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radio-networks [14], which can be solved using strong coloring. Another application
we mention concerns the segmentation problem for files in a network [2]. Here the
colors represent different (disjoint) segments of a file F', the graphs are regular with
degree d and a strong coloring is desired with exactly d + 1 colors. (This implies
that in the neighbourhood of every node a full copy of F can be assembled from the
available segments.)

In this paper we present some facts about the strong coloring problem for graphs.
We prove a number of basic facts and present some results when the problem is
restricted to special classes of graphs. We present a method to strongly color planar
graphs with at most 3(A 4 3) colors, where A is the maximum degree in the graph.
We note that the naive method for strongly coloring a planar graph would use up
to 5A + 1 colors. It is shown that outerplanar graphs can be strongly colored with
at most A + 4 colors.

The paper is organized as follows. In section 2 we give some definitions con-
cerning graphs and (strong) graph colorings. In section 3 we give some preliminary
results for the strong coloring problem for certain classes of planar and non-planar
graphs. In section 4 we give some facts about strongly coloring (r—1)-regular graphs
with r colors, which we refer to as “perfect coloring”. In section 5 the main results
for strongly coloring planar graphs are given. In section 6 we show that every circuit
with non-intersecting chords can be strongly colored with at most A+4 colors, which
is the main technical result that underlies the constructions in section 5. Section 7
contains some remarks and open questions. In an appendix we present a new proof
of the NP-completeness of the strong coloring problem for graphs. We will assume
some familiarity with graph theory (cf. Harary [10]).

2 Definitions

Let G = (V, E) be a graph with |V| = n vertices and |E| = m edges. The distance
between two nodes z and y is defined as the number of edges on the shortest path
between z and y. Let A = maz{deg(v)|v € V}, with deg(v) the degree of vertex
v. The square graph of G is the graph G? with V(G?) = V(G) and E(G?) =
{(u,v)}|(u,v) € E or (u,z) € E and (z,v) € E for some z}. Observe that A(G?) <
(A(G))%. The chromatic number of a graph G, denoted by x(G), is the least K <n
such that G can be K-vertex-colored, i.e., such that there exists a function f :
V - {1,2,...,K} with f(u) # f(v) whenever {u,v} € E [10]. The chromatic
indez of a graph G, denoted by x/(G), is the least K < m such that G can be
K-edge-colored, i.e., such that there exists a function f : E — {1,2,..., K} with
f{u,v}) # f({u,w}) for all u,v,w € V and {u,v}, {u,w} € E [10]. With vertex
(edge) coloring, every pair of vertices (edges) that have distance one must have
different colors. Whenever colorings are considered, c(v) denotes the color given to
a vertex v.

The generalization to distance-k coloring is now straightforward. The k-chromatic



number of a graph G, denoted by xi(G), is the least K < n such that G can
be distance-k K-vertex-colored, i.e., such that there exists a function f:V -
{1,2,..., K} with f(u) # f(v) whenever u and v lie within distance k in G = (V, E).
The k-chromatic indez of a graph G, denoted by x}(G), is the least K < m such
that G can be distance-k K-edge-colored, i.e., such that there exists a function
f:E—{1,2,...,K} with f({u,v}) # f({w,z}) whenever {u,v} and {w,z} € E
and {u,v} and {w,z} lie within distance k from each other. For k = 2, we speak
of the strong chromatic number and the strong chromatic index respectively. If a
(r—1)-regular graph can be strongly colored with exactly r colors, then this coloring
is called perfect [11].

McCormick {16] has proved that, given a graph and an integer K, the problem
of deciding whether a graph can be distance-k vertex colored with K colors is NP-
complete, for every k > 1. Another proof for the strong chromatic number problem
can be found in the Appendix. Checking whether a graph can be strongly colored
with K < 3 colors is trivial. If a graph has A > 4 or contains a Cs or a K, 3, then
the graph is not strongly 4-colorable. Recently Bakker [3] has shown that deciding
whether a (r—1)-regular graph can be perfectly colored with r colors is NP-complete,
even for the case r = 4. It is open whether the problem of deciding x}(G) < K is
NP-complete. In this paper we will focus entirely on the strong coloring problem
(k = 2). We will be refering to some special classes of graphs including planar
graphs, outerplanar graphs, Halin graphs, chordal graphs and partial k-trees. We
assume that the first three are known but include a recursive definition of partial
k-trees.

Definition 2.1 ([1]) The class of k-trees is the smallest class of graphs that can be
defined as follows:

1. the complete graph K on k vertices is a k-tree.

2. if G = (V,E) is a k-tree and vy,...,v; form a complete subgraph of G, then
the graph G' = (VU {w}, EU {(v;,w)|1 < i < k}) with w g V is also a k-tree.

A graph is a partial k-tree if and only if it is the subgraph of a k-tree.

3 Preliminaries

To obtain some first bounds for x3(G), consider the smallest-last (SL) ordering of a
graph, determined by the following algorithm of [15] in O(m) time.

ALGORITHM SL

j=nH=0s
for j = n downto 1 do



begin
Let v; be a vertex with minimum degree in H.
Remove v; and all edges incident to v; from H.
end
SL = V1402004 Up.

END OF ALGORITHM

Let SL = v,vs,...,v, be a smallest-last ordering of G. Let p be the maximum
of the degrees of the vertices as they appear in the for-loop of algorithm SL. It is
easily shown that p = mazgmin,ev(u){degn(v)|H a subgraph of G}, and that G
can be colored with p + 1 colors.

Theorem 3.1 With p be defined as above: A +1 < x5(G) < p.A +1.

Proof: The lowerbound is trivial. For the upperbound, we use induction to
show that the vertices can be strongly colored in SL-order. Let C be a set of p.A +1
colors. Vertex v; can be assigned an arbitrary color from C. Assume we have
strongly colored the vertices vy,...,v;_; (following the smallest-last ordering) using
colors from C (i > 2). v; is connected to at most p colored neighbours, hence v; has
at most p.A colored vertices within distance 2 and at most p.A colors from C are

blocked for it. Hence v; can be colored with a color from C. This completes the
induction. O

Corollary 3.2 Partial k-trees can be strongly colored with at most k.A + 1 colors.

Proof: From definition 2.1 it follows that there exists a smallest-last ordering
of the partial k-tree by removing vertices with maximum degree < k in each step of
algorithm SL. Using theorem 3.1, the corollary follows. O

Lemma 3.3 Every outerplanar graph can be strongly colored with at most 2A + 1
and every planar graph with at most 5A + 1 colors.

Proof: Every outerplanar graph has a vertex with degree at most 2. Deleting
this vertex with all its incident edges gives another outerplanar graph with the same
property. In this way one can easily make a smallest-last ordering in which the
maximum degree in each step is at most 2, and the lemma follows from theorem 3.1
for outerplanar graphs. Noting that every planar graph has a vertex with degree at
most 5, the lemma easily follows in a similar way. O



Figure 1: Example of a G, for p = 3.

Similar bounds can be given for distance-k vertex and edge colorings. Observe
that theorem 3.1 also implies that x'(G) < x2(G), as x'(G) < A + 1 by Vizing’s
theorem. The question whether xx(G) < xi(G) remains as an interesting open
problem. For trees it is clear that x3(G) = A + 1 and x4(G) = maz{deg(u) +
deg(father(u))lu € V}. Every Halin graph can be strongly colored with at most
A + 6 colors. (For the latter result one uses that every tree can be strongly colored
using at most A + 1 colors and every circuit with at most 5 colors.)

Observe that from a strong vertex coloring with x3(G) colors one can obtain
a strong edge coloring with (x3(G))? colors, by assigning to every edge {u,v} the
color [c(u), ¢(v)], where the colors of the vertices are taken from the strong vertex
coloring. Notice that this large difference of the strong chromatic number and the
strong chromatic index actually occurs in the case of the graph G = K, ,,, where
x2(G) = 2n and x4(G) = n?.

There appears to be no simple connection between x(G) and x3(G). A reasonable
conjecture like x2(G) < (A 4 1)x(G) + 1 fails, by observing the construction of the
following bipartite graph G, = (< Vi, V2 >, E). V4 consists of p vertices 0,...,p—1.
V2 consists of p(p — 1) vertices {4,7},0 <i<p,0<j <p—1, and a vertex A. Let
¢ € V1 be connected to the nodes {i,z} for 0 < £ < p — 1 and to vertex A. Add
p(p — 1) vertices [k,1] to V}, with 0 < k,I < p— 1, and the edges ([i, 5], {0,4}) and
([4,5], {k,((k—1)i+ j) mod (p—1)}), with 1 <k < pand 0 <i,5 < p—1. Note
that every two vertices in V; have distance 2 to each other. Hence this bipartite
p-regular graph has A = p,x(G) = 2 and x2(G) = A(A — 1) + 1. It shows that
x(G) and x3(G) can differ dramatically. In figure 1, an example is given for p = 3.

From the observation that xx(G) = x(G*) and x4(G) = x'(G*) (using the defini-
tion of the k™R power graph G* of [10]) for every k > 2, we conclude that we can use
the available algorithms for ordinary graph coloring for obtaining strong colorings,



after calculating G? in O(A.m) time. Also all lowerbounds for the chromatic num-
ber trivially hold for the strong chromatic number. This also leads to the following
observation:

Theorem 3.4 Chordal graphs can be strongly colored in a smallest possible number
of colors in polynomial time. For every chordal graph G one has x3(G) < (3A+1)%

Proof: Note that the square graph of a chordal graph is a chordal graph too,
and can be colored in an optimal number of colors in polynomial time (cf. Golumbic
1).

For proving x2(G) < (%A + 1)? we induct on n, the size of G. For n < 3 the
result trivially holds. Consider an arbitrary chordal graph G of n nodes, n > 3.
Without loss of generality we may assume that G is connected. If G is a clique, then
it can be strongly colored with n = A 41 colors and A+1 < (JA +1)% Thuslet G
not be a clique, S a minimal node separator of G and A, A, ..., A; the connected
components of G — S. Let H; be the induced subgraph spanned by S and A,, and
let H; be the induced subgraph spanned by S and A,, ..., A;. By well-known facts
for chordal graphs [9] S is a clique, and H; and H, are connected chordal graphs.
Let |§| = s. By induction H, and H, are strongly colorable with the colors of some
set C of (A +1)2 colors. A strong coloring of G can now be obtained as follows.

Permute the colors such that in the strong colorings of H; and Hj, the nodes of
S get the same colors. (This can be done because the colors assigned to the nodes
of S must all be different, by the strong coloring requirement, in both the coloring
of H; and the coloring of H;.) Let N; be the set of nodes in A, that are reached
by an edge from S, and N; the set on nodes in A; U...U A; defined similarly. Let
| V1| = nq and |N;| = ng, and observe that ny + n, < s.(A-s+1) < (-;-A +1)2 —s.
Thus we have sufficiently many colors in C to arrange that s colors are fixed for
the nodes in S, and the remaining colors can be permuted such that in the strong
colorings of H; and H; the nodes in N; and N, are colored by disjoint sets of colors.
The resulting strong colorings of H; and H, can now be combined (merged) to a
correct strong coloring of G which employs no more than (1A + 1)? colors. m|

We conjecture that x(G?) < Q + 1, with Q the number of vertices of the largest
clique in the graph G2. If G? is a linegraph, then this conjecture is true by noting
that if the linegraph G? has a largest clique of size @, then the linegraph of this
linegraph (which is a normal graph) has maximal degree Q and can be edge-colored
with @ + 1 colors. Hence the linegraph G? can be vertex-colored with Q + 1 colors.

4 Perfect Colorings
Recall that a (r — 1)-regular graph is perfectly colorable if it can be strongly colored

with r colors. This coloring is useful for the following file distribution problem [2]
“Given a connected regular network G = (V,E) and a file F, assign to each
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node z € V a segment F, C F such that for all z € Viltzs}ee Fy UF, = F
and in every neighbourhood the distributed fragments are free of overlaps, i.e.,
¥(z,y) € E: F,NF, = 0.” When there are r different disjoint segments of F, this
problem is only meaningful for (r — 1)-regular networks. A perfect coloring describes
the assignment of the segments for a valid solution of the file distribution problem.
It has been shown by Bakker [3] that this problem is NP-complete, even for the case
r =4,

In this section we give some characteristics of perfectly colorable graphs. Some

relationships between strong colorings, perfect colorings and edge colorings are the
following:

Theorem 4.1 ([2]) If a (r — 1)-regular graph with |V| = n nodes can be perfectly
colored, then r|n and every group of equally colored nodes has 2 nodes.

Proof: Let N(z) denote the set of vertices having distance < 1 to node z.
Consider any perfect coloring of the graph, and let ¢ be one of the colors. Let z;
and z; be two nodes colored c. There can be no node y in N(z;) N N(z3) because,
if there was, y would have two neighbours of the same color (which contradicts the
strong coloring property). Thus Vz,,z; with ¢(z;) = c(xz) =c: N(z1)NN(zz) = 0.
Furthermore Vy3z,c(z) = ¢ : y € N(z). Hence the neighbourhoods N(z) of nodes
z with c¢(z) = ¢ form a partitioning of G. But Vz € V : |N(z)| = r. Hence r|n and
every group of equally colored nodes has size 2, a

Theorem 4.2 Every strongly r-colorable graph is the induced subgraph of a perfectly
colorable (r — 1)-regular graph.

Proof: We induct on r. For r = 1,2 and 3, the theorem is trivial. Thus
let r > 4 and G be a strongly r-colorable graph. Consider a strong coloring of G
with the colors cy,...,c, and let H be the induced subgraph of G consisting of all
nodes with a color € {cy,...,¢,_1}. By induction H is an induced subgraph of some
(r —2)-regular graph Ry that is perfectly colorable, and w.l.0.g. we can assume that
it is perfectly colored with ¢;,...,c,_;. Arrange the nodes of Ry into (r—1) disjoint
blocks By,...,B,_1, with B; (1 <i<r-— 1) containing the nodes of color c;, and let
every block contain b nodes. (By theorem 4.1 we know that the blocks must be of
equal size.) Tag the nodes of Ry that correspond to the nodes of H. Let the nodes
T1,...,T, (some s > 1) of G — H together form the “beginning” of the rt* block B,.
The nodes {z4,...,z,} form an independent set.

Now form the graph Rg as follows. Make [£] copies of Ry and extend B, by
another [$]b— s nodes y. We now ”"connect” the z- and y-nodes to the nodes in the
Ry copies in two steps, as follows:

1. for : from 1 to s do
begin



connect ; to a node from a Bj-block for every j,1 < j <r—1,

always favoring the tagged node z € block B; if ; is

directly connected to z in G, and an untagged node otherwise.
end;

Observe that we have [$]b > s nodes of every color, so step 1 always works. But
also observe that we have exactly [$]b — s nodes left of every color after this step.

2. for j from 1 to [§].b— s do
begin
pick a new y-node and connect y to a node from a B;-block that
was not used before, for every i,1 <i<r—1.
(Note that these nodes were not tagged.)
end;

Note that step 2 makes the graph Gy (r — 1)-regular. The result is a graph Rg that
is (r — 1)-regular, perfectly colorable with r colors and clearly, by design, we have
that G is an induced subgraph of Rg. O

Another property of perfectly colorable graphs is the following. Recall that by
Vizing’s theorem every graph is edge-colorable with A or A + 1 colors.

Lemma 4.3 If a graph is strongly colorable with r colors and r is even, then it is
(r — 1)-edge colorable.

Proof: Let G be strongly colorable with r colors. If r is even, then K, is edge-
colorable with (r — 1) colors. Let G be strongly colored with the r names of nodes
of K,. Now G can be edge-colored as follows: color an edge from the node colored
X to the node colored Y with z if the edge between X and Y in K, is colored 2.
This gives a correct (r — 1)-edge coloring of G. O

The converse is not true, see for example figure 2. Also this theorem does not
hold for r odd in general, as an edge-coloring on a K, (which is perfectly colorable
with r colors) requires r colors when r is odd.

Also the spectra of perfectly colorable graphs have some interesting properties.
Because a perfectly r-colorable graph G is (r — 1)-regular, its largest eigenvalue is
equal to r — 1 and has multiplicity 1 (cf. Biggs [6]). The following more specific
observation can be made as well.

Theorem 4.4 Let G be perfectly r-colorable. Then G has an eigenvalue -1, wsth
multiplicity > (r — 1).



Figure 2: A 3-edge colorable 3-regular graph that is not perfectly colorable (from

[12]).

Proof: Let G be perfectly r-colored, and consider the vertices of G arranged in
blocks of equally colored vertices (of size & each). Let A = A(G) be the adjacency
matrix of G corresponding to this vertex-ordering. The symmetrix matrix A can
be viewed as a block matrix, with the blocks along the main diagonal consisting of
all zeroes and the off-diagonal blocks being * x % permutation matrices. (As an
aside we note that, conversely, if the vertices of a graph G can be arranged so the
adjacency matrix is of this form, then G is perfectly r-colorable.) Now consider the
r X r matrix A’ obtained from A by replacing every block on the main diagonal by
a “0” and every off-diagonal block by a “1”. A’ is the adjacency matrix of the K,
whose spectrum consists of one eigenvalue (r — 1) and (r — 1) eigenvalues -1 (see
e.g. [6]). Also, when (zy,...,z,) is an eigenvector of A’, then the vector obtained by
repeating each coordinate 2-fold is an eigenvector of A and independency of eigen-
vectors is preserved in the process. It follows in particular that A (and hence, G)
has an eigenvalue -1 with multiplicity r — 1. O

From the same argument some more information can be derived. Let n > r and
let A\1,...,Ax and —p4,...,—m be the remaining positive and negative eigenvalues
in the spectrum of G in decreasing order different from the r eigenvalues (r — 1)
and -1 that we have, with k +1 = n — r. As the trace of A is zero, we have
A+ .+ = p1+...4u;. Observe also that A? is a symmetric matrix with all entries
along the main diagonal equal to r — 1. It follows that A2 +... + A2 +pu2+...+u? =
tr(A?)—(r—1)2—(r—1) = (n—r)(r—1). Nowlet A = A1 = Amax, # = 1 = fimax and
8 = maz{)\, u}. One easily verifies that § > /r — 1 and min{)\,u} > 2-/r — 1.

-7

Some further characteristics of perfectly colorable graphs are the following:

Theorem 4.5 Let G be regular of degree > 3 and perfectly colorable. Then one can
partition V as V3 UV such that



1. the induced subgraph Gy on V; is a set of chordless cycles of length divisible
by 8.

2. the induced subgraph G, on V, is regular of degree A—3 and perfectly colorable.

Proof: Let a,b,c be three colors of the perfect coloring of G. Let V] be the set
of nodes colored a,bor cand V, =V — V4.

1. Consider any node in V;, say with color a. It has one neighbour colored b,
this neighbour has one neighbour colored ¢, etc. This necessarily closes itself as a
cycle at the point of departure. By the strong coloring property, this cycle must

be chordless. This proves the statement, and the cycles are not connected to each
other.

2. Consider any node in V;. It has ezactly three neighbours in V;. Thus G,
inherits the strong (perfect) coloring of G, with the remaining A — 3 colors. O

This shows that perfectly colorable graphs decompose entirely into (disjoint)
chordless cycles. Note that [zl = 93'3, for A > 3.

For the file distribution prloblem perfect colorings are interesting mostly for reg-
ular networks, which includes many current processor networks. In [11] a detailed
study is given of the perfectly colorable processor networks. For completeness we
summarize the results of [11] in the following theorem.

Theorem 4.6 ([11]) The following processor networks are perfectly colorable:
o The hypercube C,, if and only if n =2 —1,i > 0.

o The d-dimensional torus of size ly X ... x lg if I; mod q = 0, with q such that
V/2d + 1|q for some integer r > 0.

e The Cube-connected Cycles CCCy, if and only ifd > 2,d # 5.
o The directed shuffle-exchange network and the directed {-pin shuffle network.

o The chordal ring network with chord length 4p — 1 (p > 0) and 4kp — 4¢
(0 <t < p) nodes if and only if :

1. k and t are even and (ift > 0) = is even, or
2. k, m and s_cdfm are odd and t + p i3 even.

e The hezagonal network of size m x n if and only if my,nmod 7 = 0.
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5 Main Results for Planar Graphs

In this section we consider the strong coloring problem for planar graphs. By the
results from section 3 we know that every planar graph G can be strongly colored
using at most 5A 41 colors. Our aim will be to improve this to a bound of ¢. A+0(1)
colors with a significantly lower constant ¢ < 5 (uniformly, for all planar graphs).
We will show that one can take ¢ = 1 for outerplanar graphs (which is optimal)
and that one can take ¢ = 3 for planar graphs in general. We begin by giving a
worst-case lowerbound for ¢ (for general planar graphs).

Lemma 5.1 For every A > 1 there ezists a planar graph G with x2(G) > [3A].

Proof: We can assume w.l.o.g. that A > 1. (For A = 1 the lemma trivially
holds by taking a graph that consists of a single edge). Choose r,s > 0 with s < r
such that A = r 4 s 4+ 2. It will be useful to take r = s = 2A — 1 when A is even
and 8 =r —1 = A — % when A is odd. Construct the graph Ga consisting of a
“triangle” of three nodes (A, B and C), r nodes that are each connected to A and
to B, s nodes that are each connected to B and to C, and s more nodes that are
each connected to A and to C. For A odd (implying A > 3), a separate node D
is “inserted” on the triangle-edge (A, B). This node is also connected to C. One
easily verifies that G, is planar, has maximum degree A and diameter 2. Because
of the latter any strong coloring of G5 needs as many colors as there are nodes,
which is precisely [2A]. (By a result of Seyffart [17] this is about the largest pos-
sible number of nodes in any planar graph of diameter 2 and maximum degree A.) O

The lemma shows that ¢ > 3 for general planar graphs. For A < 5 one can
construct planar graphs that need > 2A colors in any strong coloring (which does
not imply that ¢ > 2, in the given formulation).

We take an indirect approach to the strong coloring problem for planar graphs.
First we show that certain subclasses of planar graphs admit strong colorings with
a “very small” number of colors. It is used to obtain strong colorings of general
planar graphs G that use at most 3A + O(1) colors. The following technical lemma

is instrumental, but for clarity reasons its proof is deferred to section 6.

Lemma 5.2 Every (planar) circuit G with non-intersecting chords can be strongly
colored using at most A + 4 colors.

We use the lemma to derive a bound on the number of colors needed to strongly
color an arbitrary outerplanar graph.

Theorem 5.3 Every outerplanar graph G can be strongly colored using at most
A + 4 colors.

11



Proof: Let G be outerplanar. (Without loss of generality we can confine
ourselves to connected graphs.) We proceed by induction. When G has < 5 nodes,
the theorem trivially holds. Thus assume that the theorem holds for all connected
outerplanar graphs of < n—1 nodes, and let G have n nodes (somen > 5). f Gisa
planar circuit with non-intersecting chords, then the result follows immediately by
Lemma 5.2. If G is not, then G must contain a cutvertex v. In this case G consists
of connected outerplanar graphs H; and H, such that each contain a “copy” of
the node v and are joined at v, but which are otherwise disjoint. (Without loss of
generality we may assume that both H; and H; have < n — 1 nodes.)

Let v have degree A, in H; and degree A; in H,, where we can assume w.l.o.g.
that A; < A, and clearly A; + A; < A. We can assume inductively that H; and
H, can be strongly colored using at most A + 4 colors. Shift color-names such that
H, and H; use colors from the same set of A + 4 colors and v gets the same color
“a” in Hy and H,. Joining H; and H, at v (while retaining the colorings of H; and
H, respectively) results in a strong coloring of G with A + 4 colors, except in the
one case that some neighbours of v in H; have the same color as some neighbours of
v in H,. We now argue how such a conflict can be removed by a mere permutation
of the colors, if it arises.

Thus assume that the latter case arises. Note that v and its neighbours in H,
use Az + 1 colors. Let k neighbours of v in H; use colors different from these but [
neighbours use colors cy, ..., ¢ that are among the colors used by the A; neighbours
in H,, for certain k and ! with k + 1 = A;. It means that A; + 1 + k different
colors are used in the neighbourhood of v. Choose ! different colors dj,...,d; from
among the remaining colors. (This can be done because A + 4 — (Az+1+k) 2>
A1+ Dz 44— (A2 +1+k) =1+3.) Exchanging ¢; and d; (for i from 1 to ) in
the coloring of H; throughout leaves a strong coloring in H; and removes the color
conflicts at v, thus leading to a correct strong coloring of G using at most A + 4
colors.

This completes the inductive argument. O

The theorem enables us to prove the main result of this section on strong colorings
of planar graphs.

Theorem 5.4 Every planar graph G can be strongly colored using at most 3A + 9
colors.

Proof: Let G be an arbitary planar graph, v a node of G (e.g. chosen to lie on
the exterior face of G). Define L; to be the set of nodes that lie at distance i from
v, for any ¢ > 1. (This leads to a decomposition of V into finitely many disjoint
sets which are easily determined algorithmically by breadth-first-search.) Consider
the subgraphs of G induced by the sets L;, and let A; be the maximum degree of
any node in the L;-induced subgraph. Now observe that each L;-induced subgraph
is outerplanar, and that nodes in L; can only be adjacent to nodes in L;_;, L; and
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Li41. Also every node in L; must be adjacent to a node in L;_; (for ¢ > 1), which
means that A; < A —1 (for all ¢ > 0).

We can now obtain a strong coloring of G as follows. By theorem 5.3 each L;-
induced subgraph can be strongly colored using < A; +4 < A + 3 colors. Take
three sets of A + 3 different colors Ty, T1, T: and color the nodes of every L;-induced
subgraph strongly using the colors from the set Timods, by the method implicit in
theorem 5.3. This necessarily results in a strong coloring of G using (at most)
3(A +3) =3A + 9 colors. m]

The same technique as used in theorem 5.4. can be used to prove some further
results. For example, a very similar argument can be used to show that every
k-outerplanar graph can be strongly colored using at most 3A + 9 colors.

6 Strongly Coloring Circuits with Non-Intersecting
Chords

This section is devoted entirely to the proof of Lemma 5.2, which asserts that every
planar circuit G with non-intersecting chords can be strongly colored using at most
A + 4 colors. First we formalize a useful technique that will be applied repeatedly
in the proof. Let G be an arbitrary graph, with colors assigned to the nodes.

Definition 6.1 A node v is said to “miss” color a if neither v nor any of its neigh-
bours is colored a.

Definition 6.2 Let H be any connected (but not necessarily induced) subgraph of G,
and let a, B be two different colors in the coloring. The operation SWITCHy(a, )
acts on the given coloring of G by interchanging the colors o and f in the color
assignment for the nodes of H.

(We will assume that the operation SWITCHy is defined only for subgraphs H
as stated.)

Lemma 6.1 Let v miss color a and c(v) # B, and H be any connected component
of G — {v}. If G is strongly colored, then so it is after performing SWITCHpy(c, B).

Proof: Let Hy = H, Hy,... be the connected components of G—{v}. In G, v is
connected by an edge to selected nodes in Hy, Hy, ... but the subgraphs Hy, Hj, ...
themselves are mutually disjoint. SWITCHpg(a, 8) preserves the strong coloring
property in the nodes of Hy, Hy,... trivially, hence we only need to verify that it
does at v. If v misses 3, then the operation has no effect on the neighbourhood of
v at all. If v has a neighbour w with ¢(w) = 3, then two cases can arise. If w € Hy,
then ¢(w) = a after performing the SWITCHy operation. As v missed o, this gives
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Figure 3: The inductive construction of a circuitwith non-intersecting chords.

no conflict at v. If w € H; for some 7 > 0, then the neighbourhood of v again is not
affected by the operation. O

We now analyze the strong colorings of planar circuits G with non-intersecting
chords. We assume inductively that such graphs can always be strongly colored
with < A + ¢ colors, for some constant ¢ > 1 that will be fixed later. (Lemma 5.2
indicates that we will later choose ¢ = 4.) This certainly holds for all circuits G
with non-intersecting chords that have < 5 nodes, provided we take ¢ > 3. Assume
that the hypothesis holds for all G with < n — 1 nodes (some n > 5) and consider
an arbitrary planar circuit G with non-intersecting chords that has n nodes. We
will prove the induction hypothesis for G by case analysis.

If G has no chords, then it is a simple C,, (which has A = 2). One easily verifies
that C, can be strongly colored with 3 colors when n = 0 (mod 3), and with 4 colors
otherwise (and n > 5, like we assumed). This satisfies the induction hypothesis.

Now assume that G has non-intersecting chords. As G is outerplanar, it must
have a node v of degree 2. Orient the circuit, and let v, and vg be the first nodes
to the left and to the right of v respectively that are incident to chords. Note that
there must be a chord between v, and vg, which also is the first chord “seen” from
v.

It follows that G can be decomposed into a chain C, which contains v and the
part of the circuit to its left and to its right up to (but not including) v, and wvg,
and a remaining graph H. See figure 3.

Note that H is a planar circuit with non-intersecting chords of < n — 1 nodes.
By induction H can be strongly colored using Ay + ¢ colors, where Ay = max
{deg(v)|v € H} (with degrees as counted in H). Clearly Ay < A, and w.l.o.g. we
can assume that c(v,) = a and ¢(vg) = B. It remains to color the nodes of C such
that a strong coloring of the graph G results.

Assume first that C is a chain of k nodes for some k > 2. Let C consist of the
nodes zi,...,z; “from left to right”, with z; adjacent to v, and zx to vg. As we
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have Ay + ¢ colors at our disposal and both v, and vg only used Ay + 1 of them
(at most), there must be two different colors v and § such that v, misses v and vg
misses § (in the strong coloring of H). Note that necessarily v, § # «, 8. Now color
C' as follows. Assign v to z1, 6 to x and assign the colors §, @ and v alternatingly
(in this order) to z,zs,... when k > 2. If z3_, is assigned a or +, we are done.
If x4y is assigned 3, then a conflict arises with the strong coloring requirement at
zk. To resolve it we choose any color u ¢ {e, 3,7, 6} and assign it to zz_, instead.
(Such a p exists because we have at least Ag + ¢ > 6 colors available.) This gives
a valid, strong coloring of the entire graph with Ay + ¢ < A + ¢ colors.

Next assume that C consists of only 1 node, namely the node v. This (final) case
gives more difficulties, as we will see. Let M, and M be the sets of colors, missed
by ve and vg respectively. If M, N Mg # 0 and (say) p € M, N Mg, then we can
“complete” the strong coloring of G by simple assigning the color of x to v. Let us
therefore assume that M, and Mp are fully disjoint, for the remaining analysis. The
idea of the remainder of the proof is to try and make suitable “color flips” such that
a new strong coloring arises in which the corresponding M, and Mj are no longer
disjoint (which would be sufficient for our proof by the previous case).

If Ay < A, then necessarily Ay = A — 1. But we used Ay + ¢ colors for H and
have A + c colors available for G. It follows that there must be a “free” color which
must thus belong to M, and Mjp, contradicting their disjointness. Thus we have
Ag = A, and necessarily degy(ve) < A — 1 and degy(vg) < A — 1. We can also
observe that both v, and vs must have chords “inside” H. For suppose e.g. that vs
had no chord inside H and (thus) degy(vg) = 2. Then |[Mp| = (A+c)—3 = A+(c—
3). At the same time, |M,| > (A+c)—A = c. As |My|+|Mp| > A+(2¢—3) > A+c
for ¢ > 3, it would follow that M, and Mj necessarily intersect, a contradiction.

Let u be the leftmost node to which vg is connected by a chord. Let M, be the
set of colors missed by u. Suppose that M, and M, were not disjoint and (say) that
v € M, N M, for some color 4. As v ¢ Mg, vz must have a neighbour colored ~
(which cannot be a neighbour of x as v € M,). See figure 4. Choose a color ¢ € Mj
with ¢ # ¢(u) and do a SWITCHy, (7, ) on the given coloring. It is easily argued
that this preserves the strong coloring of H,, but an argument similar to Lemma 6.1
shows that it actually preserves the strong coloring of H. This leads to a coloring
in which both v, and vg miss v, which suffices for our claim. A similar argument
applies in case M, and Mp were not disjoint. Thus we proceed on the assumption
now that M, is disjoint from M, and Mp.

Next assume that there is a left neighbour of u colored with some color v € Mg
and there is another left neighbour of u colored with some color § € M,. Now change
the coloring of H; by executing a SWITCHy, (v, §). Note that this changing of colors
preserves the strong coloring property and has no effect on the right neighbours of
vy, and (hence) has no effect on the nodes of H,. It follows that after this operation
both v, and vg miss color §, which suffices for our claim. A similar argument applies
in the case there is a right neighbour of u colored with some color v € M and there
is another right neighbour of u colored with some color § € M,. So we proceed
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Figure 4: Both M, and M, miss a color 7.

on the assumption that this is not the case, i.e., all neighbours of u colored with
elements of M, are left neighbours of u and all neighbours of u colored with elements
of Mp are right neighbours of u, or the other way around.

If the M,-colored neighbours of u are right neighbours of u and the Mj-colored
neighbours of u are left neighbours of u then we do the following. Let v € M,,
6 € My and p € Mp. Change the coloring in H by doing a SWITCHpy, (v, 6) and a
SWITCHg, (v, #) operation. It is easily argued that SWITCHp, (v, §) preserves the
strong coloring of H; and by Lemma, 6.1 has no effect on the strong coloring of H,.
Similarly a SWITCHpy, (v, p) has no effect on the strong coloring of H;. These two
recolorings have the effect that now both v, and vg miss color «, which suffices for
our claim.

Thus we proceed on the assumption that all M,-colored neighbours of u are left
neighbours of u and all Mp-colored neighbours of u are right neighbours of u. Let
Ju be the set of colors used at u that are not in M, U Mjg. Let L, be the subset
of colors of J,, used by left neighbours of u, and let R, be the subset of colors of
Ju used by right neighbours of u. Note that J, is disjoint from M,, M, and Mg,
by definition. We have come some way in reconstructing the neighbourhood of v,
and vs. We now know that v, has (distinct) neighbours that are colored with the

colors in J, U M, U My and that vg has (distinct) neighbours that are colored with
the colors in J, U M, U Mp.

Lemma 6.2 The colors can be flipped such the strong coloring requirement is pre-
served and some Mg-colored neighbour of v, precedes all R, U M,-colored neighbours
(along the arc from v, to u) and some M,-colored neighbour of vg precedes all
Ly U M, -colored neighbours (along the arc from vg to u).

Proof: We only prove this for the neighbours of v,, as the argument is simi-
lar for vg and respective color-flips that are needed do not interfere. Suppose the
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property is not satisfied yet, i.e., there exists a ¥ € R, U M, that precedes all colors
p with 4 € Mg along the arc from v, to u for correspondingly colored neighbours
of v, (along the arc towards u). We let v be the first color from R, U M, that
occurs along the arc and has this property. Let u € Mj be some color. Consider
first the case v € M,. It is easily seen that SWITCHpg, (v, u) preserves the strong
coloring of H; and of H, and swaps p into the desired “leading” position. Next,
we consider the case that 4y € R,, thus there is a right neighbour of u, colored
with 4. Note that all Mg-colored neighbours of u are right neighours of u, thus
there is right neighbour of u colored with x. Note that now a SWITCHg, (v, u) will
again do the trick, for any 4 € Mp and swaps p into the desired “leading” position.

(The proof of Lemma 6.2 is easily extended to show that all Mg-colored neigh-
bours of v, precede the R, U M,-colored neighbours, but this is not needed for our
argument here.) Let 8; be the color of the first Mp-colored neighbour of v, along
the arc, and likewise c; the color of the first M,-colored neighbour of vg along the
arc.
Observe that |Ju| > (deg(u) +1) — |M,| — |[Mg|, | My| = A+ c— (deg(u) +1) and
|Ma|+|Mp| < A+c. This means that |Ju|+|M,|+|Ma|+|Ms| > A+cand (hence) =
A+c because it are all disjoint sets, and in particular |J,| = (deg(u)+1)—|Ma|—|Mp|.
It follows that J, U M, U M, U Mp is the full set of colors. We can now estimate the
number of neighbours of v, and vs as follows:

lLuI + |Ru| + 2|Mu| + |Marl + |M[3| IJuI + 2|Mu| + |Ma| + IMﬂ'
(deg(u) + 1) — |Ma| — | Mg|+
2(A + ¢ — (deg(u) + 1)) + |Ma| + | M|
2A + 2¢ — (deg(u) + 1)
A+2c—1.

(AVARI

As each of these nodes must miss at least c—1 > 3 colors out of the full set of A+c
colors and 3(A+2¢c—1) > 3(A +c), there must be some color y that is missed in at
least 4 of the nodes under consideration (i.e., neighbours between the 3;-colored one
of vy and the a;-colored one of the vg). In fact, because 3(A +2c—3) > 3(A +c) we
can even claim that these 4 nodes occur strictly in between the f§;-colored neighbour
of v, and the a;-colored neighbour of vs. Let the nodes be v, v(®, v and v, in
this order. Assume w.l.o.g. that v‘(“) is a neighbour of v,.

We will now complete the proof by a final case-analysis. The v,(})-nodes act as
“separating nodes” and we can perform any sort of SWITCH.,(u, *) operation on
the arcs left or right of v‘(“) that preserves the strong coloring requirement, and try
to “free” a color that can be assigned to v. We always use the same argument for it
as in Lemma 6.1.

First assume that 4 € M, (see figure 5(a)). Observe that in this case vz has a
neighbour colored u. Performing a SWITCHy, (g, 31) preserves the strong coloring
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H, v

(d) Two v{) nodes in between the y-colored neighbours of v, and vg

Figure 5: Final case analysis.
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requirement in H, and H, but it has the additional effect that in the new coloring
vg also misses y (and v, continuous to miss it as well). Thus p can be assigned to
v and we are done.

Next assume that 4 € Mp. In this case v, has a neighbour colored p. If vg
has one of the v,(f) nodes as neighbour, then we can proceed as in the previous case.
Thus let all v,("') be neighbours of v,. First assume that there is a v‘(“') right of the u-
colored neighbour of v,, as shown in figure 5(b). Now perform a SWITCHy, (¢, 1)
to archieve the same effect as in the previous case. It leads to a strong coloring of
H in which both v, and vg miss yu. Next assume that all v() are in between the
B1- and p-colored neighbours of v,, see figure 5(c). (Note that H; and H, do not
include the part of H “between” v{!) and v{?).) Now perform a SWITCHp, (¢, ;)
and also a SWITCHy, (i, ). A straightforward argument shows that this preserves
the strong coloring requirement, but it has the additional effect of removing £; from
the neighbourhood of v,. Thus B, is “freed” and can be assigned to v.

Finally assume that 4 ¢ M, U M. Now both v, and vg have p-colored neigh-
bours, say z and y respectively. The nodes x and y divide the arc from the $;-colored
neighbour of v, to the a;-colored neighbour of vy into three intervals. Thus at least
one of these intervals must contain two v‘(“) nodes. If either the first or the last
interval contains two v‘(f) nodes, then we can reason exactly as in the previous case
and are done. (Consider e.g. figure 5(b) and add a p-colored neighbour of vg. The
argument remains unchanged.) Thus the only case left is the case in which two
v{) nodes occur between the p-colored neighbours of v, and vg, see figure 5(d).
Now perform a SWITCHp, (¢, ;) and also a SWITCHpy,(u, 81)- This preserves the
strong coloring requirement and frees u at both v, and vg. Thus the strong coloring
of G can be completed by assigning x to v. This completes the proof of Lemma 5.2.

The proof shows that we can indeed take ¢ = 4.

7 Conclusions and further remarks

In this paper we have presented some basic facts about the strong coloring problem
for graphs. We gave a summary of results for perfect colorings of regular graphs and
for strongly coloring special classes of graphs. We proved a new upperbound, namely
3A+9, for strongly coloring arbitrary planar graphs. For outerplanar graphs a much
tighter bound for the strong coloring problem is proved, namely A + 4. The bound
for general planar graphs, while nontrivial, is not likely to be the best possible. At
present the only known worst-case lowerbound is about A +0(Q1).

Throughout the paper we have reported some results for the strong coloring
problem for various classes of non-planar graphs as well. Here many interesting
problems are left. For example, given a coloring algorithm A which gives a good
approximate bound on the chromatic number of a graph G, does this algorithm give
a good approximate bound for the strong chromatic number of G, when it is applied
to the square graph G?? What if G belong to a special class of graphs?
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Another open question is the following. Is there an analog for strong chromatic
numbers of the following theorem of Garey and Johson (8] : "If for some constant
r < 2 and constant d there exists a polynomial-time algorithm A which guarantees
A(G) £ rx(G)+d, then there exist a polynomial-time algorithm A which guarantees
A(G) = x(G).”? The best performance ratio known for approximation algorithms
for the chromatic number problem is ﬂ(ll%il—".’)s,ﬂ [5]. What is the corresponding best
performance ratio for the strong chromatic number by applying this to the square
graph G?7

It would be interesting to investigate other relationships between the strong
coloring problem and the well-studied coloring problem (see e.g. [12]), as well as re-

lationships between the strong vertex coloring problem and the strong edge coloring
problem.
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Appendix

Theorem Given a graph G and an integer K, the problem of determining whether

G can be strongly colored with < K colors is NP-complete (STRONG CHROMATIC
NUMBER).

Proof: The problem trivially belongs to NP. (One can assign < K colors to the
nodes of G and verify in polynomial time whetter it is a strong coloring.) For proving
the NP-completeness, we reduce 3-SAT to STRONG CHROMATIC NUMBER. Let
F be a CNF formula having r clauses, with at most three literals per clause. Let z;
(1 <1 < n) be the variables in F. We may assume n > 4. We shall construct, in
polynomial time, a graph G that is strongly colorable with rn + 2n + 2 colors iff F
is satisfiable. The graph G = (V, E) is defined by:

V= {ziZ2,..., T} U{T1, T2, -, Tn} U {¥1,¥2, . - -, Yn41} U {P1,1, - - - s Pnr}
U{pn+1,,.} u {21, 4 T 2,-,} U {Cl, Cg, ceey C,-}

and

E = {(yi,y)li # i} U{(zi, 2)|i # 7} U {(#i,7:),1 i S n}U
{(irpe)lt £ kor j # 11U {(2,%:),1 <4 < n}U{(Prt1r) Yni1) U
{(yi’zj)ll < t < n,i #]} U {(pi,j,cj),l <:< n,]- S] < T}U
{(pij,2x),1 <4,k <n,1 < j <r}U{(zi,pig)lzi & Ck} U {(Ti, pix)|Zi & C}

To see that G is rn+ 2n + 2 colorable iff F is satisfiable, we first observe that the
y:’s form a complete subgraph on n + 1 vertices. Hence, each y; must be asssigned
a distinct color. Without loss of generality we may assume that in any coloring of
G y; is given the color ¢ for 1 < ¢ > n + 1. Then we observe that the z;’s together
form a complete subgraph on n vertices. Every 2; is at most at distance two from
every y;, hence the z; must be colored differently from the y;. Assume w.l.o.g. that
2; is given the color n + 1+ 1 for 1 <1 > n. We also observe that the p; ;’s together
form a complete subgraph on rn + 1 vertices. Every p;; is at most at distance two
from every yx, and every p;; is at most distance two from every zi, so the colors of
the p; ; must be different from the colors of the y; and different from the colors of
the z. Thus we can assume that p; ; is given the color 2n + in + j + 1 and pn41, is
given the color rn + 2n + 2. Since y; lies within distance two from all the z;’s and
the Z,’s, except z; and %;, the color ¢ can only be assigned to z; or ;. z; lies within
distance two from Z;, so one of these two vertices must have a different color. z;
and 7; lie within distance two from every z; and pi,; and every other y;,5 < 4,5 # ¢,
so only color n + 1 is available for one of these two vertices, for every ¢,1 <1 < n,
because no z; or Z; lies within distance two from any other z; or F;. The vertex
that is assigned to color n + 1 will be called the false vertex. The other is the true
vertex. The only way to color G using rn + 2n + 2 colors, is to assign color n +1 to
one of {z;,%;} for each 7,1 <t < n.
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Under what conditions can the remaining vertices be colored using no further
colors? Since n > 4 and each clause has at most three literals, each C; lies within
distance two from a pair z;,%;, for at least one j. Consequently no C; may be
assigned the color n + 1. Also every C; lies within distance two from every p; and
every z;, so C; must be assigned a color less than n + 1.

Also no C; can be assigned a color corresponding to an z; or an Z; that does
not occur in clause C;. These observations imply that the only colors that can be
assigned to C; correspond to vertices z; or T; that are in clause C; and are true
vertices.

Hence G is strongly rn 4 2n + 2 colorable iff there is a true vertex corresponding
to each C;, and thus iff F is satisfiable. ]
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Strong Colorings of Graphs*

Goos Kant Jan van Leeuwen
Dept. of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

We consider the generalization of graph coloring to distance-k coloring,
also termed strong coloring in the case k = 2. Some basic facts about strong
coloring of graphs are given, and several auxiliary results are presented for
strong colorings of special classes of graphs. We show that every planar graph
can be strongly colored with at most 3A + 9 colors, where A denotes the
maximum degree of the graph. (A straightforward algorithm would use as
many as to 5A + 1 colors.) It is shown that every outerplanar graph can be
strongly colored with at most A + 4 colors.

1 Introduction

The coloring problem for graphs has a longstanding mathematical interest. In this
paper we consider the generalization to distance-k coloring for any k > 1, that is,
we consider the problem in which it is required that all vertices with distance < k
have a different color. The distance-k coloring problem for graphs is NP-complete
for every k > 1 [16]. For k = 1 one has the old definition of graph coloring, and for
k = 2 the concept is also refered to as strong graph coloring [2, 4, 7). Alternatively,
a strong coloring can be defined as a coloring with the property that adjacent nodes
have different colors (the usual “coloring condition”) and, moreover, all neighbours
of any node are colored differently (the “strong coloring condition”).

The strong coloring problem for graphs has several applications. For example,
in computing approximations to sparse Hessian matrices [16] the following typical
problem arises: Given an n x n matrix M of 0’s and 1’s, one wishes to partition
the columns of M into a number of sets such that no two columns in the same set
have a 1 in the same row. This is equal to the strong coloring problem when we let
M be the adjacency matrix of a graph with 1’s along the main diagonal. Another
application concerns the design of collision-free multi-hop channel access protocols in

*This work was supported by the ESPRIT II Basic Research Actions program of the EC under
contract No. 3075 (project ALCOM).



radio-networks [14], which can be solved using strong coloring. Another application
we mention concerns the segmentation problem for files in a network [2]. Here the
colors represent different (disjoint) segments of a file F', the graphs are regular with
degree d and a strong coloring is desired with exactly d + 1 colors. (This implies
that in the neighbourhood of every node a full copy of F can be assembled from the
available segments.)

In this paper we present some facts about the strong coloring problem for graphs.
We prove a number of basic facts and present some results when the problem is
restricted to special classes of graphs. We present a method to strongly color planar
graphs with at most 3(A + 3) colors, where A is the maximum degree in the graph.
- We note that the naive method for strongly coloring a planar graph would use up
to 5A + 1 colors. It is shown that outerplanar graphs can be strongly colored with
at most A + 4 colors.

The paper is organized as follows. In section 2 we give some definitions con-
cerning graphs and (strong) graph colorings. In section 3 we give some preliminary
results for the strong coloring problem for certain classes of planar and non-planar
graphs. In section 4 we give some facts about strongly coloring (r —1)-regular graphs
with r colors, which we refer to as “perfect coloring”. In section 5 the main results
for strongly coloring planar graphs are given. In section 6 we show that every circuit
with non-intersecting chords can be strongly colored with at most A+4 colors, which
is the main technical result that underlies the constructions in section 5. Section 7
contains some remarks and open questions. In an appendix we present a new proof
of the NP-completeness of the strong coloring problem for graphs. We will assume
some familiarity with graph theory (cf. Harary [10]).

2 Definitions

Let G = (V, E) be a graph with |V| = n vertices and |E| = m edges. The distance
between two nodes = and y is defined as the number of edges on the shortest path
between = and y. Let A = maz{deg(v)|v € V}, with deg(v) the degree of vertex
v. The square graph of G is the graph G? with V(G?) = V(G) and E(G?) =
{(u,v)|(u,v) € E or (u,z) € E and (z,v) € E for some z}. Observe that A(G?) <
(A(G))2. The chromatic number of a graph G, denoted by x(G), is the least K < n
such that G can be K-vertex-colored, i.e., such that there exists a function f :
V - {1,2,...,K} with f(u) # f(v) whenever {u,v} € E [10]. The chromatic
indez of a graph G, denoted by x/(G), is the least K < m such that G can be
K-edge-colored, i.e., such that there exists a function f : E — {1,2,...,K} with
f({u,v}) # f({u,w}) for all u,v,w € V and {u,v},{u,w} € E [10]. With vertex
(edge) coloring, every pair of vertices (edges) that have distance one must have
different colors. Whenever colorings are considered, ¢(v) denotes the color given to
a vertex v.

The generalization to distance-k coloring is now straightforward. The k-chromatic



number of a graph G, denoted by xi(G), is the least K < n such that G can
be distance-k K-vertex-colored, i.e., such that there exists a function f : V —
{1,2,...,K} with f(u) # f(v) whenever u and v lie within distance k in G = (V, E).
The k-chromatic indez of a graph G, denoted by x4(G), is the least K < m such
that G' can be distance-k K-edge-colored, i.e., such that there exists a function
f+E —{1,2,...,K} with f({u,v}) # f({w,z}) whenever {u,v} and {w,z} € E
and {u,v} and {w,z} lie within distance k from each other. For k = 2, we speak
of the strong chromatic number and the strong chromatic index respectively. If a
(r—1)-regular graph can be strongly colored with exactly r colors, then this coloring
is called perfect [11].

McCormick [16] has proved that, given a graph and an integer K, the problem
of deciding whether a graph can be distance-k vertex colored with K colors is NP-
complete, for every k > 1. Another proof for the strong chromatic number problem
can be found in the Appendix. Checking whether a graph can be strongly colored
with K < 3 colors is trivial. If a graph has A > 4 or contains a Cs or a K, 3, then
the graph is not strongly 4-colorable. Recently Bakker [3] has shown that deciding
whether a (r—1)-regular graph can be perfectly colored with r colors is NP-complete,
even for the case r = 4. It is open whether the problem of deciding x4(G) < K is
NP-complete. In this paper we will focus entirely on the strong coloring problem
(k = 2). We will be refering to some special classes of graphs including planar
graphs, outerplanar graphs, Halin graphs, chordal graphs and partial k-trees. We

assume that the first three are known but include a recursive definition of partial
k-trees.

Definition 2.1 ([1]) The class of k-trees is the smallest class of graphs that can be
defined as follows:

1. the complete graph Ki on k vertices is a k-tree.

2. if G = (V,E) is a k-tree and vy,...,v; form a complete subgraph of G, then
the graph G' = (VU {w}, EU {(v;,w)|1 < i < k}) with w € V is also a k-tree.

A graph is a partial k-tree if and only if it is the subgraph of a k-tree.

3 Preliminaries

To obtain some first bounds for x2(G), consider the smallest-last (SL) ordering of a
graph, determined by the following algorithm of [15] in O(m) time.

ALGORITHM SL

J=nH=G;
for j = n downto 1 do



begin
Let v; be a vertex with minimum degree in H.
Remove v; and all edges incident to v;j from H.
end
SL = V1,V2y...,Vp.

END OF ALGORITHM

Let SL = vy,vy,...,v, be a smallest-last ordering of G. Let p be the maximum
of the degrees of the vertices as they appear in the for-loop of algorithm SL. It is
easily shown that p = mazgmin,eviy{degn(v)|H a subgraph of G}, and that G
can be colored with p + 1 colors.

Theorem 3.1 With p be defined as above: A + 1 <x2AG) <p.A+1.

Proof: The lowerbound is trivial. For the upperbound, we use induction to
show that the vertices can be strongly colored in SL-order. Let C be a set of pA+1
colors. Vertex v, can be assigned an arbitrary color from C. Assume we have
strongly colored the vertices vy,...,v;_; (following the smallest-last ordering) using
colors from C (¢ > 2). v; is connected to at most p colored neighbours, hence v; has
at most p.A colored vertices within distance 2 and at most P-A colors from C are
blocked for it. Hence v; can be colored with a color from C. This completes the
induction. _ O

Corollary 3.2 Partial k-trees can be strongly colored with at most k.A + 1 colors.

Proof: From definition 2.1 it follows that there exists a smallest-last ordering
of the partial k-tree by removing vertices with maximum degree < k in each step of
algorithm SL. Using theorem 3.1, the corollary follows. O

Lemma 3.3 Every outerplanar graph can be strongly colored with at most 2A +1
and every planar graph with at most 5A + 1 colors.

Proof: Every outerplanar graph has a vertex with degree at most 2. Deleting
this vertex with all its incident edges gives another outerplanar graph with the same
property. In this way one can easily make a smallest-last ordering in which the
maximum degree in each step is at most 2, and the lemma follows from theorem 3.1
for outerplanar graphs. Noting that every planar graph has a vertex with degree at
most 5, the lemma easily follows in a similar way. O



Figure 1: Example of a G, for p = 3.

Similar bounds can be given for distance-k vertex and edge colorings. Observe
that theorem 3.1 also implies that x'(G) < x2(G), as x'(G) < A +1 by Vizing’s
theorem. The question whether xx(G) < x4(G) remains as an interesting open
problem. For trees it is clear that x3(G) = A + 1 and x5(G) = maz{deg(u) +
deg(father(u))|u € V}. Every Halin graph can be strongly colored with at most
A + 6 colors. (For the latter result one uses that every tree can be strongly colored
using at most A + 1 colors and every circuit with at most 5 colors.)

Observe that from a strong vertex coloring with x2(G) colors one can obtain
a strong edge coloring with (x2(G))? colors, by assigning to every edge {u,v} the
color [c(u), ¢(v)], where the colors of the vertices are taken from the strong vertex
coloring. Notice that this large difference of the strong chromatic number and the
strong chromatic index actually occurs in the case of the graph G = K, ., where
x2(G) = 2n and x}(G) = n?.

There appears to be no simple connection between x(G) and x2(G). A reasonable
conjecture like x2(G) < (A + 1)x(G) + 1 fails, by observing the construction of the
following bipartite graph G, = (< Vi, V; >, E). V; consists of p vertices 0, . . . ,p—1.
V; consists of p(p — 1) vertices {¢,5},0 <i < p,0 < j < p—1, and a vertex A. Let
t € V1 be connected to the nodes {¢,z} for 0 < z < p — 1 and to vertex A. Add
p(p — 1) vertices [k, ] to V;, with 0 < k,I < p— 1, and the edges ([, 4], {0,4}) and
([t, 5, {k, ((k — 1).i + j) mod (p — 1)}), with 1 <k < pand 0 < i,j < p— 1. Note
that every two vertices in V; have distance 2 to each other. Hence this bipartite
pregular graph has A = p,x(G) = 2 and x2(G) = A(A — 1) + 1. It shows that
x(G) and x2(G) can differ dramatically. In figure 1, an example is given for p = 3.

From the observation that x(G) = x(G*) and x4(G) = x'(G*) (using the defini-
tion of the k¥*® power graph G* of [10]) for every k > 2, we conclude that we can use
the available algorithms for ordinary graph coloring for obtaining strong colorings,



after calculating G? in O(A.m) time. Also all lowerbounds for the chromatic num-

ber trivially hold for the strong chromatic number. This also leads to the following
observation:

Theorem 3.4 Chordal graphs can be strongly colored in a smallest possible number
of colors in polynomial time. For every chordal graph G one has x2(G) < (3A+1)%

Proof: Note that the square graph of a chordal graph is a chordal graph too,
and can be colored in an optimal number of colors in polynomial time (cf. Golumbic
[9]).

For proving x2(G) < (3A + 1)? we induct on n, the size of G. For n < 3 the
result trivially holds. Consider an arbitrary chordal graph G of n nodes, n > 3.
Without loss of generality we may assume that G is connected. If G is a clique, then
it can be strongly colored with n = A +1 colors and A +1 < (3A+1)% Thuslet G
not be a clique, S a minimal node separator of G and Ay, Ay, ..., A; the connected
components of G — S. Let H; be the induced subgraph spanned by S and A;, and
let H, be the induced subgraph spanned by S and Aa, ..., A;. By well-known facts
for chordal graphs [9] S is a clique, and H; and H, are connected chordal graphs.
Let |S| = s. By induction H; and H, are strongly colorable with the colors of some
set C of (3A + 1) colors. A strong coloring of G can now be obtained as follows.

Permute the colors such that in the strong colorings of H, and H,, the nodes of
S get the same colors. (This can be done because the colors assigned to the nodes
of S must all be different, by the strong coloring requirement, in both the coloring
of H, and the coloring of H,.) Let N; be the set of nodes in A; that are reached
by an edge from S, and N, the set on nodes in Az U...U A defined similarly. Let
|N1| = ny and |N| = ny, and observe that n; + n, <s(A-s+1)<(3A+1)2-s.
Thus we have sufficiently many colors in C to arrange that s colors are fixed for
the nodes in S, and the remaining colors can be permuted such that in the strong
colorings of H; and H, the nodes in N; and N are colored by disjoint sets of colors.
The resulting strong colorings of H, and H; can now be combined (merged) to a
correct strong coloring of G which employs no more than (1A +1)? colors. O

We conjecture that x(G?) < Q + 1, with Q the number of vertices of the largest
clique in the graph G®. If G? is a linegraph, then this conjecture is true by noting
that if the linegraph G? has a largest clique of size Q, then the linegraph of this
linegraph (which is a normal graph) has maximal degree Q and can be edge-colored
with @ + 1 colors. Hence the linegraph G? can be vertex-colored with Q + 1 colors.

4 Perfect Colorings

Recall that a (r — 1)-regular graph is perfectly colorable if it can be strongly colored
with r colors. This coloring is useful for the following file distribution problem [2]
: “Given a connected regular network G = (V,E) and a file F, assign to each
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node £ € V a segment F; C F such that for all z € VU y3ee Fy VU Fr = F
and in every neighbourhood the distributed fragments are free of overlaps, i.e.,
V(z,y) € E: F,NF, = 0.” When there are r different disjoint segments of F, this
problem is only meaningful for (r —1)-regular networks. A perfect coloring describes
the assignment of the segments for a valid solution of the file distribution problem.
It has been shown by Bakker [3] that this problem is NP-complete, even for the case
r=4.

In this section we give some characteristics of perfectly colorable graphs. Some

relationships between strong colorings, perfect colorings and edge colorings are the
following:

Theorem 4.1 ([2]) If a (r — 1)-regular graph with |V| = n nodes can be perfectly
colored, then r|n and every group of equally colored nodes has 2 nodes.

Proof: Let N(z) denote the set of vertices having distance < 1 to node z.
Consider any perfect coloring of the graph, and let ¢ be one of the colors. Let z,
and z; be two nodes colored ¢. There can be no node y in N(z1) N N(z3) because,
if there was, y would have two neighbours of the same color (which contradicts the
strong coloring property). Thus Vz;, z; with ¢(z1) = ¢(z2) = ¢: N(z1)NN(z;) = 0.
Furthermore Vy3z,c(z) = ¢ : y € N(z). Hence the neighbourhoods N(z) of nodes
z with ¢(z) = ¢ form a partitioning of G. But Vz € V : |N(z)| = r. Hence r|{n and
every group of equally colored nodes has size 2. O

Theorem 4.2 Every strongly r-colorable graph is the induced subgraph of a perfectly
colorable (r — 1)-regular graph.

Proof: We induct on r. For r = 1,2 and 3, the theorem is trivial. Thus
let r > 4 and G be a strongly r-colorable graph. Consider a strong coloring of G
with the colors ¢;,...,c, and let H be the induced subgraph of G consisting of all
nodes with a color € {c1,...,¢r-1}. By induction H is an induced subgraph of some
(r —2)-regular graph Ry that is perfectly colorable, and w.l.0.g. we can assume that
it is perfectly colored with ¢y, ..., c,—;. Arrange the nodes of Ry into (r—1) disjoint
blocks By, ..., By-1, with B; (1 < i < r—1) containing the nodes of color c;, and let
every block contain b nodes. (By theorem 4.1 we know that the blocks must be of
equal size.) Tag the nodes of Ry that correspond to the nodes of H. Let the nodes
T1,...,, (some s > 1) of G — H together form the “beginning” of the r*® block B,.
The nodes {z;,...,z,} form an independent set.

Now form the graph Rg as follows. Make |'§'| copies of Ry and extend B, by
another [£]b— s nodes y. We now ”connect” the z- and y-nodes to the nodes in the
Ry copies in two steps, as follows:

1. for : from 1 to s do
begin



connect z; to a node from a B;-block for every j,1 <j <r—1,
always favoring the tagged node z € block B; if z; is

directly connected to z in G, and an untagged node otherwise.
end;

Observe that we have [£]5 > s nodes of every color, so step 1 always works. But
also observe that we have exactly [2]b — s nodes left of every color after this step.

2. for j from 1 to [§].b— s do
begin
pick a new y-node and connect y to a node from a B;-block that
was not used before, for every ¢,1 < i <r—1.

(Note that these nodes were not tagged.)
end;

Note that step 2 makes the graph Gy (r — 1)-regular. The result is a graph Rg that
is (r — 1)-regular, perfectly colorable with r colors and clearly, by design, we have
that G is an induced subgraph of Rg. O

Another property of perfectly colorable graphs is the following. Recall that by
Vizing’s theorem every graph is edge-colorable with A or A + 1 colors.

Lemma 4.3 If a graph is strongly colorable with r colors and r is even, then it is
(r — 1)-edge colorable.

Proof: Let G be strongly colorable with r colors. If r is even, then K, is edge-
colorable with (r — 1) colors. Let G be strongly colored with the » names of nodes
of K,. Now G can be edge-colored as follows: color an edge from the node colored
X to the node colored Y with z if the edge between X and Y in K, is colored 2.
This gives a correct (r — 1)-edge coloring of G. D

The converse is not true, see for example figure 2. Also this theorem does not
hold for r odd in general, as an edge-coloring on a K, (which is perfectly colorable
with r colors) requires r colors when r is odd.

Also the spectra of perfectly colorable graphs have some interesting properties.
Because a perfectly r-colorable graph G is (r — 1)-regular, its largest eigenvalue is

equal to r — 1 and has multiplicity 1 (cf. Biggs [6]). The following more specific
observation can be made as well.

Theorem 4.4 Let G be perfectly r-colorable. Then G has an eigenvalue -1, with
maultiplicity > (r — 1). :



Figure 2: A 3-edge colorable 3-regular graph that is not perfectly colorable (from

[12)).

Proof: Let G be perfectly r-colored, and consider the vertices of G arranged in
blocks of equally colored vertices (of size 2 each). Let A = A(G) be the adjacency
matrix of G corresponding to this vertex-ordering. The symmetrix matrix A can
be viewed as a block matrix, with the blocks along the main diagonal consisting of
all zeroes and the off-diagonal blocks being 2 X 2 permutation matrices. (As an
aside we note that, conversely, if the vertices of a graph G can be arranged so the
adjacency matrix is of this form, then G is perfectly r-colorable.) Now consider the
r X r matrix A’ obtained from A by replacing every block on the main diagonal by
a “0” and every off-diagonal block by a “1”. A’ is the adjacency matrix of the K,,
whose spectrum consists of one eigenvalue (r — 1) and (r — 1) eigenvalues -1 (see
e.g. [6]). Also, when (z,,...,7,) is an eigenvector of A’, then the vector obtained by
repeating each coordinate 2-fold is an eigenvector of A and independency of eigen-
vectors is preserved in the process. It follows in particular that A (and hence, G)
has an eigenvalue -1 with multiplicity r — 1. O

From the same argument some more information can be derived. Let n > r and
let A1,...,A\x and —py,..., —pu be the remaining positive and negative eigenvalues
in the spectrum of G in decreasing order different from the r eigenvalues (r — 1)
and -1 that we have, with k + ] = n — r. As the trace of A is zero, we have
A1t+.. 4+ = p1+. ..+, Observe also that A%isa symmetric matrix with all entries
along the main diagonal equal to r —1. It follows that A2 +... 4+ A2+ pu2+...+p? =
tr(A%)—(r—1)?—(r—1) = (n—r)(r—1). Nowlet A = A\; = Amax, £ = fI = flenax and
6 = maz{\, u}. One easily verifies that § > \/r — 1 and min{), u} > -1 \/r — 1.

- n-—r

Some further characteristics of perfectly colorable graphs are the following:

Theorem 4.5 Let G be regular of degree > 3 and perfectly colorable. Then one can
partition V as V4 UV, such that



1. the induced subgraph Gy on V; is a set of chordless cycles of length divisible
by 3.

2. the induced subgraph G, on V; is regular of degree A—3 and perfectly colorable.

Proof: Let a,b,c be three colors of the perfect coloring of G. Let V; be the set
of nodes colored a,bor cand V; =V — 1.

1. Consider any node in V;, say with color a. It has one neighbour colored b,
this neighbour has one neighbour colored c, etc. This necessarily closes itself as a
cycle at the point of departure. By the strong coloring property, this cycle must

be chordless. This proves the statement, and the cycles are not connected to each
other.

2. Consider any node in V,. It has eractly three neighbours in V3. Thus G,
inherits the strong (perfect) coloring of G, with the remaining A — 3 colors. O

This shows that perfectly colorable graphs decompose entirely into (disjoint)
chordless cycles. Note that V2| = -é:—;—z, for A > 3.

For the file distribution prloblem perfect colorings are interesting mostly for reg-
ular networks, which includes many current processor networks. In [11] a detailed
study is given of the perfectly colorable processor networks. For completeness we
summarize the results of [11] in the following theorem.

Theorem 4.6 ([11]) The following processor networks are perfectly colorable:
o The hypercube C,, if and only if n =2 — 1,7 > 0.

o The d-dimensional torus of size Iy X ... x I if l; mod q = 0, with q such that
v2d + 1|q for some integer r > 0.

® The Cube-connected Cycles CCCy, if and only ifd > 2,d # 5.
® The directed shuffle-exchange network and the directed 4-pin shuffle network.

® The chordal ring network with chord length 4p — 1 (p > 0) and 4kp — 4t
(0 <t < p) nodes if and only if :

1. k and t are even and (ift > 0) Ec_thm is even, or

2.k, o dzt'p) and {7y are odd and t + p is even.

o The hezagonal network of size m x n if and only if m,n mod 7 = 0.

10



5 Main Results for Planar Graphs

In this section we consider the strong coloring problem for planar graphs. By the
results from section 3 we know that every planar graph G can be strongly colored
using at most 5A+1 colors. Our aim will be to improve this to a bound of c.A+O(1)
colors with a significantly lower constant ¢ < 5 (uniformly, for all planar graphs).
We will show that one can take ¢ = 1 for outerplanar graphs (which is optimal)
and that one can take ¢ = 3 for planar graphs in general. We begin by giving a
worst-case lowerbound for ¢ (for general planar graphs).

Lemma 5.1 For every A > 1 there ezists a planar graph G with x2(G) > [3A].

Proof: We can assume w.l.o.g. that A > 1. (For A = 1 the lemma trivially
holds by taking a graph that consists of a single edge). Choose r,s > 0 with s < r
such that A = r 4+ s + 2. It will be useful to take r = s = JA — 1 when A is even
and s =r —1 = JA — 3 when A is odd. Construct the graph G4 consisting of a
“triangle” of three nodes (A, B and C), r nodes that are each connected to A and
to B, s nodes that are each connected to B and to C, and s more nodes that are
each connected to A and to C. For A odd (implying A > 3), a separate node D
is “inserted” on the triangle-edge (A, B). This node is also connected to C. One
easily verifies that G is planar, has maximum degree A and diameter 2. Because
of the latter any strong coloring of Go needs as many colors as there are nodes,
which is precisely [2A]. (By a result of Seyffart [17] this is about the largest pos-
sible number of nodes in any planar graph of diameter 2 and maximum degree A.) O

The lemma shows that ¢ > 3 for general planar graphs. For A < 5 one can
construct planar graphs that need > 2A colors in any strong coloring (which does
not imply that ¢ > 2, in the given formulation).

We take an indirect approach to the strong coloring problem for planar graphs.
First we show that certain subclasses of planar graphs admit strong colorings with
a “very small” number of colors. It is used to obtain strong colorings of general
planar graphs G that use at most 3A + O(1) colors. The following technical lemma
is instrumental, but for clarity reasons its proof is deferred to section 6.

Lemma 5.2 Every (planar) circuit G with non-intersecting chords can be strongly
colored using at most A + 4 colors.

We use the lemma to derive a bound on the number of colors needed to strongly
color an arbitrary outerplanar graph.

Theorem 5.3 Every outerplanar graph G can be strongly colored using at most
A + 4 colors.
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Proof: Let G be outerplanar. (Without loss of generality we can confine
ourselves to connected graphs.) We proceed by induction. When G has < 5 nodes,
the theorem trivially holds. Thus assume that the theorem holds for all connected
outerplanar graphs of < n—1 nodes, and let G have n nodes (somen > 5). fGisa
planar circuit with non-intersecting chords, then the result follows immediately by
Lemma 5.2. If G is not, then G must contain a cutvertex v. In this case G consists
of connected outerplanar graphs H; and H, such that each contain a “copy” of
the node v and are joined at v, but which are otherwise disjoint. (Without loss of
generality we may assume that both H; and H; have < n — 1 nodes.)

Let v have degree A, in H; and degree A, in H,, where we can assume w.l.o.g.
that A; < A; and clearly A, + A; < A. We can assume inductively that H; and
H; can be strongly colored using at most A + 4 colors. Shift color-names such that
H, and H; use colors from the same set of A + 4 colors and v gets the same color
“a” in Hy and H;. Joining H, and H, at v (while retaining the colorings of H; and
H, respectively) results in a strong coloring of G with A + 4 colors, except in the
one case that some neighbours of v in H; have the same color as some neighbours of
v in H;. We now argue how such a conflict can be removed by a mere permutation
of the colors, if it arises.

Thus assume that the latter case arises. Note that v and its neighbours in H,
use Ay + 1 colors. Let k neighbours of v in H; use colors different from these but [
neighbours use colors ¢;,. .., ¢ that are among the colors used by the A; neighbours
in H,, for certain k¥ and [ with £k + 1 = A;. It means that A; + 1 + k different
colors are used in the neighbourhood of v. Choose ! different colors d,...,d; from
among the remaining colors. (This can be done because A +4 — (A + 1+ k) >
A+ A2 +4—(A2+1+ k) =1+3.) Exchanging ¢; and d; (for ¢ from 1 to [) in
the coloring of H; throughout leaves a strong coloring in H; and removes the color

conflicts at v, thus leading to a correct strong coloring of G using at most A + 4
colors.

This completes the inductive argument. O

The theorem enables us to prove the main result of this section on strong colorings
of planar graphs.

Theorem 5.4 Every planar graph G can be strongly colored using at most 3A + 9
colors.

Proof: Let G be an arbitary planar graph, v a node of G (e.g. chosen to lie on
the exterior face of G). Define L; to be the set of nodes that lie at distance ¢ from
v, for any ¢ > 1. (This leads to a decomposition of V into finitely many disjoint
sets which are easily determined algorithmically by breadth-first-search.) Consider
the subgraphs of G induced by the sets L;, and let A; be the maximum degree of
any node in the L;-induced subgraph. Now observe that each L;-induced subgraph
is outerplanar, and that nodes in L; can only be adjacent to nodes in L, ;, L; and
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L;;1. Also every node in L; must be adjacent to a node in L;_; (for : > 1), which
means that A; < A —1 (for all : > 0).

We can now obtain a strong coloring of G as follows. By theorem 5.3 each L;-
induced subgraph can be strongly colored using < A; +4 < A + 3 colors. Take
three sets of A + 3 different colors Tp, Ty, T; and color the nodes of every L;-induced
subgraph strongly using the colors from the set Timoqs, by the method implicit in

theorem 5.3. This necessarily results in a strong coloring of G using (at most)
3(A +3) = 3A + 9 colors. a

The same technique as used in theorem 5.4. can be used to prove some further
results. For example, a very similar argument can be used to show that every
k-outerplanar graph can be strongly colored using at most 3A + 9 colors.

6 Strongly Coloring Circuits with Non-Intersecting
Chords

This section is devoted entirely to the proof of Lemma 5.2, which asserts that every
planar circuit G with non-intersecting chords can be strongly colored using at most
A + 4 colors. First we formalize a useful technique that will be applied repeatedly
in the proof. Let G be an arbitrary graph, with colors assigned to the nodes.

Definition 6.1 A node v is said to “miss” color c if neither v nor any of its neigh-
bours is colored a.

Definition 6.2 Let H be any connected (but not necessarily induced) subgraph of G,
and let a, B be two different colors in the coloring. The operation SWITCHy(a, )
acts on the given coloring of G by interchanging the colors a and B in the color
assignment for the nodes of H.

(We will assume that the operation SWITCHp is defined only for subgraphs H
as stated.)

Lemma 6.1 Let v miss color o and c¢(v) # B, and H be any connected component
of G—{v}. If G is strongly colored, then so it is after performing SWITCHy(a, B).

Proof: Let Hy = H, Hy,... be the connected components of G—{v}. In G, vis
connected by an edge to selected nodes in Hy, Hy, ... but the subgraphs Hy, Hy,...
themselves are mutually disjoint. SWITCHpy(c, 8) preserves the strong coloring
property in the nodes of Hy, Hy,... trivially, hence we only need to verify that it
does at v. If v misses B, then the operation has no effect on the neighbourhood of
v at all. If v has a neighbour w with ¢(w) = , then two cases can arise. If w € Hy,
then ¢(w) = a after performing the SWITCHy operation. As v missed a, this gives
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Figure 3: The inductive construction of a circuitwith non-intersecting chords.

no conflict at v. If w € H; for some 7 > 0, then the neighbourhood of v again is not
affected by the operation. O

We now analyze the strong colorings of planar circuits G with non-intersecting
chords. We assume inductively that such graphs can always be strongly colored
with < A 4 ¢ colors, for some constant ¢ > 1 that will be fixed later. (Lemma 5.2
indicates that we will later choose ¢ = 4.) This certainly holds for all circuits G
with non-intersecting chords that have < 5 nodes, provided we take ¢ 2> 3. Assume
that the hypothesis holds for all G with < n — 1 nodes (some n > 5) and consider
an arbitrary planar circuit G with non-intersecting chords that has n nodes. We
will prove the induction hypothesis for G by case analysis.

If G has no chords, then it is a simple C,, (which has A = 2). One easily verifies
that C, can be strongly colored with 3 colors when n = 0 (mod 3), and with 4 colors
otherwise (and n > 5, like we assumed). This satisfies the induction hypothesis.

Now assume that G has non-intersecting chords. As G is outerplanar, it must
have a node v of degree 2. Orient the circuit, and let v, and vg be the first nodes
to the left and to the right of v respectively that are incident to chords. Note that
there must be a chord between v, and vg, which also is the first chord “seen” from
v.

It follows that G can be decomposed into a chain C, which contains v and the
part of the circuit to its left and to its right up to (but not including) v, and vpg,
and a remaining graph H. See figure 3.

Note that H is a planar circuit with non-intersecting chords of < n — 1 nodes.
By induction H can be strongly colored using Ay + ¢ colors, where Ay = max
{deg(v)|v € H} (with degrees as counted in H). Clearly Ay < A, and w.lo.g. we
can assume that c(v,) = a and ¢(vg) = B. It remains to color the nodes of C such
that a strong coloring of the graph G results.

Assume first that C is a chain of k nodes for some k > 2. Let C consist of the
nodes ,...,z; “from left to right”, with z, adjacent to v, and zi to vs. As we
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have Ay + ¢ colors at our disposal and both v, and vg only used Ay + 1 of them
(at most), there must be two different colors v and § such that v, misses v and vg
misses 6 (in the strong coloring of H). Note that necessarily v, § # a, 5. Now color
C as follows. Assign 7 to z;, § to z) and assign the colors 8, a and v alternatingly
(in this order) to z3,23,... when k > 2. If z4_; is assigned a or v, we are done.
If x4, is assigned f, then a conflict arises with the strong coloring requirement at
zx. To resolve it we choose any color u ¢ {a, 8,7, 6} and assign it to zj_; instead.
(Such a u exists because we have at least Apg + ¢ > 6 colors available.) This gives
a valid, strong coloring of the entire graph with Ay + ¢ < A + ¢ colors.

Next assume that C consists of only 1 node, namely the node v. This (final) case
gives more difficulties, as we will see. Let M, and M} be the sets of colors, missed
by v, and vg respectively. If M, N Ms # @ and (say) p € M, N Mg, then we can
“complete” the strong coloring of G by simple assigning the color of 4 to v. Let us
therefore assume that M, and Mp are fully disjoint, for the remaining analysis. The
idea of the remainder of the proof is to try and make suitable “color flips” such that
a new strong coloring arises in which the corresponding M, and Mjg are no longer
disjoint (which would be sufficient for our proof by the previous case).

If Ag < A, then necessarily Ay = A — 1. But we used Ay + ¢ colors for H and
have A + ¢ colors available for G. It follows that there must be a “free” color which
must thus belong to M, and My, contradicting their disjointness. Thus we have
Apg = A, and necessarily degy(ve) < A — 1 and degg(vs) < A — 1. We can also
observe that both v, and vg must have chords “inside” H. For suppose e.g. that vg
had no chord inside H and (thus) degg(vg) = 2. Then [Mp| = (A+c)—3 = A+(c—
3). At the same time, |Ma| > (A+c)—A = c. As |M,|+|Mp| > A+(2c—3) > A+c
for ¢ > 3, it would follow that M, and Mj necessarily intersect, a contradiction.

Let u be the leftmost node to which vg is connected by a chord. Let M, be the
set of colors missed by u. Suppose that M, and M, were not disjoint and (say) that
Y € My N M, for some color 4. As v ¢ Mp, vg must have a neighbour colored «
(which cannot be a neighbour of 4 as ¥ € M,,). See figure 4. Choose a color ¢ € Mg
with ¢ # c(u) and do a SWITCHpy, (7, ) on the given coloring. It is easily argued
that this preserves the strong coloring of H,, but an argument similar to Lemma 6.1
shows that it actually preserves the strong coloring of H. This leads to a coloring
in which both v, and vg miss v, which suffices for our claim. A similar argument
applies in case M, and Mp were not disjoint. Thus we proceed on the assumption
now that M, is disjoint from M, and Mg.

Next assume that there is a left neighbour of u colored with some color v € My
and there is another left neighbour of u colored with some color § € M,. Now change
the coloring of H, by executing a SWITCHg, (v, §). Note that this changing of colors
preserves the strong coloring property and has no effect on the right neighbours of
v, and (hence) has no effect on the nodes of H,. It follows that after this operation
both v, and vg miss color §, which suffices for our claim. A similar argument applies
in the case there is a right neighbour of u colored with some color ¥ € Mj and there
is another right neighbour of u colored with some color § € M,. So we proceed
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Figure 4: Both M, and M, miss a color ~.

on the assumption that this is not the case, i.e., all neighbours of u colored with
elements of M, are left neighbours of u and all neighbours of u colored with elements
of Mg are right neighbours of u, or the other way around.

If the M,-colored neighbours of u are right neighbours of u and the Mp-colored
neighbours of u are left neighbours of u then we do the following. Let v € M,,
8 € M, and u € Mg. Change the coloring in H by doing a SWITCHy, (7, 6) and a
SWITCHy, (v, u) operation. It is easily argued that SWITCHpy, (7, 6) preserves the
strong coloring of H; and by Lemma 6.1 has no effect on the strong coloring of H,.
Similarly a SWITCHpy, (v, ) has no effect on the strong coloring of H;. These two
recolorings have the effect that now both v, and vg miss color v, which suffices for
our claim.

Thus we proceed on the assumption that all M,-colored neighbours of u are left
neighbours of u and all Mg-colored neighbours of u are right neighbours of u. Let
J. be the set of colors used at u that are not in M, U Mg. Let L, be the subset
of colors of J,, used by left neighbours of u, and let R, be the subset of colors of
J, used by right neighbours of u. Note that J, is disjoint from M,, M, and Mj,
by definition. We have come some way in reconstructing the neighbourhood of v,
and vs. We now know that v, has (distinct) neighbours that are colored with the
colors in J, U M, U Mg and that vg has (distinct) neighbours that are colored with
the colors in J, U M, U Mj.

Lemma 6.2 The colors can be flipped such the strong coloring requirement is pre-
served and some Mg-colored neighbour of v, precedes all R,U M, -colored neighbours
(along the arc from v, to u) and some M,-colored neighbour of vs precedes all
L, UM, -colored neighbours (along the arc from vg to u).

Proof: We only prove this for the neighbours of v,, as the argument is simi-
lar for vg and respective color-flips that are needed do not interfere. Suppose the
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property is not satisfied yet, i.e., there exists a ¥ € R, U M,, that precedes all colors
p with u € Mg along the arc from v, to u for correspondingly colored neighbours
of v, (along the arc towards u). We let 4 be the first color from R, U M, that
occurs along the arc and has this property. Let u € Mp be some color. Consider
first the case v € M,. It is easily seen that SWITCHpy, (v, #) preserves the strong
coloring of H; and of H, and swaps u into the desired “leading” position. Next,
we consider the case that v € R,, thus there is a right neighbour of u, colored
with 4. Note that all Mg-colored neighbours of u are right neighours of u, thus
there is right neighbour of u colored with u. Note that now a SWITCHpg, (1, ) will
again do the trick, for any 4 € M and swaps p into the desired “leading” position.

(The proof of Lemma 6.2 is easily extended to show that all Mg-colored neigh-
bours of v, precede the R, U M,-colored neighbours, but this is not needed for our
argument here.) Let £, be the color of the first Mg-colored neighbour of v, along
the arc, and likewise o; the color of the first M,-colored neighbour of vs along the
arc.
Observe that |Jy| > (deg(u) + 1) — |My| — |Mpg|, |[My] = A+ c— (deg(u) +1) and
| My |+|Mp| < A+c. This means that |J,|+|My|+|Mq|+|Mg| > A+cand (hence) =
A+cbecause it are all disjoint sets, and in particular |J,| = (deg(u)+1)—|M,|—|Mg|.
1t follows that J, U M, U M, U Mg is the full set of colors. We can now estimate the
number of neighbours of v, and vg as follows:

|Lu| + |Rul + 2|Mu| + | Mol + | Mg

|Jul + 2| My + | Ma| + | Mp)

(deg(u) +1) — |Ma| — | Mp|+

2(A + ¢ — (deg(u) + 1)) + |Ma| + | Mj]
2A + 2¢ — (deg(u) + 1)

A+2c-1.

(AN

As each of these nodes must miss at least c—1 > 3 colors out of the full set of A+c¢
colors and 3(A +2c—1) > 3(A +¢), there must be some color x that is missed in at
least 4 of the nodes under consideration (i.e., neighbours between the $;-colored one

of v, and the a;-colored one of the vg). In fact, because 3(A +2¢c—3) > 3(A+c) we
can even claim that these 4 nodes occur strictly in between the $;-colored neighbour
of v, and the o;-colored neighbour of vg. Let the nodes be v{1), v(?),v(® and v®, in
this order. Assume w.l.o.g. that v{?) is a neighbour of v,.

We will now complete the proof by a final case-analysis. The vf})-nodes act as
“separating nodes” and we can perform any sort of SWITCH,(u, *) operation on
the arcs left or right of v‘(f) that preserves the strong coloring requirement, and try
to “free” a color that can be assigned to v. We always use the same argument for it
as in Lemma 6.1.

First assume that u € M, (see figure 5(a)). Observe that in this case vg has a
neighbour colored u. Performing a SWITCHpy, (¢, 1) preserves the strong coloring
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(d) Two v{) nodes in between the p-colored neighbours of v, and vg

Figure 5: Final case analysis.
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requirement in H, and H, but it has the additional effect that in the new coloring
vp also misses 4 (and v, continuous to miss it as well). Thus u can be assigned to
v and we are done.

Next assume that 4 € Mp. In this case v, has a neighbour colored y. If vg
has one of the v,(f) nodes as neighbour, then we can proceed as in the previous case.
Thus let all 'v,("') be neighbours of v,. First assume that there is a v,(f) right of the u-
colored neighbour of v,, as shown in figure 5(b). Now perform a SWITCHpy, (1, 1)
to archieve the same effect as in the previous case. It leads to a strong coloring of
H in which both v, and vs miss u. Next assume that all v{) are in between the
B1- and p-colored neighbours of v,, see figure 5(c). (Note that H; and H, do not
include the part of H “between” v and v(?.) Now perform a SWITCHy, (4, 1)
and also a SWITCHy,(u, 81). A straightforward argument shows that this preserves
the strong coloring requirement, but it has the additional effect of removing 3; from
the neighbourhood of v,. Thus B; is “freed” and can be assigned to v.

Finally assume that u ¢ M, U M. Now both v, and vg have p-colored neigh-
bours, say = and y respectively. The nodes = and y divide the arc from the B1-colored
neighbour of v, to the a;-colored neighbour of vg into three intervals. Thus at least
one of these intervals must contain two v‘(f) nodes. If either the first or the last
interval contains two v‘(“) nodes, then we can reason exactly as in the previous case
and are done. (Consider e.g. figure 5(b) and add a u-colored neighbour of vg. The
argument remains unchanged.) Thus the only case left is the case in which two
v{) nodes occur between the p-colored neighbours of v, and vg, see figure 5(d).
Now perform a SWITCHp,(u, ;) and also a SWITCHy, (#,B1). This preserves the
strong coloring requirement and frees y at both v, and vg. Thus the strong coloring
of G can be completed by assigning 4 to v. This completes the proof of Lemma 5.2.

The proof shows that we can indeed take ¢ = 4.

7 Conclusions and further remarks

In this paper we have presented some basic facts about the strong coloring problem
for graphs. We gave a summary of results for perfect colorings of regular graphs and
for strongly coloring special classes of graphs. We proved a new upperbound, namely
3A+9, for strongly coloring arbitrary planar graphs. For outerplanar graphs a much
tighter bound for the strong coloring problem is proved, namely A + 4. The bound
for general planar graphs, while nontrivial, is not likely to be the best possible. At
present the only known worst-case lowerbound is about 2A + O(1).

Throughout the paper we have reported some results for the strong coloring
problem for various classes of non-planar graphs as well. Here many interesting
problems are left. For example, given a coloring algorithm A which gives a good
approximate bound on the chromatic number of a graph G, does this algorithm give
a good approximate bound for the strong chromatic number of G, when it is applied
to the square graph G?? What if G belong to a special class of graphs?
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Another open question is the following. Is there an analog for strong chromatic
numbers of the following theorem of Garey and Johson [8] : ”If for some constant
r < 2 and constant d there exists a polynomial-time algorithm A which guarantees
A(G) £ rx(G)+d, then there exist a polynomial-time algorithm A which guarantees
A(G) = x(G).”? The best performance ratio known for approximation algorithms
for the chromatic number problem is ﬂ(llf’ﬂ)ﬁﬂ [5]. What is the corresponding best

. ogn . .
performance ratio for the strong chromatic number by applying this to the square
graph G2?

It would be interesting to investigate other relationships between the strong
coloring problem and the well-studied coloring problem (see e.g. [12]), as well as re-

lationships between the strong vertex coloring problem and the strong edge coloring
problem.
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Appendix

Theorem Given a graph G and an integer K, the problem of determining whether

G can be strongly colored with < K colors is NP-complete (STRONG CHROMATIC
NUMBER).

Proof: The problem trivially belongs to NP. (One can assign < K colors to the
nodes of G and verify in polynomial time whetter it is a strong coloring.) For proving
the NP-completeness, we reduce 3-SAT to STRONG CHROMATIC NUMBER. Let
F be a CNF formula having r clauses, with at most three literals per clause. Let z;
(1 £ ¢ < n) be the variables in F. We may assume n > 4. We shall construct, in
polynomial time, a graph G that is strongly colorable with rn + 2n + 2 colors iff F
is satisfiable. The graph G = (V| E) is defined by:

V= {:B.',:t:g,. . .,:Dﬂ} U {Tl,fz, cee ,T,.} U {yl,yz, cen ,yn+l} U {Pl.ly “es ,Pn,r}
U{pn+1,r} U {21,22, N ,Z,,} U {01,02, ey C,-}

and

E = {(yi, y;j)li # 5} U {(2i, )]s # j} U {(2i,2:),1 < i < n}U
{(pi.j,pk,l)li # k or J # l} U {(zi,fi)a 1 S ? S n} U {(pn+1,ra yn+1)}U
{irz))1 <i<n,i# 3} U{(pijC;),1<i<n,1<j<r}u
{(pijr ), 1 < 4,k <n,1 <5 < r}U{(2i, pige)lzi & Ci} U {(Zi, pi)IT: & Ci}

To see that G is rn+2n 42 colorable iff F is satisfiable, we first observe that the
yi’s form a complete subgraph on n + 1 vertices. Hence, each y; must be asssigned
a distinct color. Without loss of generality we may assume that in any coloring of
G y; is given the color i for 1 < ¢ > n + 1. Then we observe that the z;’s together
form a complete subgraph on n vertices. Every z; is at most at distance two from
every y;, hence the z; must be colored differently from the y;. Assume w.l.o.g. that
z; is given the color n +:+1 for 1 < i > n. We also observe that the p; ;’s together
form a complete subgraph on rn + 1 vertices. Every p; ; is at most at distance two
from every yi, and every p; ; is at most distance two from every 2, so the colors of
the p; ; must be different from the colors of the y; and different from the colors of
the z;. Thus we can assume that p; ; is given the color 2n + tn 4+ j 4 1 and Pny1,r 18
given the color rn + 2n + 2. Since y; lies within distance two from all the z;’s and
the Z;’s, except z; and %;, the color ¢ can only be assigned to z; or ;. z; lies within
distance two from F;, so one of these two vertices must have a different color. z;
and Z; lie within distance two from every z; and pi,; and every other y;,j < 1,5 # 1,
so only color n + 1 is available for one of these two vertices, for every ¢,1 < ¢ < n,
because no z; or Z; lies within distance two from any other z; or Z;. The vertex
that is assigned to color n + 1 will be called the false vertex. The other is the true
vertex. The only way to color G using rn + 2n + 2 colors, is to assign color n +1 to
one of {z;,%;} foreach 7,1 <i<n.
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Under what conditions can the remaining vertices be colored using no further
colors? Since n > 4 and each clause has at most three literals, each C; lies within
distance two from a pair z;,%;, for at least one j. Consequently no C; may be
assigned the color n + 1. Also every C; lies within distance two from every pi; and
every zj, so C; must be assigned a color less than n + 1.

Also no C; can be assigned a color corresponding to an z; or an Z; that does
not occur in clause C;. These observations imply that the only colors that can be
assigned to C; correspond to vertices z; or Z; that are in clause C; and are true
vertices. '

Hence G is strongly rn + 2n + 2 colorable iff there is a true vertex corresponding
to each C;, and thus iff F is satisfiable. a
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