, that is shared by p and an X-free 2-path p,
would have been a junction before the addition of w;,w; and w; to X (see Figure
5). But then v; — w; or v; — w; would have contained a junction, and hence would
not have been chosen by the procedure.

Figure 5: See Theorem 2.3

The procedure terminates, either because two vertex independent cycles are found,
or because G[V — X] is cycle-free. In the latter case a < 3, and hence | X| < 9.
The procedure can be implemented to use time, linear in the number of vertices,
even if there are more than a linear number of edges: testing acyclicity can be done
in O(n) time, G[V — W] has, when acyclic, O(n) edges, and one never needs to
inspect more than [X| + 3 = O(1) edges (v,w) with v € V — W,w € W per vertex
veEV -W. a

Theorem 2.4
There exists an algorithm, that uses O(n) time, and that given a graph G = (V, E),



either finds two vertex disjoint cycles in G, or outputs a tree-decomposition of G
with treewidth < 10.

Proof.
First use the procedure of Theorem 2.3. In case we have a feedback vertex set X
with |X| < 9, then make a tree-decomposition ({X;|i € I},T = (I, F)) of G[V — X]
with treewidth 1 (this can easily be done, see e.g. [4]).

Now ({X; U X|i € I},T = (I, F)) is a tree-decomposition of G with treewidth
< 10. O

Many graph problems, including many NP-complete problems, become linear time
solvable for graphs, given together with a tree-decomposition with constant bounded
treewidth (see e.g. [1, 3, 7, 18]). As the question, whether the input graph contains
> k vertex (or edge) disjoint cycles can be formulated in monadic second order form

(see [3]), or in the calculus of [7], the next result follows from these papers and
Theorem 2.4.

Corollary 2.5
There exists an algorithm, that uses O(n) time, that given a graph G = (V, E),

decides whether G contains two vertex (or edge) disjoint cycles, and if so, outputs
these.

We remark here, that the given method is not (yet) practical, due to the high con-
stant factor. However, we believe that the procedure of Theorem 2.3 with some
optimizations, followed by an extensive case analysis, can yield a practical algo-
rithm for the problem, that has a good worst-case running time. Probably a good
average case running time is obtained by a straightforward backtracking procedure.
However, this approach may in some cases give exponential time, e.g., with inputs
of the form Kj .
Also, further optimizations are possible in the case of edge disjoint cycles.

3 Finding more than two disjoint cycles.

In this section we consider the problem of finding k > 3 vertex (or edge) disjoint
cycles. We first need a lemma, similar to Lemma 2.1.

Lemma 3.1
Let G = (V, E) be an undirected graph. Suppose G contains two vertex disjoint

cycles ¢y, ¢z, and 9 vertex disjoint paths, that each have one endpoint in ¢;, and one
endpoint in ¢;. Then G contains at least three vertex disjoint cycles.



Proof.
The proof of this lemma relies on a detailed and not very interesting case analysis,
which is omitted from this paper.

Instead, we give here a much shorter proof for the weaker result, where “ 9 ” is
replaced by “26”.

Without loss of generality, we may suppose that the 26 vertex disjoint paths
between ¢, and c; do not share with ¢; or c; other vertices than their endpoints.
Number the vertices on ¢; v; - - - v, in order of a traversal of ¢;, and likewise number
the vertices on ¢; w, - - - w,. Order the paths between ¢, and c; with respect to their
endpoints on ¢;. Now consider the sequence of the 26 endpoints of the paths on ¢;,
in this order. This is a sequence of 26 different numbers. By a theorem of Erdos
and Szekeres [9], this sequence has a subsequence of six numbers, corresponding to
vertices v;, -+ - v;, With #; < 23-:- < tg or 3; > 23 > -+ > tg. This corresponds to a
situation, shown in Figure 6. Clearly, G has three vertex disjoint cycles. a

Figure 6: See Lemma 3.1

Lemma 3.2
Suppose G = (V, E) contains k — 1 vertex disjoint cycles ¢; - - - ck—1, and 3(k — 1) +
4(k — 1)(k — 2) + 1 disjoint paths, such that each path has both its endpoints on

the cycles ¢; - - - ck—1, and does not share another vertex with the cycles. Then G
contains k vertex disjoint cycles.

Proof.

By a pidgeonhole argument, either there are at least four paths with all endpoints
on the same cycle ¢;, or there are two cycles ¢;, ¢; with at least nine paths with one
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endpoint on ¢;, and one endpoint on ¢;. In the former case, apply Lemma 2.1. In
the latter case, apply Lemma 3.1. In both cases, we get one extra, disjoint cycle. O

Theorem 3.3
For every k > 2, there exists an algorithm, that uses O(n) time, and that given a

graph G = (V, E), either finds k vertex disjoint cycles, or finds a feedback vertex
set X C V with |X| < 12k? — 27k + 15.

Proof.

If £ = 2, then use Theorem 2.3. Otherwise, first recursively apply the algorithm
for k — 1. Either a suitable set X is found, or we find ¥ — 1 vertex disjoint cycles.
In the latter case, apply a procedure, similar to the one in the proof of Theorem
3.3, but instead let W be the set of all vertices on the k — 1 vertex disjoint cycles,
and stop when a = 4k* — 9k + 6(= 3(k — 1) + 4(k — 1)(k — 2) + 1). If we stop
with a = 4k? — 9k + 6, then we have enough paths to apply Lemma 4.2. Otherwise
|X| < 3a < 3(4k? — 9k + 5), and G[V — X] is cycle free. 0

In the same way as in section 2, we can derive the following results:

Theorem 3.4
For every k > 2, there exists an algorithm, that uses O(n) time, and that given a

graph G = (V, E), either finds two vertex disjoint cycles in G, or outputs a tree-
decomposition of G with treewidth < 12k? — 27k + 16.

Corollary 3.5
For every k > 2, there exists an algorithm, that uses O(n) time, that given a graph

G = (V, E), decides whether G contains k vertex (or edge) disjoint cycles, and if so,
outputs these.

More efficient algorithms can be found with help of a more detailed case analysis.

The purpose here was only to show that linear time is achievable, not to give the
most efficient algorithm.

4 Some consequences.

Robertson and Seymour [15, 14] proved that for every class of graphs G, that is
closed under taking of minors (or immersions), there exists a finite set of graphs,
called the obstruction set of G, such that a graph H belongs to G, if and only if no
graph G in the obstruction set of G is a minor (immersion) of H. Combining this
result with Theorem 4.4, the fact that minor tests can be done in O(n) time with
a constant width tree-decomposition, and the observation that a graph G contains
k- K3 as a minor (immersion), if and only if G contains k vertex (edge) disjoint
cycles, we have the following result:



Corollary 4.1
Let G be a class of graphs, closed under minor (immersion) taking, that does not

contain all graphs k - K. Then there exists an O(n) algorithm to test membership
in G.

Note that the algorithm uses also linear space, standard cost measure (in constrast
with [2]), is non-constructive, and has a very large constant factor. Another conse-

quence of our results is for the FEEDBACK VERTEX SET problem.

Corollary 4.2

For every constant k, there exists an algorithm, that uses O(n) time, that determines

whether a given graph G = (V, E) contains a feedback vertex set of size < k, and if
so, outputs one.

Proof.

Use Theorem 4.4. If G contains > k + 1 vertex disjoint cycles, then every feedback
vertex set contains at least k + 1 vertices. Otherwise, use the tree-decomposition,
and a dynamic programming algorithm, e.g. as in [3, 5, 7] to find the optimal feed-
back vertex set. 0

This result was also obtained, independently, by Fellows [10].

For a class of graphs G, let within k vertices of G denote the class of graphs {G =
(V, E) | there exists a subset W C V of at most k vertices, such that G[V - W] € G},
i.e., a graph G is within k vertices of G, if we can remove < k vertices from G and

the resulting graph belongs to G. This type of problem was considered in [8]. We
have the following easy result:

Lemma 4.3

Let G be a class of graphs with G € G = treewidth (G) < k. Then G € within {
vertices of G = treewidth (G) <k + I

Proof.
Use the same technique as in Theorem 2.4. m]

A corollary of this result is that a graph G = (V| E) with a ‘partial feedback vertex
set’ W C V such that G[V — W] does not contain a cycle with length > K has
treewidth < [W|+ K —2. (Use that a graph that contains no cycle with length > K

has treewidth < K — 2 [11].) Clearly, the same results hold if we consider classes
within k edges of G.
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