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Abstract

The adversaries of probability theory for dealing with uncertainty in Al systems
often argue that it is not expressive enough to distinguish between uncertainty and
ignorance due to incompleteness of information. Probability intervals, however, have
proven to be suitable for expressing incompleteness of information. In this paper, we
present a new method for computing such intervals from a partial specification of a
Joint probability distribution. We will show that our method allows for the successive
updating of probability intervals as evidence becomes available.

1 Introduction

When building knowledge-based systems it becomes evident that in many real-life domains
expert knowledge is not precisely defined, but instead is of an imprecise nature. Yet, hu-
man experts typically are able to form judgements and take decisions from uncertain,
incomplete and even contradictory information. In order to be useful in an environment
in which only such imprecise information is available, a knowledge-based system has to
capture and exploit not only the highly-specialized expert knowledge, but the uncertainties
that go with the represented pieces of information as well. Researchers in artificial intel-
ligence therefore have sought methods for representing uncertainty and have developed
reasoning procedures for manipulating uncertain knowledge.

As probability theory is one of the oldest mathematical theories concerning uncertainty,
it is no wonder that this formal theory was chosen as the first point of departure for the
pioneering work in the field of plausible reasoning. Applying probability theory in a
knowledge-based setting, however, soon proved to be problematic. One of the problems
in applying probability theory in a model for handling uncertainty in a knowledge-based
system, for example, is the difficulty of obtaining a joint probability distribution on the
problem domain: often only a few probabilities are known or can be estimated by an
expert in the field. In such a case therefore, one is confronted with the problem of having
to derive mathematically sound statements concerning probabilities of interest from only
a partial and often even inconsistent specification of a joint probability distribution. The
early models developed in the 1970s, such as for example the well-known certainty factor
model, [Shortliffe84], were able to handle this problem, although not in a mathematically
sound way.

Adversaries of probability theory for dealing with uncertainty in AI systems have
argued that this theory is not expressive enough to discern between uncertainty and igno-



rance due to incompleteness of information. In [Pearl88), however, J. Pearl has hinted at
the desirability of probability intervals for expressing incompleteness of information. In
this paper, we present a framework for computing such intervals for probabilities of inter-
est from an incomplete but consistent set of probabilities; the general idea of our approach
is to take the initially given probabilities as defining constraints on a yet unknown joint
probability distribution. The problem of computing probability intervals has already been
addressed before by several authors, see for example [Cooper86) and [Nilsson86). In the
sequel, we will comment on these papers. Here, we simply mention that our approach dif-
fers from the mentioned ones mainly by allowing for the successive updating of probability
intervals as evidence becomes available.

After providing some preliminaries in Section 2, we introduce in Section 3 the notion of
a partial specification of a joint probability distribution and show how linear programming
techniques may be used for computing intervals for probabilities of interest from such a
partial specification. Section 4 discusses an algorithm for updating a partial specification

of a joint probability distribution, taking the conceptual framework from the preceding
section for an invariant.

2 Preliminaries

In this subsection, we provide some preliminaries concerning probability theory, departing
from an algebraic point of view.

In an expert system, knowledge concerning the problem domain usually is represented
in a special knowledge-representation formalism such as for example the production-rule
formalism, [Lucas90]. In this paper we do not consider these knowledge-representation
schemes nor do we discuss the reasoning methods associated with these formalisms. Here,
we assume that knowledge is simply represented in statistical variables. We assume that
these variables can only take one of two values, thus allowing to view them as logical,
propositional variables. The generalization to variables with discrete multiple values,
however, is straightforward.

In the following definition the notion of a Boolean algebra of propositions is introduced.

Definition 2.1 A Boolean algebra B is a set of elements with two binary operations A
(conjunction) and V (disjunction), a unary operation - (negation) and two constants false
and true which (by equality according to logical truth tables) adhere to the usual arioms.
On a Boolean algebra B we define a partial order < as follows: for any z,,z, € B, we
say that z, < T if T3 = T, V 22 or (equivalently) if ) = z; A z,. A subset of elements
G = {g1,---,9n}, n 2 1, of a Boolean algebra B is said to be a set of generators for B if
each element of B can be represented in terms of the elements g; € G, i = 1,...,n, and
the operations A, V and . A set of generators G for B is said to be free if every mapping
of elements of G into an arbitrary Boolean algebra B' can be extended to a homomorphism
of B into B'. A Boolean algebra B is free if it has a finite set A = {a;,...,a,}, n > 1,
of free generators; we say that B is (finitely) generated by A. We use B(a,,...,ay,) to
denote the free Boolean algebra B generated by A; from now on, we will refer to A as the
set of atomic propositions and to B as the Boolean algebra of propositions.

We introduce the notion of a probability distribution on a Boolean algebra of propositions.



Definition 2.2 Let B be a Boolean algebra of propositions as defined above. Let Pr be a
function Pr: B — [0,1] such that

1. Pr ispositive, that is, for allz € B, we have Pr(z) > 0, and furthermore Pr(false) =
0,

2. Pr is normed, that is, we have Pr(true) = 1, and

3. Pr is additive, that is, for all z1,2; € B, if 2, A 25 = false then Pr(zy Vv z9) =
Pr(z1) + Pr(zs).

Pr is called a probability distribution on B.

It can easily be shown that the probability of an event is equivalent to the probability of the
truth of the proposition asserting the occurrence of the event: we have that a probability
distribution Pr on a Boolean algebra of propositions B has the usual properties. In the se-
quel, we will often take the point of view of a Boolean algebra of propositions B(a, ..., a,)
as a sample space being ‘spanned’ by a set of statistical variables 4;, i = 1,...,n, each
taking values from {a;,~a;}. Conditional probabilities are defined as customary.

The following lemma states how we may compute a revised probability distribution
given a specific piece of evidence.

Lemma 2.3 Let B(ai,...,a,), n > 1, be a Boolean algebra of propositions. Let Pr be a
joint probability distribution on B(ay,...,a,). Then, for a given e € {a;,~a;}, 1 <i < n,
the conditional probabilities Pr(z|e) for all z € B(ay,...,a;-1,841,...,a,) define a prob-
ability distribution on B(ay,...,ai_1,8i41,...,05).

The probability distribution defined by the probabilities Pr(z|e) as in the preceding lemma
is called the updated probability distribution given e. We will use the phrase to update
a probability distribution to denote the process of computing the updated probability
distribution given some piece of evidence. For updating a joint probability distribution
for successively obtained evidence the preceding lemma may be applied recursively.

3 Partial Specification of a Joint Probability Distribution

In this section we deal with the situation in which only a partial specification of a joint
probability distribution is available for making mathematically sound statements concern-
ing probabilities of interest. Such a partial specification of a joint probability distribution
may for example have been obtained from a domain expert who assessed some probabili-

ties of concern. In the following definition the notion of a partial specification is formally
defined.

Definition 8.1 Let B be a Boolean algebra of propositions. A partial specification of a
joint probability distribution on B is a total function P: C — [0, 1] where C C B. A partial
specification P: C — [0,1] is consistent if there erists at least one joint probability distri-
bution Pr on B such that Pr|c = P; otherwise, P is said to be inconsistent. Furthermore,
we say that P (uniquely) defines Pr, or alternatively that P is a definition for Pr, if Pr
is the only joint probability distribution on B such that Pr|c = P.



In this section we will often use the incomplete phrase partial specification to denote
a partial specification of a joint probability distribution on a given Boolean algebra of
propositions as long as ambiguity cannot occur.

The problem of determining the probability of a given event from a partial specification
of a joint probability distribution has already been investigated as early as halfway the
nineteenth century by G. Boole, [Boole54]. Boole’s work on probability theory, however,
has received little attention. In our opinion Boole’s ideas have become topical once more
in the context of reasoning with uncertainty in knowledge-based systems. In fact, our
method for deriving mathematically sound statements concerning probabilities of interest
is based on Boole’s work; we have used [Hailperin86] as a guide to the work of Boole.

In Section 3.1 we will present a method for computing bounds on probabilities of
interest from a consistent partial specification of a joint probability distribution. For
ease of exposition, we will assume that such a partial specification only comprises prior
probabilities; in Section 3.2 it will be shown that the method we have developed can deal
with conditional probabilities in the same way in which it handles prior ones.

3.1 Computing Bounds on Probabilities of Interest

In the following definition we introduce the notion of a basis for a joint probability distri-
bution. This notion will play an important role in the remainder of this section.

Definition 3.2 Let B be a Boolean algebra of propositions. A set C C B is called a
basis for a joint probability distribution on B if for any consistent partial specification
P: C — [0,1] defined on C, there ezists a joint probability distribution Pr on B such that
P is a definition for Pr.

It will be evident that in a Boolean algebra B we can identify several different bases.
However, one basis in specific will be shown to have some convenient properties.

Definition 8.3 Let A = {a),...,a,}, n > 1, be a set of atomic propositions and let
B(ay,...,a,) be the Boolean algebra of propositions generated by A. We define the set
Bo C B(ay,...,a,) such that Bo = {\=, Li | L; = a; or L; = —a;,aq; € A}.

Note that the set Bg has 2" elements, essentially being the ‘smallest’ ones from B(a,,. .., a,).
It can easily be shown that By indeed is a basis. Furthermore, note that by definition we

have that each consistent partial specification P: By — [0,1] defined on By uniquely

defines a joint probability distribution Pr on the entire Boolean algebra of propositions

B(ai,...,an).

It will be evident that a basis for a joint probability distribution on a Boolean algebra
of propositions with n free generators, n > 1, has at least 2" — 1 elements. Note that it
does not follow that when less than 2" — 1 probabilities have been specified initially, they
cannot define a joint probability distribution on a Boolean algebra of propositions B with
n free generators uniquely: it may well be that a consistent partial specification P defined
on a subset C C B with |C| < 2" — 1 is a definition for a joint probability distribution on
B. We say that a set C is a minimal basis for a joint probability distribution on B if C
is a basis as defined in Definition 3.2 and if in addition we have |C| = 2" — 1. The basis
By C B contains just one element too many to be a minimal basis. For, since the Boolean
algebra of propositions B is finite we have for each joint probability distribution Pr on
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B that any probability Pr(b;), b; € Bo, can be expressed in terms of the probabilities of

all other elements from By: Pr(b;) = 1 - E?_:_L#,- Pr(b;). The deletion of an arbitrary
element from By therefore yields a minimal basis.

The following three lemmas state some general properties concerning the basis Bp.

Lemma 3.4 Let B be a Boolean algebra of propositions with n free generators, n > 1. Let
the basis By C B be defined according to Definition 3.3 and let its elements be enumerated
asb;, i=1,...,2"% Then, for any joint probability distribution Pr on B we have

§: Pr(b,-) =1

=1

The probabilities Pr(b;) for the elements b; € By, i = 1,...,2", as mentioned in the
preceding lemma will be called the constituent probabilities of Pr.

Lemma 3.5 Let B be a Boolean algebra of propositions with n free generators, n > 1. Let
the basis By C B be defined according to Definition 3.3 and let its elements be enumerated as
bi, 1 = 1,...,2". Then, for each b € B there ezists a unique set of indicesT, C {1,...,2"}
such that b = \/;¢7, b;:

The unique set of indices Zj, for an element b € B having the property mentioned in the
previous lemma will be called the indez set for b.

Lemma 3.6 Let B be a Boolean algebra of propositions with n free generators, n > 1.
Let the basis By C B be defined as in the foregoing and let its elements be enumerated as
bi,i=1,...,2" Furthermore, let b € B and let I, be the indez set for b as in Lemma 3.5.
Then, for each joint probability distribution Pr on B we have

Pr(d) = Z Pr(b;)

iGIb

We will exploit the set By and its properties for computing intervals for probabilities
of interest from an arbitrary partial specification. Before we do so, we compare our
approach with similar approaches described in [Cooper86] and [Nilsson86], respectively.
In [Cooper86], G.F. Cooper uses a set of propositions similar to our set By for computing
probability intervals; he, however, does not introduce the notion of a basis. In his work on
probabilistic logic, N.J. Nilsson defines the notion of possible worlds, a notion that at first
sight is closely related to our notion of a basis, [Nilsson86]; in general, however, a set of
possible worlds will not be discriminating enough for the purpose of computing arbitrary
probability intervals.

Now, suppose that we are given probabilities for a number of arbitrary Boolean com-
binations of atomic propositions, that is, we consider the case in which we are given a
consistent partial specification P of a joint probability distribution on B, which is defined
on an arbitrary subset C C B. The problem of finding a joint probability distribution on
B which is an extension of P will now be transformed into an equivalent problem in linear
algebra. The general idea is to take the initially given probabilities as defining constraints
on a yet unknown joint probability distribution.

Let B once more be a Boolean algebra of propositions with n free generators, n > 1.
Let By C B be the basis defined in Definition 3.3 and let its elements be enumerated as



bi,i=1,...,2". Let C = {c1,...,¢m}, m > 1, be a subset of B and let P: C — [0,1] be a
consistent partial specification of a joint probability distribution on B. We now consider
an arbitrary (yet unknown) joint probability distribution Pr on B with Pr|c = P. Let
the constituent probabilities Pr(b;), b; € By, of Pr be denoted by z;, i = 1,...,2". Let
the initially specified probabilities P(¢;) = Pr(c;),c; €C,i =1,...,m, be denoted by p;.
From Lemma 3.4 and Lemma 3.6 we obtain the following inhomogeneous system of linear
equations:

d1,1z1 + ...+ dl,gnzgn = m
dm,lxl + ... + dmygnmzn = Pm
Ty + ... 4+ Ton = 1
._J) o ifje1., . - n . . .
where d; ; = 1 ifjed, yt=1,...,m, 5 =1,...,2% in which Z, is the index set

for ¢; € C. This system of linear equations has the 2" unknowns z,.. .,Zon. Now, let p
denote the column vector of right-hand sides of this system of linear equations and let =
denote the column vector of unknowns. Furthermore, let D denote the coefficient matrix
of the system. From now on, we will use the matrix equation Dz = p to denote the
system of linear equations obtained from a partial specification P as described above.
The following lemma states the relation between extensions of a consistent partial spec-

ification of a joint probability distribution and solutions to the matrix equation obtained
from it.

Lemma 8.7 Let B be a Boolean algebra of propositions with n free generators, n > 1. Let
the basis By C B be defined according to Definition 3.3 and let its elements be enumerated
asb;,i=1,...,2" LetC C B and let P: C — [0,1] be a consistent partial specification of
a joint probability distribution on B. Let Dz = p be the matriz equation obtained from P
as described in the foregoing. Then, the following properties hold:

o For any joint probability distribution Pr on B such that Pr|c = P, we have that the
vector T of constituent probabilities x; = Pr(b;), b; € By, i = 1,...,2", is a solution
to the matriz equation Dz = p.

o For any nonnegative solution vector & with components z;, i = 1,...,2", to the ma-

triz equation Dx = p, we have that Pr(b;) = z;, b; € By, defines a joint probability
distribution Pr on B such that Pr|c = P.

Note that although every joint probability distribution Pr which is an extension of a con-
sistent partial specification P corresponds uniquely with a solution to the matrix equation
Dz = p obtained from P, not every solution to Dz = p corresponds with a ‘probabilistic’
extension of P: Dz = p may have solutions in which at least one of the z,’s is less than
zero.

From Lemma 3.7 we derive a necessary and sufficient condition for a consistent partial
specification to be a definition of a joint probability distribution.

Corollary 3.8 Let B be a Boolean algebra of propositions. Let P be a consistent partial
specification of a joint probability distribution on B. Let Dz = p be the matriz equation
obtained from P as described in the foregoing. P uniquely defines a joint probability
distribution on B if and only if Dz = p has a unique nonnegative solution.
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Now consider the case in which we are given a consistent partial specification P which can
be extended in more than one way to an actual joint probability distribution. For making
statements concerning probabilities of interest, we can simply select a single ‘probabilis-
tic’ extension of P and use the selected joint probability distribution for computing the
probabilities we are interested in. Since P can be extended in more that one way to a
joint probability distribution on B we have that the matrix equation Dz = p obtained
from P has infinitely many solutions. For the rank  of the coefficient matrix DD we have
that r < 2. So, in Da = p we have r basic variables and 2" — r free variables. To obtain
a particular solution to the matrix equation, we choose the values of the free variables,
that is, some of the constituent probabilities, more or less freely, although subject to the
constraints from the matrix equation and z; > 0, i = 1,...,2"; from these values the
values of the basic variables can then be computed uniquely.

There are, however, other joint probability distributions on B respecting the initially
given probabilities which are not equal to the one defined by the chosen solution vector:
every other nonnegative vector differing from the selected one by a vector in the nullspace
of D defines another joint probability distribution on B which is also an extension of P.
It will be evident that the more free variables occur in the matrix equation, the more
arbitrary the selected probability distribution will be. The results from using one solution
vector for computing probabilities of interest can therefore differ considerably from the
results from using another solition vector. Selecting a single, not unique extension of
a partial specification of a joint probability distribution to serve as the basis for further
computations as sketched in the foregoing, therefore does not render a reliable result.

We abandon the idea of selecting a single extension of a partial specification of a joint
probability distribution for further computation: we introduce a method for finding best
possible upper and lower bounds on probabilities of interest. The idea of finding bounds
on probabilities from a partial specification of a joint probability distribution originated
with G. Boole, as well as the idea of obtaining the ‘narrowest limits’ ([Hailperin86], page
338).

We define the notions of the least upper bound and greatest lower bound functions
relative to a partial specification of a joint probability distribution.

Definition 8.9 Let B be a Boolean algebra of propositions. LetC C B and let P: C — [0,1]
be a consistent partial specification of a joint probability distribution on B. The function
lubp: B — [0, 1] defined by lubp(b) = sup{Pr(b)|Pr is a joint probability distribution on B
such that Pr|c = P} for all b € B, is called the least upper bound function relative to P.
The greatest lower bound function relative to P, denoted by glbp, is defined symmetrically.

Note that the least upper bound function relative to a partial specification P in general
is not a joint probability distribution; of course, the same remark can be made concern-
ing the greatest lower bound function. For a given b € B, the length of the interval
[glbp(b), lubp(b)] expresses the lack of knowledge concerning the probability of the truth
of the proposition b. The two types of bounds are interrelated by lubp(b) = 1 — glbp(=b),
for each b € B.

Let P be a partial specification of a joint probability distribution on a Boolean algebra
of propositions B. The following lemma now states that we can find for each b € B a
joint probability distribution Pr on B being an extension of P such that Pr(b) = lubp(b);
again, a similar observation can be made concerning glbp.



Lemma 3.10 Let B be a Boolean algebra of propositions. LetC C B and let P: C — [0, 1]
be a consistent partial specification of a joint probability distribution on B. Furthermore,
let the functions lubp and glbp be defined according to Definition 3.9. Then, for each
b € B we have lubp(b) = maz{Pr(b)|Pr is a joint probability distribution on B such that
Pr|c = P}. A similar property holds for glbp(b).

Proof. The property stated in the lemma will readily be seen using the observation that
the Boolean algebra of propositions B is finite. The lemma has been proven formally by
Th. Hailperin, [Hailperin65]. B

On the basis of the properties stated in Lemma 3.10, it can be shown that the problems
of finding for a given b € B the least upper bound lubp(b) and the greatest lower bound
glbp(b) relative to a partial specification P of a joint probability distribution on B, are
equivalent to the following linear programming problems, respectively:

1. maximize Pr(b) subject to Dz = p and = > 0; and
2. minimize Pr(b) subject to Dz = p and & > 0,

where Dz = p is the matrix equation obtained from P. The equivalence will be stated
formally in Proposition 3.11. First, we consider case (1) in some detail in order to obtain
a more traditional representation of the linear programming problem.

Let B be a Boolean algebra of propositions with n free generators, n > 1. Let Bo C B
be the basis defined according to Definition 3.3 and let its elements be enumerated as
bj, ¢ = 1,...,2". Now let b € B and let Z; be its index set. For each joint probability
distribution Pr on B, we have that

Pr(b) = )" Pr(b;) = S

i€l i€l

0 ifi¢gTy

1 ifieT, ~ Lhem

Now, let for b constants ¢;, i = 1,...,2", be defined such that ¢; = {

we have that

2’1
Pr(b) = E CiT;

=1

So, our aim is to find the best upper bound for this function Z?;l CiT;.
We recall that in the matrix equation Dz = p obtained from a partial specification

P: ¢ —[0,1], C C B, D denotes a (|C| + 1) x 2" matrix, & is the 2" column vector
of constituent probabilities Pr(b;) and p is the |C| + 1 column vector of initially given
probabilities. The partial problem (1) can therefore be reformulated in the following more
traditional representation of a linear programming problem:

2"
maximize 3 ez
=1

2"
subject to (i) X dijz;=pi,fori=1,...,|C|+1, and
=
(ii)) z;>0,forj=1,...,2"



where the constants d; ; constitute the matrix D. Note that we have added nonnegativity
constraints to Dz = p explicitly to allow for nonnegative solutions only. The linear
programming problem (2) can be treated analogously by taking for the objective function
-¥L, cizi.

Proposition 8.11 Let B be a Boolean algebra of propositions. LetC C B and let P: C — [0, 1]
be a consistent partial specification of a joint probability distribution on B. Let Dz = p

be the matriz equation obtained from P. Furthermore, let the functions lubp and glbp be
defined according to Definition 3.9. Then, for any b € B we have that lubp(b) is equal to
the solution of the linear programming problem

mazimize Pr(b)

subject to (i) Dz = p, and
(i) =>o0.

A similar statement can be made concerning glbp(b).

Now consider application of the linear programming approach in a model for handling
uncertainty in a knowledge-based system. In short, a domain expert is requested to assess
several probabilities. The assessed probabilities are used in the manner described in this
section to generate a system of linear constraints. From this system of constraints upper
and lower bounds on the probabilities that are of interest to the user of the system are
computed. The following example illustrates the idea.

Example 8.12 Let A = {a;,02,a3} and let B(a;,ay,a3) be the free Boolean algebra
generated by A. Let C = {a; A az,a; V a3,a3,a3 A —a3}. Note that C cannot be a basis
for a joint probability distribution on B(a;, a3, as) since it only contains four elements. Let
P be a consistent partial specification defined on C which can be extended in more than one
way to a joint probability distribution on B(a,, a3, a3). We consider such a ‘probabilistic’
extension Pr. Suppose that we have the following function values of Pr coinciding with
the corresponding initially given function values of P:

Pr(ayAa) = 0.23
Pr(ﬂal v a3) = 0.62
Pr(ay) = 043

Pr(ag A —a3) = 0.18

Now let the elements of the basis By C B(a,,az,a3) be enumerated as follows:

hh = a A ag A a3
by = -a; A ay A as
b3 = a A —az A a3
by = a A ap A a3
bs = =a; A =-az; A a3
be = =may A a2 A -az
b7 = a A =az; A -a3
bg = a1 A -az A -a3



Furthermore, let the constituent probabilities Pr(b;) be denoted by z;,7 =1,...,8. From
P we obtain the following system of linear equations:

7 + T4 = 0.23
z7 + 22 + 3 + zs + 26 + zg = 0.62
Ty + T + T4 + Tg = 043
T4 + Tg = 0.18
zZy + 22 + 3 + 4 + 5 + Te + T7T + TZ = 1

We add the constraints
z;20,i=1,...,8

explicitly. Now, suppose that we are interested in bounds on the probability of the truth of
the atomic proposition a3. From Proposition 3.11 we have that the problem of determining
the best upper bound for Pr(a3) is equal to maximizing the objective function

T1+ 2+ 23+ 25

subject to the constraints shown above. Applying the simplex method for this purpose we
obtain lubp(az) = 0.62 and glbp(as) = 0.25. W

It is well-known that an LP-problem can be solved in polynomial time, that is, polynomial
in the size of the problem. The size of an LP-problem is dependent, among other factors,
upon the number of variables it comprises. The specific type of problem discussed in the -
foregoing has exponentially many variables, that is, exponential in the number of statistical
variables discerned in the problem domain. Therefore, these problems cannot be solved

in polynomial time; computing bounds on probabilities of interest requires an exponential
number of steps.

3.2 Dealing with Conditional Probabilities

In the previous subsection we have presented a linear programming method for comput-
ing bounds on probabilities of interest from a partial specification of a joint probability
distribution. This method has been developed for partial specifications comprising prior
probabilities only. In the domains in which knowledge-based systems are employed, how-
ever, it often is easier to assess or otherwise obtain conditional probabilities than it is to
obtain prior ones. Moreover, the user of the system will often be interested in conditional
probabilities. We will show that conditional probabilities can be introduced into the linear
programming method without requiring much effort.

We first examine the case in which we are initially given some conditional probabilities.
Let B once more be a Boolean algebra of propositions with n free generators, n > 1.
Furthermore, let By C B be the basis as defined in Definition 3.3 and let its elements
be enumerated as b;, 2 = 1,...,2". Let P be a consistent partial specification of a joint
probability distribution on B; we consider a joint probability distribution Pr on B which
is an extension of P. Now suppose that an expert has assessed the value P(c¢jlcz) =
Pr{ci|e2) = po, where ¢1,c2 € B, to be taken as a conditional probability. Note that it
follows implicitly that Pr(cz) # 0. By definition, we have Pr(c;|ec;) = £2{e14%)  From

Pr(c2
Lemma 3.5 and Lemma 3.6 we have that there exist an index set T, ac, for ¢; A ¢z such

that
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Pr(ciAcy) = Z Pr(b;)

i€Ze; ncy
and an index set T, for ¢z such that
Pr(cg) = E Pr(b;)
i€,
where Pr(b;) are the constituent probabilities of Pr. We therefore have that
2i€T., e, £7(bi) _

Friale) =, Py P

It follows that

> Pr(b)=po- Y Pr(b)

€T Acy €T,

We now obtain the constraint

> Pr(bi)—p- Y. Pr(bi)=0

t'EIcl Acy ‘.61'52

which is similar in concept to the ones we have encountered in our linear programming
problems; it can therefore be treated likewise. (Note that we have to guarantee that
ZieIc, Pr(b;) = 0 is not a solution to the obtained system of linear constraints.)

Now consider the case in which we are interested in lower and upper bounds on a
conditional probability. From the foregoing discussion, it will be evident that we have
a fractional objective function for our problem. Such a problem, called a fractional lin-
ear programming problem, however, can be reduced to a related ‘ordinary’ linear pro-
gramming problem with one additional variable. The following proposition formulated in
(Hailperin86] but originally due to A. Charnes, states this result.

Proposition 3.18 The fractional linear programming problem
marimize -3%

subjectto (i) Dz =p
(ii) >0

is equivalent to the linear programming problem

mazimize cy

subjectto (i) Dy =tp
(i) gy =1
(i) y20
(iv) t>0

11



The linear programming problems we obtained in Section 3.1 were in standard form: all
constraints except the nonnegativity constraints are equalities. It will be evident that our
method is able to deal with LP-problems in general form as well. Allowing inequalities in
our method provides a domain expert with a flexible means for expressing probabilistic
information: besides prior and conditional probabilities, he may specify bounds on prob-

abilities instead of point estimates and he may give certain probabilities relative to other
ones.

4 Processing Evidence

In this section we address the problem of updating a partial specification of a joint prob-
abiliy distribution P as evidence becomes available, that is, we address the problem of
processing evidence in the conceptual framework we have presented in the preceding sec-
tion taking this framework for an invariant. To this end, we discern two types of evidence:

e evidence concerning the partial specification itself, called case-independent evidence,
and

e evidence observed for a specific case, called case-dependent evidence.

Case-independent evidence is merely new knowledge concerning the partial specification
P rendering it ‘more specified’: it is information we did not have before. This type of
evidence is dealt with just by adding another constraint representing the piece of evidence
to the system of linear constraints obtained from P. The bounds obtained after processing
this type of evidence are modified monotonically: new evidence merely leads to the same
or narrower probability intervals. Note that this property allows for stepwise filling-in a
probability distribution.

The second type of evidence concerns information that for the specific case we are
looking at we have observed that a certain statistical variable has a certain value. From
the way an updated probability distribution in the fully specified case is computed, it will
be evident that we cannot simply add this evidence as a new constraint to the system of
constraints obtained from the partial specification P; the addition of such a constraint will
probably even render the system infeasible. Adhering to the basic idea of our framework,
our aim now is to arrive at a method for ‘updating’ the system of constraints obtained
from P, yielding a new system of linear constraints such that this new system defines the
possible extensions of the partial specification P after the evidence has been processed; in
that case, after processing a piece of evidence we can compute bounds on probabilities of
interest just like before the evidence was processed.

Let P: C — [0,1] be a partial specification of a joint probability distribution on the
Boolean algebra of propositions B(ay,...,a,), n > 1. From P we obtain the system of
linear constraints Dz = p,x > 0, where & is a 2"-column vector of constituent probabil-
ities, as described in the preceding section. Let F' denote the feasible set of this system
of constraints. Recall that each vector # € F defines a joint probability distribution
Pr on B(a,,...,a,) which is an extension of P. Now, suppose that we obtain the case-
dependent evidence that the statistical variable A € {4,,..., A,} has the value true (the
case in which we have observed that A has the value false is dealt with analogously).

We consider the joint probability distribution Pr defined by a specific vector € F
and investigate the updating of Pr. We observe that 2"~! constituent probabilities of Pr
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specify a, that is, A = true, and that the remaining 2"~! ones specify —a. It will be evident
that updating the joint probability distribution Pr amounts to setting all constituent
probabilities specifying —a equal to zero, and then normalizing the remaining constituent
probabilities in order to render the result again a joint probability distribution. Now
consider the defining vector . Without loss of generality, we take the components of x
to be ordered in such a way that the first 2"~! components correspond to the constituent
probabilities of Pr specifying a and that the remaining components correspond to the
constituent probabilities specifying —~a. The following definition introduces an update
mapping such that when applied to the vector  the updated vector defines the updated
joint probability distribution (for ease of exposition, we take the updated vector to be of
the same dimension as the original one).

Definition 4.1 The update mapping U: R?" — R?", n > 1, is the partial mapping defined
by

on—1

1. U((%1,...,22n)) = = ,...,;{‘1“,0,...,0 if Y % #0, and
E z z: z =1
=1

i=1

2. U(z) = undefined, otherwise.

The case in which we apply the update mapping U to some vector * € R2" of con-
stituent probabilities for which we have E?:Il z; = 0 deserves some special attention.
For the joint probability distribution Pr defined by such a vector &, we evidently have
Pr(a) = 0. Evidence that Pr(a) = 1 contradicts this prior information. For this case, we
take U(x) = unde fined; this is an arbitrary choice. We return to this observation shortly.
Since we are primarily interested in applying mappings to vectors representing joint
probability distributions, we will frequently restrict the discussion to unit simplices.

Definition 4.2 The unit simplex in R®, n > 1, denoted by S, is the convez set in the
positive orthant of R such that for each x € S, we have Y0, z; = 1.

The following lemma states the evident property that when applied to a vector represent-
ing a joint probability distribution the update mapping U yields a vector which again
represents a joint probability distribution, provided of course that the result is defined.

Lemma 4.8 Let the mapping U: R?" — R2?", n > 1, be defined as above. For each vector
x € S2n, we have that either U(x) € San or U(x) = undefined.

Until now we have only looked at the updating of a single vector. Recall that such a
vector is an element of a convex polytope F of vectors, each defining a joint probability
distribution which is an extension of the initially given partial specification P. For pro-
cessing the evidence that the statistical variable A has adopted the value true, we apply
the update mapping U to each vector € F. We therefore are interested in the image
U(F) of F. Since the mapping U is non-linear, the question arises whether the image of
a convex polytope under U again is a convex polytope. We will show that this question
may be answered in the affirmative.

It will be evident from the preceding informal discussion that the update mapping U
is composed of a multiplication and a projective mapping. The multiplication mapping is
defined in the following definition.
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Definition 4.4 The multiplication mapping M: R?" — R2?", n > 1, is the partial mapping
defined by

an—1

1. M((z1,...,220)) = | 58—, o0 if 3 z;#0,and
E i 2 z; =1
s=1

i=1

2. M(x) = undefined, otherwise.

The geometrical idea of applying the multiplication mapping M to a vector from the unit
simplex San is sketched in Figure 3.1.

Figure 3.1

We consider this mapping M in some detail.

Lemma 4.5 Let the multiplication mapping M: R?" — R?", n > 1, be defined according
to Definition 4.4. Furthermore, let F C San be a convez polytope such that for each x € F
we have that M(z) # undefined. Then, the image M(F) of F is a convez polytope.
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Proof. We prove the lemma by showing that by applying M each line segment in F is
mapped into a line segment.

Let =,y € F; let M(x); denote the i-th component of the vector M(x). Then,
Az + (1 — Ay, 0 < A <1, represents the line segment between the two points = and
y. Now, consider M(Az + (1 — A)y); note that the conditions of the lemma guarantee
that M(Ax + (1 — A)y) # undefined. We now have to show that there exists a scalar u,

0 < p <1, such that the property M(Az + (1 — A\)y) = uM(z) + (1 — p)M(y) holds. We
have

MO+ (1-Ny)yi= =T 0=y Asit (- Nu

2n-1 2n-—1 2n—1

2 (Azi+(1-Ay) A X zi+(1-2) % y;
J=1 =1 =1

on—1 2n—l
fori=1,...,2" Nowlet a= Y z;and 8= ¥ y;. Then,
=1 =1
Az; + (1 - )\)y,- A (1 - /\)
M) 1-Ny); = = i i
(A2 + (1 - A)y) det(I-N8 rat(@-n8 T xava-ng¥
By definition, we have M(z); = % and M(y); = %. So,
M +(1-\y) = ——2 12

v M@t o a o g MW =

= pM(x)i+ (1 - p)M(y);

fori = 1,...,2", where p = — +‘\1"_ . Note that 0 < p < 1. Furthermore, note that
A = 0 corresponds with g = 0 and tEat A = 1 corresponds with 4 = 1. We have that

pM(x)+ (1 — p)M(y) is the line segment between the points M(x) and M(y). It follows
that M(F) is convex. B

Lemma 4.8 Let the multiplication mapping M : R?" — R?", n > 1, be defined according
to Definition 4.4. Furthermore, let F C S be a convez polytope such that for each « € F

we have that M(x) # undefined. Then, = is a vertez of F if and only if M(x) is a vertezx
of M(F).

Proof. The lemma follows immediately from the proof of the previous lemma and the
observation that for each ¢,y € F such that ¢ # y, we have M(z) # M(y). B

Recall that the update mapping U from Definition 4.1 is composed of the multiplication
mapping M and a projective mapping. We now turn our attention to this projective
mapping.

Definition 4.7 The projective mapping R: R?" — R?", n > 1, is the mapping defined by
R((a:l,. . .,.’Bgn)) = (231,. . .,zzn-l,O,. ,0)

Note that if we take U = R o M, we formally have to deal with the case where M(z)
is undefined for some vector . For ease of exposition we disregard such cases for the
moment. The following two lemmas should be evident.
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Lemma 4.8 Let the projective mapping R: R?" — R?", n > 1, be defined as above. Let
F C S3n be a conver polytope. Then, the image R(F) of F is a convez polytope.

Lemma 4.9 Let the projective mapping R: R?" — R?", n > 1, be defined as above. Let
F C S3n be a convez polytope. Then, R(x) is a vertex of R(F) only if x is a vertez of F.

Note that the reverse property of Lemma 4.9 does not hold, that is, not every vertex z of
F corresponds with a vertex of R(F).

Now, recall that we are interested in the result of applying the update mapping U to
the set F' of vectors each defining a joint probability distribution which is an extension of
the initially given partial specification P. We combine the Lemmas 4.5, 4.6, 4.8 and 4.9
to yield the following lemma concerning U.

Lemma 4.10 Let the update mapping U : R?" — R?", n > 1, be defined according to
Definition 4.1. Let F C San be a convex poytope such that for each & € F we have that
U(z) # undefined. Then,

1. the image U(F) of F is a convez polytope, and
2. U(=) is a vertex of U(F) only if = is a vertez of F.

Furthermore, let vert(F) be the set of vertices of F and let hull(U(vert(F))) be the convex
hull of U(vert(F)). Then, U(F) = hull(U(vert(F))).

Consider the last statement of the preceding lemma once more. It will be evident that
for a given polytope F' C Sin, n > 1, having the mentioned property, the set U(vert(F))
is not the minimal spanning set of U(F) since it may contain some interior points from
U(F) as well.

The last lemma now provides us with a theoretical means for updating the system
of constraints obtained from the partial specification P. In the following algorithm we

assume that the feasible set of this system does not comprise any vectors = for which
U(z) = undefined.

Algorithm 4.11 Let the update mapping U : R*" — R?" | n > 1, be defined according to
Definition 4.1. Let F C Son be a convez polytope such that for each * € F we have that

U(=2) # undefined. Then, the following algorithm yields a system of constraints having
U(F) for its feasible set:

1. Compute the set vert(F') of all vertices of F.
2. Apply the operator U to each element x € vert(F'), thus obtaining the set U(vert(F)).
3. Use U(vert(F')) to span the convex hull U(F) = hull(U(vert(F))).

4. Construct the supporting hyperplanes of U(F) and generate the appropriate system
of constraints.

This algorithm for processing case-dependent evidence of course is rather inefficient; step

(1) in itself already takes exponential time. It shows however that updating the system of
constraints can actually be achieved.
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We return to the case in which the feasible set F of the system of constraints obtained
from P contains at least one vector for which the image under U equals undefined.
Note that in this case F' has at least one vertex = such that U(z) = undefined. We
distinguish two cases: if vert(F') only consists of vectors @ for which U(x) = undefined,
then the observed evidence we are trying to process evidently is inconsistent with the prior
information; the evidence cannot be processed and the system should report the detected
inconsistency. If, on the other hand, vert(F) also comprises some vertices for which the
image under U is defined, then the observed evidence can be processed. In computing
U(F), however, we have to exclude all vectors defining marginal distributions the piece
of evidence is inconsistent with. Easy geometrical observations suffice to show that the
above-mentioned algorithm yields the correct result after just ignoring those vertices of F
for which the image under U is undefined; further details are provided in [Gaag90a).

5 Conclusion

In this paper we have introduced the notion of a partial specification of a joint probability
distribution. We have exploited this notion in devising a method for computing intervals
for probabilities of interest from an incomplete set of initially assessed probabilities and
for successively updating them as evidence becomes available. By means of this method
we have proven the claim that probability theory is not expressive enough to deal with
incomplete information to be a misconception. Furthermore, we have endorsed Pearl’s
viewpoint concerning the suitability of probability intervals for expressing incompleteness
of information as mentioned in our introduction. Although our method serves the purpose
of supporting these observations, it can only be considered a theoretical result. Since
representing an arbitrary joint probability distribution requires an exponential number of
probabilities, any algorithm based on the ideas presented in this paper will take exponential
time.

In case many independency relationships hold between the statistical variables dis-
cerned, however, far less probabilities suffice for uniquely representing a joint probabil-
ity distribution, see for example [Lauritzen88]. So, it will be advantageous to exploit
such independency relationships in a linear programming approach. In [Cooper86], G.F.
Cooper already briefly addressed the incorporation of independency relationships in his
method. In [Gaag90b], we will show how independency relationships can be exploited
in our framework, yielding an efficient algorithm for computing intervals, having under
certain conditions a polynomial time complexity.
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