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Fast Algorithms for the TRON Game on Trees

H. Bodlaender* T. Kloks'
Department of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

TRroN is the following game which can be played on any graph: Two players
choose alternately a node of the graph subject to the requirement that each
player must choose a node which is adjacent to his previously chosen node and
such that every node is chosen only once. In this paper O(n) and O(n4/n)
algorithms are given for deciding whether there is a winning strategy for the
first player when TRON is played on a given tree, for the variants with and
without specified starting nodes, respectively. The problem is shown to be
both NP-hard and co-NP-hard for connected undirected graphs in general.

1 Introduction

Games are not only a popular pastime, but can also serve as a model for several
different phenomena, like conflicts between parties with different interests, fault
tolerance, worst-case complexity of algorithms (see e.g. [6]), and complexity theory
(see e.g. [5]). In this paper we concentrate on the problem to determine whether
there is a winning strategy for the first (or second) player in a given game-instance
from a certain class of games.

We consider the following type of game: The game is played on a given directed
or undirected graph. Two players (called player 1 and player 2) alternately choose
a node that has not been chosen before (by either player), and (if it is not his first
node) that is adjacent to the last node that has been chosen by that player. In
other words, the players are forming two vertex disjoint paths in the graph. The
first player that is unable to choose a node loses the game. The game is called TRON,
because it can be seen as a generalization of a popular video game with this name.
A variant of the game is where the starting positions of the players are specified.

*This author is partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 3075 (project ALCOM)

tThis author is supported by the Foundation for Computer Science (S.I.O.N.) of the Netherlands
Organization for Scientific Research (N.W.0.).



TRON games were proposed in [2], and the problem to decide whether there is
a winning strategy for player 1 for TRON on a directed graph was proven to be
PSPACE-complete. The same result was obtained for the variant with specified
starting nodes. The complexity of the problem for undirected graphs is not com-
pletely determined but as is shown in Section 6, TRON is NP-hard and co-NP-hard
for connected, undirected graphs. Therefore, it is useful to look at the complexity
of TRON for special classes of graphs. (The complexity of several other games on
graphs is considered in [1, 3, 4, 7, 8] among others.)

In this paper we give algorithms to decide whether there is a winning strategy
for player 1 on a given tree, both for the version with specified starting nodes and
for the version without specified starting nodes. In Section 2 we give a linear time
algorithm for the game on trees with specified starting nodes. In Section 3 we
give some definitions and some preliminary results for the version without specified
starting nodes. We shall show that the problem can be split into two easier problems,
of which the outcome decides the outcome of the TRON-problem. In Section 4 we
describe an O(nlog?n) algorithm to determine one of the subproblems. In Section
5 an O(n,/n) algorithm is given to decide the other subproblem. In Section 6 we
show that TRON on connected, undirected graphs is both NP-hard and co-NP-hard.

2 A linear time algorithm for the version with
specified starting nodes

In this section we show the following result:

Theorem 2.1 There ezists a linear time algorithm that, given a tree T = (V,E)
and nodes vy,v, € V, determines whether there is a winning strategy for player 1
for TRON played on T with starting nodes vy, v,.

Proof:
Let s1, s; be the given start-positions of player 1 and 2. Number the nodes of
the path from s; to s;: 0,..., k. For the first move of player 1, we consider two

possibilities. Either he chooses to move towards player 2 (i.e., to position 1), or he
decides to diverge from the path. In the latter case player 2 can move freely during
the game towards any node of the path except node 0. Let a*(z) be the length of a
maximum path with node 7 as an endnode and which uses no other nodes (besides
t) of the path from s, to s,. Then, at his first move, player 1 will diverge from the
path towards player 2 only if:

a*(0) > llél%}i(k —z+4a*(2))

The righthandside is the length of the longest path player 2 can choose if player
1 has diverged from the path at his first move. The computation of the numbers
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a*(z), i = 0...,k — 1 clearly takes linear time. Assume that these numbers have
been calculated.

Also on later moves, players can either move on the path between s, and s; or
diverge from this path. The next step of the algorithm is the computation of:

; . . k
t(z) = ..<zréllg_x1_i(k+ l1—i—-z+4a*(2), i=1,..., [E'l

t1(2) is the maximum length of a path that can be made by player 2 after player 1
has diverged at its i*h move. Suppose both players have made : — 1 moves towards
each other. Then player 1 will be in position i — 1, player 2 will be in k + 1 — 3,
and player 1 must make a move. Player 1 will then diverge from the path only if
a*(¢ — 1) > t1(¢). Similarly, define:

. A : k
ta(2) = Kzrggxl_i(z —i4+a*(2)), t=1,..., LEJ

If player 1 is in position ¢ and player 2 is in position k + 1 — 7, player 2 has to make
the next move. He will decide to leave the path only if a*(k + 1 — i) > 5(7). The
calculation of ¢; and ¢, also takes linear time. Now consider the following invariant:

0<i< [}
® Viogi<i(a* () < t1(j +1))

® Viogjci(a*(k —j) <ta(5 + 1))

This states that none of the players can win the game by diverging from the path
before the ith move. Now consider the special case i = |_§J If k is even, player
1 wins the game because, on the one hand, player 2 should move to this position
to win the game but, on the other hand, this position is already taken by the first
player. If k is odd, player 1 wins the game if and only if a*(|%]) > a*([£]). Thus
we find the following algorithm for determing for which player there is a winning
strategy for TRON on T with starting nodes s;, s,:

1:=0;
doi < |%] and (a*(1) < (i +1) A a*(k—1) <t(t+1)) > i:=i+41 od;

= I_%J A k even— player 1 wins
5] A kodd — if a¥( I_%J) > a*( [-’i-]) — player 1 wins
| a*(1£]) < a*(1E1) — player 2 wins
fi
| i < [5] — if a*(3) > (s + 1) — player 1 wins
| a*(i) < t1(i + 1) — player 2 wins
fi
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3 Definitions and preliminary results for the ver-
sion of TRON without specified starting nodes

Now we consider the TRON game on a tree without specified starting nodes. The
centre of the tree will play a crucial role in our analysis and algorithms.

Definition 3.1
The eccentricity e(v) of anode v € Vin a tree T = (V, E) is the maximum length of
a path starting at v. The radius r(T) of a tree T is the minimum of the eccentricities

of the nodes. A node v is called a central node if e(v) = r(T), and the centre of T
is the set of all central nodes.

It is well-known that the centre of a tree is not empty and always consists of one
or two adjacent nodes. The following theorem shows that, although no starting
positions are given, for all nodes v € V but possibly one, player 1 loses when he
starts in that node v. This considerably simplifies the problem.

Theorem 3.1

If the centre of the tree consists of two nodes then the second player always has a
winning strategy. If the centre of the tree consists of one node then the first player
must start in this node, or else the second player will have a winning strategy.

Proof:

Suppose the first player starts in a node s;, such that there remains an unused
central node. Player 2 then chooses the first node on the path from s; to a central
node. He can then always make a path of at least the same length as player 1, so -
he wins the game. O

In the rest of this paper it is assumed that the centre of the tree consists of one node
and that the first player starts in the central node. We refer to this central node as
the root of the tree. For future use we also recall the definition of the centroid of a
tree.

Definition 3.2
A branch at a node v is a maximal subtree containing v as a leaf. The weight of
a node v is the maximum number of edges in any branch at v. A node is called a
centroid-node if it has minimal weight, and the centroid of the tree is the set of all
centroid-nodes.

Like the centre, the centroid of a tree either consists of one node or two adjacent
nodes. Our algorithm uses a divide and conquer technique, based on the following
well-known result.

Lemma 3.1
If the tree has a unique centroid-node, then all the branches have less than 3 edges,
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where n is the number of nodes in the tree. If the tree has two centroid nodes, then
the branch at one of the centroid-nodes, containing the other centroid-node, contains
ezactly § edges.

Definition 3.3

For a node z, let d(zx) be the distance of z to the root. We denote by P, the path
from the root to this node. P(i), for i = 0,...,d(z) is the i*® node of this path,
so P(0) is the root, P;(d(z)) = z, P,(d(z) — 1) is the father of z, denoted also by
v(z) (if z is not the root), and so on.

Consider the case in which player 2 has chosen a starting node s. Let k = d(s). Now,
the players will alternately choose a node. For some time they will move towards
each other. Suppose that player 1 is the first to diverge from the path, and that he
does so on the itB move. At this point, player 1 will be in position P,(i) and player
2 is in node P,(k — ¢). Let a}(z) be the maximum path-length from node P,(d(z)),
which does not use any other node (besides z) of P,. Then, if player 1 can win the
game, he will diverge from the path only if:

0) > max (k=i - 2+ a3(2))
The right-hand side is simply the longest path player 2 can make from his current
position. Of course there might be some other node satisfying the equation above,
but in choosing the first, player 1 has a winning strategy. If such a node exists we
will call it the winning node for player 1 (with starting node s for player 2). These
considerations lead to the following two subproblems:

Subproblem 1 Given the starting position of player 2, determine the winning
node for player 1. This is like playing TRON with the following extra restriction:
Player 2 is not allowed to diverge from the path towards the root until player 1 has
done so.

Likewise we can define a winning node for player 2, given a starting node s; this
is the first node on the path to the root at which player 2 can win the game by
diverging from the path (when he is at move).

Subproblem 2 Determine the winning node for player 2 if it exists.

Definition 3.4
For starting node s of player 2, let r;[s] be the winning node for player i if it exists
and let r;[s] = fﬂ,}l] otherwise (i = (1,2)).



The following theorem illustrates that the two subproblems are indeed the only
subproblems we have to solve.

Theorem 3.2
Player 2 wins the game by starting at node s if and only if: ri[s] > d(s) — ry[s]

Proof:

If there is a winning node for one of the players, the player who reaches his winning
node first wins the game. So in this case the theorem holds. If there is no winning
node for either player, then player 2 wins if and only if d(s) is odd. Then also in
this case the theorem holds, since [£] > k — [£] = |X] if and only if kis odd. O

In Section 4 we describe an O(nlog? n) algorithm to compute r;[s] for all s, and in

Section 5 we describe an O(n+/n) algorithm to compute r[s] for all s. Hence, we
have:

Theorem 3.3 There exists an algorithm that, given a tree T = (V, E), determines

in O(ny/n) time whether there is a winning strategy for player 1 for TRON played
on T without specified starting nodes.

4 An O(nlog’n) algorithm to determine the win-

ning node of player 2 for every starting posi-
tion

Suppose player 2 starts at position s at distance k from the root. As before we
number the nodes of this path starting at the root 0,...,k. Notice that if player
2 is at move in position j, player 1 is in position k — j + 1. The winning node for
player 2 can be defined as follows:

Definition 4.1
Rafs] = {j | [%2] < j < d(8) A Vaage-srrcaci(@3(F) > 2 = (d(s) = j +1) + a2(2))}

Now ry[s] = max;ep,[(7). Notice that for all starting positions s with k = d(s) > 1:
[£] € Ra[s]. We can deal efficiently with the numbers a*(i) (for all suitable s and
i) by ‘shifting the path over one position’.

Definition 4.2

For every node z in the tree except the root, let a(z) be the length of a maximal
path with v(z) (the father of z) as an endpoint, which uses no other nodes of P,
besides v(z). Let I(z) be the maximum path-length among paths from x which do
not go through v(z). Let a(root) = I(root) = e(root).



Notice that for any starting position s, we have:

iy = {A(PGHD) i=0,..,d(s) ~ 1
:(2) {l(s) i = d(s)

If it is clear which starting node s we are talking about, we also write a(?) in stead
of a(P,(7)). Clearly the numbers a(z) and I(z) can be computed in linear time. We
can reformulate the definition of r;, in terms of a and ! as follows:

Definition 4.3
R;[S] = {.7 I I—ﬂzﬂ] S] < d(s) A Vz:d(a)‘j+1Sz<j(d(s)_j+1+a(j+1) > z+a(z+1))}

Note that
k fk=1orVic,ck(1 + (k) > (z + a(z + 1))
rols] = max (j) otherwise
JER3[s)

We use the following notation: rj[s] = max;¢ Rryis)(7)- These formulas may look
alarming at first sight, but when looking at the term k — j + 1 in R3[s] we notice
some monotony. So we replace the term k£ — j 4+ 1 by a new variable.

Definition 4.4
For any node z in the tree we define: (k = d(z))

Az) = {s|0<s<k A Vocck-1(a(k) > z—s+a(z+1))}

§(=) = min(s)

Lemma 4.1 Let k = d(s). Then Ry[s] = {j | [£] < j <k A 8§(P(j+1)) <
k—j+1}.

Proof:
This is the monotony we were talking about: §(P,(j + 1)) < ¢ if and only if Vz :
§<z<jlg+a(j +1)> 2z +a(z2+1)). O

It is straightforward to determine in linear time the nodes s for which r;[s] = d(s).
It remains to compute r3[z], for all £ € V. The computation of these numbers uses
two phases. In the first phase we determine the numbers §(z) and in the second
phase we compute r3[z]. The algorithms use divide-and-conquer techniques.



4.1 The computation of §(z)

Consider a subtree with a root w which has m nodes. We describe a subroutine
which computes the numbers 8w(z) for all nodes in the subtree except w:

Aw(z) = {s|dw)<s<k A V,cockr(a(k)>2z—s+ a(z+1))}
Sole) = gmin (o)
In this formula k = d(z) is the distance to the original root.

The case m < 2 takes constant time. Now assume m > 2. The first step of this
algorithm is the computation of the centroid-node c of the subtree which is farthest
away from w. This can be done in linear time. The second step is the recursive call
of the subroutine for each son of ¢ (or more precise: for the subtree with that son as
a root). Next we delete all subtrees of ¢ and we recursively call the subroutine for
the adjusted subtree rooted at w (which now has c as a leaf). Notice that for nodes
in this last subtree §,, has been determined correctly. For nodes in the subtree at ¢

we split the path to w. So the third step is the computation of numbers my(z) for
all nodes in the subtree rooted at c:

My(z) = a2, (2 +a(z+1)

and the computation of numbers 7(s) for d(w) < s < d(c):

7(s) = Jnax (2 +a(z+1)),
and we define v(d(c)) = 0. This step clearly takes at most linear time.
The fourth step is the computation of §,, for the sons of c. If  is a son of c, we
have:

Auz) = {s]d(w) Ss<d(e) A s+ a(z) > (s)}
6'”(:1:) = aerzlgi:%z)(s)

Since v is a monotonic non-increasing function, this step takes at most O(log m)
time for each son of c. The fifth step is the computation of ,(z) for the other nodes
in the subtree at ¢. For these nodes we have:

Au(z) = {s]dw)<s<d(c) A s+ a(z) > v(s) A s+a(z) > my(r)}
5u(s) { 8e(x) if é.(z) > d(c) +1

min (s) otherwise
8€EAw(T)

Hence, also this step takes at most O(log m) time for each node z.
Let T(m) be the time needed for the computation of §. Since ¢ is the centroid
node which is furthest away from w, all subtrees at ¢ contain at most | 2] nodes.
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The adjusted subtree rooted at w in which c is a leaf contains at most |2 +1] nodes.
If f; is the number of nodes in the ** subtree, we find:

Fo= {(fufo- )it fot o =m AV ST +1)))
T(m) < max(3T(£))+O(mlogm)

With induction on the number of subtrees at c the following is easy to prove:
m
T(m) < T(L5 +1)) + T([5 - 11) + O(m log m)

and finally this gives: T'(m) = O(m log? m).

4.2 The computation of r}[z]

As stated before we have for nodes z at distance k = d(z) > 1 from the root:

Rile] = (1IE1<i<kAk—j+126(+1)

ralz] = jgnRgf;](j )

Let w be a node of the tree T. We describe a subroutine which determines r* [z] for
all z in the subtree at w (k = d(z)):

Riyle] = {jldw)<j<kAk—-j+126(G+1)}

rile] = {jé’}q:’[i,ﬁ) if Rylz] # 0

-1 otherwise

Then, for nodes at distance at least 2 from the root we have r}_,(z) = r3(z). In
the first step of the algorithm we again compute the centroid-node ¢ of this subtree
which is farthest away from w. The second step is the recursive call of the subroutine
for the same subtrees as described in the previous section.

Let y be a son of ¢, and let = be a node in the subtree of y. We first check whether
ra(z) = d(c). We have: r}(z) = d(c) if and only if: r2(z) = -1 A §(y) + d(c) <
d(z) + 1. For convenience, we define for these nodes z: ri(x) = d(c). To assign
s (z) for the rest of the nodes in the subtree at ¢ (except c), we first define:

Definition 4.5
For k =d(c) +1,...,n:

Tkl = {jldw)<j<dc) Aj+6(G+1)<k+1}

-1 ifTk]=0
tlk] = max(j) otherwise
J€T[K]



We can assign the values to array ¢ in O(n) time as follows:
Take the following invariant:

-1 if T[N =0
o k<n A Veisk A d(c)<ign ] = max(j) otherwise
JE€T{N

o i <d(c) A Vijsi(d(w) <j<d(e)=7+6(G+1)>k+1)
Then the algorithm becomes:

k:=n;i:=d(c) - 1;

doi+6(i+1)>k+1 Ai>dw) »i=i—1

| i+6GE+1)<k+1Ak>dc)—ot:[k]l=4k:=k—1
od;

dok>d(c) »t:[k]=-1;k:=k—10d

Now, for any node in the subtree of ¢ we can now compute 7:[z] =

max(7z[z], t[d(z)]). We conclude that this part of the algorithm takes O(m logm)
time.

5 An O(n./n) algorithm to determine the win-
ning node for player 1

Suppose player 2 starts at position s at distance k from the root (k > 1). If player
1 is at move in position ¢, then player 2 is in position k¥ — . The winning node for
player 1 can be defined in terms of a and [ as:

Definition 5.1
Let d(s) > 1. Ri[s]={i|0<:< [%ﬂ] A Viice<da)-i(a(+1) > d(s) —i— 2z +
a(z+1))}.

Now
0 if a(0) > 1(8) A Vi0<z<d(s)(a(0) > d(s) — 2z + a(z + 1))
rifs] = . 512{1[1](2') otherwise

As a shorthand notation we use: rj[s] = mineps((). Clearly, also in this case
we only have to concentrate on the computation of r}[s]. In this case we decide to
replace the term d(s) — 7 in R} by a new variable:

Definition 5.2
S()={i|0<i<d(z) A Vaiicscd)(a(i+1) 2 d(z) — 2 +a(z+1))}

Now we want to look at the maximum position player 2 can be in such that player
1 can still win the game by diverging from the path in position z.

10



Definition 5.3
For ¢ =1,...,d(s) we define (k = d(s)):

A7) = {jli<i<k Ai€S(;)}

5.() = .
() J.gm)(y)

Lemma 5.1 If Ry[s] = {0 < i < d(s) A i+6,(i) > d(s)}, then ri[s] = minep ,(3).

Proof:
First notice that for ¢ > 0 we have: (k = d(s))

i+6,i)>k & V,:.-<,5k_.-(a(i +1)>k—i—z+ a(z + 1))

Also, for 0 < 1 < k: 6,[¢] > i + 1. This implies: 35=0<iS[§](i + 6,(z) > k) (and this
also holds for k = 1). This proves the lemma. 0O

5.1 The computation of the (ordered) sets S(z)

In this section we describe an O(n/n) algorithm to determine the set S(z) for every
node z:

S(z) ={i |0 <i < d(2) A Vaicsca)(a(Pe(i+1)) 2 d(z) — 2+ a(Pe(z + 1))}

So, for example we have defined S(root) = 0; if d(z) > 0 then d(z) € S(z); and
if d(z) > 1 then we have (d(z) — 1) € S(z). First we shall show that the only
candidates for S(z) besides d(z) are in S(v(z)) (when z is not the root).

Lemma 5.2 0 <: < d(z) A i € S(z) =i € S(v(z))

Proof:
We have, if 0 < i < d(z):

Vaicacdz)(@(Pe(t + 1)) 2 d(2) — 2z + a(Pe(2 +1)))
& Vaicecdorr @(Pli + 1)) > (d(z) — 1) — 2 + (Pl + 1))
= Vaicacitnr-1(a(Puy(i +1)) 2 (d@) = 1) = 2 + a(Puge (2 + 1))
= 1 € S(v(x))

O

Consider a node w. We describe a procedure which determines S(z) for every node
z in the subtree of w. We keep the following invariant:

11



w is a node in the tree.

¢ S(w) has been determined.

For all ¢ € S(w) with ¢ < d(w) — 1: w(i) = MaX;¢.<d(w)(a(Puw(z + 1)) — 2)
For all i < d(w) : a*(z) = a(Py(i + 1))

proc determine-S-in-subtree(w);
for = € sons of w do
S:(z)=0; k:=d(z); a*: (k- 1) = a(z);
for i € S(w) do
fi<dw)-1-—-

Q: (5) = wii);

w : (t) = max(w(i),a(z) — k + 1)
[i=d(w) -1 > w:(i)=a(z)—k+1
| ¢ > d(w) — skip
£i;

if i < d(w) ~ 1 and a*(i) > k + w(i) — put i in S(z)
| i > d(w) — 1 or a*(i) < k + w() — skip
fi
rof;
put £ — 1 and k in S(z);
determine-S-in-subtree(x);
for i € S(w) do
fi<dw)-1-w:()=9%)
| ¢ > d(w) — 1 — skip
fi

rof
rof

corp

We assume the sets are represented as an array-like structure. (This allows us to
perform binary search on the sets.) For every node z the amount of time needed
to compute S(z) is clearly bounded by a constant times | S(v(z)) | (if = is not the
root). By the following lemma, it now follows that the time needed by the algorithm
of this subsection is O(n/n).

Lemma 5.3
For every node y: | S(y) |< vV2n + 2.

12



Proof:

Consider two consecutive elements of s(y), say i and J. Let 1 < j < d(z). Then, if |
J < d(z), by definition:

a(By(i+1)) 2 d(z) — j +a(P(j + 1)) > a(Py(j + 1))

So the a-values of S(y) form a decreasing subsequence of P, (except for the last
element of S(y)). But as these values correspond to the lengths of disjoint paths,
we have that Y% a(Py(t)) + I(y) < n. So Stesw\d(y) ¢(Py(t + 1)) < n. But the
longest monotonic sequence of nonnegative integers with sum less than or equal to
n contains at most 1 + /2n elements. This proves the lemma. O

5.2 The computation of r}[s]

In this subsection we compute the winning node for player 1, for every starting
position of player 2, again by using a divide-and-conquer strategy. Consider a node
w, and let the number of nodes in the subtree with w as a root, be m. If we want
to determine the winning node for player 1 for starting nodes in the subtree with
root w, we cannot look only at nodes in the subtree at w, because these winning
nodes might be on P,. If however such a winning node appears in some set S(v)
of a node v in the subtree, we can take it into account. We describe a subroutine
which determines the winning node for player 1, for every starting position in the
subtree of w, based on nodes which appear in some set of a node in the subtree of
w. More precisely, we determine for every node z in the subtree of w, except for w,
the number 7,[z] defined as follows:

Definition 5.4

Rylz] = {i|0<i<d(z) A i+6.()>d(x) A 6,(5) > d(w)}

folz] = min (i)
i€R,[z)

We must compute 7,o0[], for all z, since frout[z] = r[x]. We do this by divide-and
conquer. When we want to compute #,[z], for all = in a subtree with root w, we
start by determining the centroid-node of this subtree, that is furthest away from
w. For every son of ¢ we recursively call the subroutine, for the subtree rooted at
this son. Next we delete all sons of ¢, and we call the subroutine for the adjusted
subtree rooted at w, which now has c as a leaf. For nodes in this last subtree the
number #,, has been correctly determined. Now consider a node z in the subtree
rooted at c. If 7,y [z] has not been determined correctly, then there must be a node
on F, say 1, which does not appear in a set of the subtree, and which satisfies:

0<i<d(c) Ai+6(:)>d(z) A d(c) > 6.(2) > d(w)
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Notice that these nodes ¢ either must appear in S(w) or on the path from w to c.
For these nodes we define:

Definition 5.5
Let V = S(w) U {j | d(w) < j < d(c)}. Let i € V. We define:

Qlil = {F|1G eV AieS(P())}

gli] = %%U)

Since the number of elements in each set is bounded by a constant times /%, and
since these sets are ordered, the determination of all g[] takes O(y/n log m log 1/n) +
O(mlog mlog \/n) time (in which it is assumed that we can also perform a binary
search on the nodes of the path from w to ¢).

Definition 5.6
For k =d(c) +1,...,n we define:

TR = {JlF€V A j+4a(j) >k}

k ifT[k]=0
tk] = min (j) otherwise
JET[K)

We can assign the values to array ¢ in O(n) time as follows:
Take the following invariant:

| ! if T[] =0
0 d(c)+1<k A Vuckaicn : t{l] = mif}] () otherwise
JET

i€V AViiJEV = j+qli]< k)
Then the algorithm becomes:

k :=d(c) + 1; i := first element of V;
doi+q[i] <k AV #D — take next i

| i+qli]>k A k<not:[kl=d4k:=k+1
od;

dok<n—ot:[k]=kk:=k+10od

For the sons of ¢ we first set 7;[son] = d(c). Now, for any node in the subtree of ¢
we can now compute f,[z] = min(7.[z], t[d(z)]).

Let T'(m) be the time needed by this algorithm. Then we find:

T'(m) < T'(I_% +1]) +T'(|'% —1]) + O(v/nlog nlogm) + O(mlog mlogn) + O(n)
and this gives: T'(n) = O(nlog®n).
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6 Complexity of TRON on undirected graphs

In this section we investigate the complexity of TRON on undirected graphs. Al-
though we conjecture that this problem is PSPACE-complete, we were not able to
prove this. However, it is fairly easy to show that the problem is both NP-hard and
co-NP-hard for connected, undirected graphs.

Theorem 6.1 The problem to decide whether for a connected, undirected graph

G = (V, E) there is a winning strategy for player 1 for TRON, played on G without
specified starting nodes, is NP-hard.

Proof:

We use a transformation from HAMILTONIAN PATH with one specified endpoint of
the path. (It is easy to see that this problem is NP-complete.) Let an undirected
graph G = (V,E) and a node s € V be given. Let n = |V|. (We assume n > 4.)
Let G' = (V',E') be the graph, defined by V' = V U {w;,w;, -, ws,—3}, and
E'=EU {(wi,wiy1) | 1 <i<2n -4} U {(s,w;) | 1 <i < 2n — 3}. We now claim
that player 1 has a winning strategy for TRON on G’ without specified starting
nodes, if and only if G’ has a Hamiltonian path, starting with node s. From this
claim, the theorem follows by observing that G’ can be constructed in polynomial
time.

First we remark that player 1 must start in s. If he does not, then player 2 starts
in s. If player 1 started in a node v € V, then player 2 wins by moving to w;: player
1 can make at most n — 1 moves, and player 2 can make 2 - n — 4 moves. If player
1 started in a node w;, and moves in his second move to w;_; (wi41), then player 2
moves to w;_y (wi4+2) and wins directly. So suppose player 1 starts in s.

Player 2 now must start in w,_;. If he instead starts in a node v € V, then
player 1 wins by moving to w;. If he starts in a node w;, with ¢ # n — 1, then player
1 wins by moving to w;41, if ¢ < n — 1, and to w;_; otherwise.

Now player 1 can make n — 1 moves, if and only if G has a Hamiltonian path
starting with node s. Player 2 can always make exactly n — 2 moves, so wins if this
Hamiltonian path does not exist. O

Theorem 6.2 The problem to decide whether for a connected, undirected graph
G = (V, E) there is a winning strategy for player 1 for TRON, played on G without
specified starting nodes, is co-NP-hard.

Proof:
Note that HAMILTONIAN PATH is NP-complete, even for graphs that have at least
one node with degree 1 and an odd number of nodes. Let G = (V| E) be a graph
with v € V' a node with degree 1, and n = |V| odd. Let G’ be obtained by taking
the disjoint union of G and a complete graph with n nodes, and then adding an
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edge between v and one of the nodes z of the complete subgraph. Now player 2 has
a winning strategy for TRON on @', if and only if G has a Hamiltonian path.

If there does not exists a Hamiltonian path in G, then player 1 wins by starting
in z. If player 2 starts in G, he loses because he can make fewer moves than player
1, and if he starts in the complete subgraph, he loses because n is odd.

Suppose G has a Hamiltonian path. If player 1 starts in G, then player 2 starts
in z. If player 1 starts in the complete subgraph, then player 2 starts in v. In both

cases, player 2 can make at least the same number of moves as player 1 and hence
wins the game. O

Corollary 6.1 The problem to decide whether for a connected, undirected graph

G = (V, E) and nodes 31,33 € V, there is a winning strategy for player 1 for TRON,
played on G with starting nodes s, s,, is NP-hard.

Proof:
Use the construction of Theorem 6.1. Take s, = s, 53 = wy,_;. O

Corollary 6.2 The problem to decide whether for a connected, undirected graph
G = (V,E), and nodes sy,s, € V, there is a winning strategy for player 1 for
TRON, played on G with starting nodes s, sz, is co-NP-hard.
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