Finding minimum area k-gons

M.H. Overmars, G. Rote, G. Woeginger

RUU-CS-89-7
March 1989

Utrecht University

o 0. .
;’ o Department of Computer Science
2
CE S Padualaan 14, P.O. Box 80.089,

»
477! £ 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30-531454

Finding minimum area k-gons

M.H. Overmars, G. Rote, G. Woeginger

Technical Report RUU-CS-89-7
March 1989

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

I88N:0924-3275

Finding Minimum Area k-gons

Mark Overmars *
Ginter Rote 1#
Gerhard Woeginger t

Abstract

Given a set P of n points in the plane and a number k, we want to find
a polygon C with vertices in P of minumum area that satisfies one of the
following properties: (1) C is a convex k-gon, (2) C is an empty convex k-gon,
or (3) C is the convex hull of exactly k points of P. We give algorithms for
solving each of these three problems in time O(kn3). The space complexity is
O(n) for k = 4 and O(kn?) for k > 5. The algorithms are based the dynamic
programming approach. We also generalize this approach to polygons with
many other properties like e.g. minimum perimeter, maximum perimeter and
area, containing the maximum or minimum number of points, of minimum
weight (for some weights added to vertices), etc., in similar time bounds.

1 Introduction

Given a set P of points in the plane, many papers have studied problems of deter-
mining subsets of points in P that form polygons with particular properties. One
of such problems deals with finding empty convex k-gons in a set of points. It is
well-known ([9]) that such k-gons might not exist for £ > 7. Algorithms to find such
k-gons have been presented in [3, 6, 11]. The best known result works for arbitrary
k in time O(T'(n)) where T(n) is the number of empty triangles in the set, which
varies between O(n?) and O(n3).

Boyce, Dobkin, Drysdale, and Guibas [4] treated the problems of finding maxi-
mum perimeter and maximum area convex k-gons. Their algorithms work in linear
space and O(knlogn + nlog®n) time. Aggarwal, Klawe, Moran, Shor, and Wilber
[1] improved these results to O(kn + nlogn).

*Department of Computer Science, University of Utrecht, P.O.Box 80.089, 3508 TB Utrecht,
the Netherlands

tFachbereich Mathematik, Freie Universitdt Berlin, Arnimallee 2-6, D-1000 Berlin 33
ton leave from the Institut fiir Mathematik, Technische Universitat Graz, Austria

In application like statistical clustering and pattern recognition minimization
problems tend to play a more important role than maximization problems. Mini-
mization problems seem to be computationally harder than maximization problems
in this context. Finding minimum perimeter k-gons was studied by Dobkin, Drys-
dale and Guibas [5]. Their O(k*nlogn + k%n) algorithm was recently improved
to O(nlogn + k*n) by Aggarwal, Imai, Katoh, and Suri [2]. This recent paper
also studies problems like finding minimum diameter k-gons and minimum variance
k-gons.

In this paper we will concentrate on the problem of finding minimum area poly-
gons. For the case k = 3 the problem asks for the minimum area empty triangle. An
O(n?) time and O(n?) space algorithm for finding this triangle in a set of n points
in the plane is given in chapter 12.4 of Edelsbrunner’s book [7]. For k > 3 the best
known result was O(n¥). (In [7] the existence of an o(n*)-algorithm for finding a
minimum area convex 4-gon is stated as an open problem (Problem 12.10).) When
k > 3 we have to define the problem more carefully. We can distinguish between
the following three problems (throughout the paper, let P be a set of n points in
the plane in general position):

(1) Find a convex polygon p1,pz,...,pr in P with minimum area.
(2) Find an empty convex polygon py,ps,...,pk in P with minimum area.

(3) Find a point set {p1,ps,...,pk} C P such that the area of the convex hull of
this subset is minimal.

Note that when k = 3 all three problems are the same. (The smallest area
triangle is obviously empty.) Note also that in the third problem this convex hull
will only contain the points in the subset and no other points. So the subset is a
kind of cluster.

Our new results (combined with the known results for k£ = 3) are summarized in
the following table.

k=3 k=4 k>5
time / space | time / space | time / space
=%
(1) convex k-gon n?, n? nd, n kn3 , kn? (n?)
(2) convex empty k-gon || n?, n? nd, n kn3 | kn? (n?)
(3) convex hull of k points || n?, n? nd, n kn3, kn?

In the case k > 5, the space requirement is smaller if we only want to compute
the value of the smallest area, not the polygon itself. This is indicated in parentheses
in the last column.

The paper is organized as follows.

In section 3 we show how to solve the three problems in the case k = 4 in the
stated time and space bounds. The results are based on the concept of a type-0
chain that is introduced in section 2.

Section 4 shows how to calculate for all triangles determined by P the number
of points in their interior. This will be used in section 5 to obtain our efficient
algorithm for £ > 4.

The method is based on the dynamic programming approach. In section 6 this
technique is generalized to finding convex k-gons (and solving the other two prob-
lems) that minimize or maximize some general weight criterion. In this way we
obtain solutions to e.g. the minimum perimeter problem with the same time bounds
as stated above, which is better than previous solutions [2] for large k. Another ap-
plication finds the convex k-gon containing the smallest or largest number of points.

Finally, in section 7 we give some concluding remarks and directions for further
research.

The following notations will be used throughout this paper. By I(p1,pz) we
denote the directed line through the points p; and p; and by pyp; we denote the line
segment from p; to p;. conv(P) is the convex hull of the point set P. Ap;pyps is
the convex hull of the three points py, p; and ps (i.e., the triangle) and Op; pypsp; is

the quadrangle formed by p;, p2, p3, ps in counter-clockwise order. /p,p.ps denotes
the angle with apex p,.

2 Constructing Type-0 Chains
We start this section by giving a key definition of the paper.

Definition 2.1 Let Ty be a line segment. Let P be a set of points lying to the left of
l(z,y). We say, a point p € P is of type ¢ with respect to Ty and P, iff the triangle
Azyp contains ezactly 1 points of P in its interior.

In this section we will show how the set of all type-0 points for a given line seg-
ment T§ can be computed efficiently. We start with deriving a number of properties
for type-i point sets. First, let us fix the line segment Z7 and the point set P. Thus
if we speak of a type-t point in the following, we always mean a type-i point with
respect to this Ty and P. W.l.o.g. we assume that T7 is horizontal and P consists
of points lying above 77 .

Lemma 2.2 (i) If py is a type-t point, then the triangle Azyp, does not contain
any type-j point p; in its interior, with j > 1.

(i) For two type-i points py,ps in P, Lprxy > Lpaxy holds if and only if Lpiyz <
Lpayz.

(iit) If we sort the set of type-i points by decreasing angle Lpzy, we get the same
sequence as if we sort them by increasing angle /pyx.

Proof:

(i) If the type-j point p; lies in the interior of Azyp;, the whole triangle Azyp,
is a subset of Azyp,. Hence, the j points in Azyp, together with the point p, lie in
Azyp,. This implies that ¢ > 7 + 1 must hold.

(ii) Assume, /p1zy > Lp;xy and /pyyz > [pyyr holds. But then, obviously, p;
must lie in the interior of Azyp, and this is a contradiction to (i).

(iii) A straightforward consequence of (ii). [

Because of (iii), the following definition makes sense.

Definition 2.3 Let (c},c,...,c.) be the sequence of type-i points, sorted by de-
creasing Lpyz or by increasing [pzy. We connect the points ¢ and ci,, by straight
line segments. The polygonal curve we obtain is called the type-i chain C* of P with
respect to TY .

We now give a sequential algorithm that constructs the type-0 chain for a point
set P of n points and a segment 77 in O(nlog n) time. The points are sorted around
z and are then visited sequentially. The type-0 chain C° under construction is stored
as a linear list. The variable low always contains the point p with smallest angle
Lzyp among the points considered so far.

Algorithm 1 (Construction of type-0 chains)
(a) Sort the points in P around z by increasing angle /pzy. This gives the
sequence Py, Pa, . - -, Pn-

(b) Initialization: C°:= (p,), low := p;.

(c) For p:=p; to p,, do
If low is not contained in Azyp then add p to the end of C°.
If Lzyp < L(z,y, low) then low := p.

Step (a) takes O(nlogn) time, Step (b) takes constant time. Step (c) consists
of n substeps and each substep can be performed in constant time. Hence, the
algorithm has an overall running time of O(nlog n).

It remains to show that the algorithm works correctly and indeed finds the type-0
chain. Obviously, the point p; is a type-0 point: For any point ¢ in the interior of
Azyp,, the angle /qzy has to be smaller than /p,zy. As p; has the smallest angle
there is no such point and, hence, Azyp; is empty.

Assume the algorithm has reached some point p and low is maintained as indi-
cated. Consider the point p and its relation to the point low. The two possible cases
are shown in Figure 1. If low lies in the interior of Azyp, then p is clearly at least
of type 1. If low does not lie in the interior of Azyp, then p is of type 0: Any point
q in the interior of Azyp must have a smaller angle /gzy and a smaller Zgqyz. But
low is the point with smallest angle /zyq among the points ¢ with Zgzy < /pzy.

4

Theorem 2.4 Let Ty be a line segment, let P be a set of points all lying to the left
of (z,y). Then the type-0 chain can be constructed in O(nlog n) time. If the points

in P are given in sorted order around z, then the type-0 chain can be constructed in
O(n) time.

3 Finding a Minimum-Area Four-Point-Set

We will now solve the minimum area convex k-gon problem for k = 4. We first
consider problem (3): Let P be a set of n points in the plane. Find a subset Q
of P of four points such that the area of conv(Q) is minimized. The following two
observations reduce the number of candidates for the set Q:

Observation 3.1 Let Q be the area-minimizing set of four points for the point set
P. Then the convez hull of Q does not contain any point of P — Q.

Proof: Assume that conv(Q) would contain at least five points in P. If we
remove some extreme point from @, we get a smaller area set. O

Observation 3.2 The smallest area triangle in P containing at least one point is

the same as (one of) the smallest area triangle(s) in P containing eractly one point,
provided such triangles exist.

Proof: Assume, the smallest area triangle Aabc containing at least one point
would contain at least two points d, e. Then the point e would lie in one of the
smaller triangles Aabd, Aacd or Abed. O

Hence, it suffices to search for smallest empty quadrangles and for smallest tri-
angles with at least one other point in it. We first give a rough outline of the
algorithm:

low

T (/] z Y

Figure 1: The two possibilities for the point px41 in Algorithm 1

Algorithm 2 (Calculation of the minimum-area four-point-set)
(A) For each p € P, sort all other points by angle around p.

(B) For all pairs (z,y) of points in P do
Let P’ be the set of points to the left of I(z,y).

(B1) Find the smallest area triangle Azyz with z € P’ and at least
one other point u of P’ in its interior.

(B2) Find the smallest area quadrangle Ozyzu with z,u € P’ and no
other point of P’ in its interior.

(C) Select the smallest area configuration of all the triangles Azyz and all
the quadrangles Ozyzu found in step (B).

Step (A) takes time O(n?logn). In the rest of this section, we will show how to
carry out Steps (B1) and (B2) in linear time, using the results of the preprocessing
step (A). Since Steps (B1) and (B2) are performed for each pair of points, Step (B)
takes O(n®) time all together. Step (C) uses O(n?) time, as the minimum of O(n?)
values is calculated. Therefore, the whole algorithm runs in time O(n3). For the
correctness note that there will always be two points z,y in the correct answer with
the other points of the answer to the left of (z, y).

Problem (B1) is easy to solve: We are given a line segment Zy and a point set
P'. We want to find a point 2 € P’ such that Azyz contains at least one point of
P’ and such that z minimizes the area of Azyz under this condition. As the length
of the triangle’s baseline 77 is fixed, its area becomes minimal iff its height becomes
minimal. The triangle’s height is the distance of the point z from {(z,y). Therefore,
our algorithm is as follows:

Algorithm 2.1 (Solution of problem B1)
Construct the type-0 chain C° for P'.
Find the point z in P’ — C° with the smallest distance from I(z, y).
Output the area of Azyz.

Problem (B2) is more complicated. Of course, we can use the type-0 chain again.
As Ozryzu must be empty, the only potential candidates for z and u are the points
on the type-0 chain C° = (¢, ¢3,- .-, Cn). But now there are O(n?) possibilities to
choose z and u, whereas we want to do it in O(n) time.

Assume, the point z = ¢; has already been chosen and we want to find the point
u that minimizes the area of Ozyzu. Let C'(z) = (c1,¢2,. .., ¢i—1) denote the points
on C° that lie before z. The area of Ozyzu is composed of the areas of Azyz and
Azzu (see Figure 2). As z is fixed, the area of Azyz and the length of Tz are fixed,
too. Consequently, the area of Ozyzu is minimized iff the distance of u to the line
l(z, z) is minimized. Hence, our problem is:

6

For each point z on C° = (¢, ¢s,...,cm), find the point u on C'(z) that
minimizes the distance of u to l(z, z).

It is easy to see that only the points on the convex hull of C’(z) are candidates
for the point u. This suggests the following approach: We treat the points in C° in
rotational order and maintain the convex hull of the points passed. Determining the
point on the convex hull nearest to I(z, 2) is easy. Unfortunately this would require
O(nlog n) time. To avoid this we restrict our set of possible candidates even further.

First, we can throw away the upper chain of the convex hull, (the convex hull is
divided into the upper chain and the lower chain by the first point ¢; and the last
point c;_1) as there is always some point on the lower chain that is closer to the
sweepline than a point on the upper chain. Second, consider the following situation:
While sweeping over the chain C°, the angle /zzy decreases from 7 down to 0.
Now at some fixed moment, the sweepline becomes parallel to some edge ¢ of the
hull. In the next moment, the slope of the line decreases and from now on, the
left endpoint ¢; will always be closer to the sweep line than the right endpoint c;.
Hence, we can throw away the right point ¢; (“left” and “right” always refer to the
positions on C°).

For an example, see Figure 2: The convex hull of C’(z) consists of the points
(1, cs, €6y €3, C2), the point ¢4 lies in the interior. {c;, c3) constitutes the upper chain
of the hull and, hence, can be removed. At some moment, the sweepline has been
parallel to €5cs. Consequently, we can throw away the point ¢¢ and the remaining
points (c1, ¢s) form the pruned sequence C”(z).

C"”(z) has some nice properties: It consists of a convex sequence of line segments.
It starts at ¢;. The slope of the segments increases from left to right, but does not
exceed the slope of the line I(z, z). It is easy to see that the rigthmost point of C”(z)
is the closest point to I(z, z).

This leads to the following algorithm: C”(z) is stored in a stack S. The variable
last always contains the last element of the stack S, variable lbo contains the last but
one element of S. We will use the standard operations PUSH and POP. Variable

Ce

Figure 2: The segment Ty , its type-0 chain and the triangle Azyz

7

Minarea stores the smallest area of configurations checked until now:

Algorithm 2.2 (Solution of problem B2)
(1) Initialization: PUSH(S, ¢;) and set Minarea := co.
(2) For z :=¢; to ¢ do
(2.1) while [lbo is closer to I(z, z) than last] do POP(S);
(2.2) Minarea := min(Minarea, area of O(z, y, z, last);

(2.3) while [last lies to the left of I(lbo, z)] do POP(S);
(2.4) PUSH(S, 2);

endfor.

By the preceeding observations the correctness of Algorithm 2.2 is easily estab-
lished: The while-loop in (2.1) throws away points of segments that were parallel
to the sweep line since the previous point z treated; the while-loop (2.3) removes
points that do not lie on the lower chain of the convex hull. Also the time com-
plexity is easy to determine. Every point in C° is pushed, respectively popped, at
most once. Hence, the algorithm runs in linear time, provided the type-0 chain is
available (which it is because we computed C° in Algorithm 2.1).

The last thing that remains to show is that the quadrangle Oryzu found by
Algorithm 2.2 is indeed empty. Remember: Type-0 points z and u only guarantee
that the triangles Azyz and Azyu are empty. But Ozyzu does not consist of only
these two triangles (see Figure 3).

Fortunately, we can show that the remaining part is empty, too. Assume, it were
not. Consider the point ¢ in the part that is closest to I(z,y). Obviously, Azygq is
empty and thus ¢ is of type 0. ¢ is contained in Azzu and is therefore closer to

I(z,2) than u. But this contradicts with the fact that u is the type-0 point closest
to l(z, 2).

Hence, we can give the following summarizing theorem:

Theorem 3.3 Let P be a set of n points in general position in the plane. There is
an algorithm that finds in O(n3) time and O(n) space a subset Q of P of size four
such that the area of conv(Q) is minimized.

u

Is this
part empty?

y

Figure 3: The quadrangle Ozyzu that has been found by Algorithm 2.2

Proof: The time complexity is obvious. But the way the algorithm is stated
above requires O(n?) storage. To get the claimed space complexity, we mix the
constructions of the type-0 chains and the area-calculations. First, we treat all
segments P;p; incident to p;. Observe, that the space used in this step is linear, as
we only have to store the sequence of points sorted around p;. Then we treat all
segments incident to p;, p3 and so on. This gives the claimed space complexity. O

To find the smallest area convex 4-gon, we simply skip Step (B1). It is easy to
see that this also gives the smallest area empty convex 4-gon, because the smallest
area convex 4-gon is necessarily empty (a property that does not hold for k > 4).

4 The number of points in all triangles

In this section, we show how to preprocess the point set P in O(n?) time and O(n?)
space such that, afterwards, the number of points inside any triangle in P can be
determined in constant time. This result will be used in Section 5. The strucure
derived by the preprocessing step is a two-dimensional array stripe[p;, p;] that stores
for each pair of points (p;,p;) in P the number of points in the vertical stripe
below the line segment 7;p;. Obviously, for a triangle Aryz with leftmost point z
and rightmost point z, the number of points in it is equal to the absolute value of
stripe[z, y] + stripely, z] — stripe[z, z] (for an illustration, see Figure 4).

To calculate the values in the array stripe[x, *], we treat the line segments from
left to right, according to their right endpoint. Line segments with the same right
endpoint are treated in clockwise order. This gives the following algorithm (the
cases (d1) and (d2) are illustrated in Figure 5):

Algorithm 3 (Calculating the number of points below each line segment)
(a) Initialization. Set all the elements stripe[x, *] to zero.
(b) Sort the points in P by x-coordinate from left to right. This gives the
sequence Py, P2, . -+, Pn-
(c) For each point p; € P, sort all the points lying left of p; in clockwise
order around p;. This gives the sequences pi,p},...,pi_;.
(d) For p; := p, to p, do
For j:=2to:—1do
(d1) If p} lies to the left of p}_; then

stripelpi, pi = stripelpi_1,pi] + stripelpi, pi_,] +1.
(d2) If p} lies to the right of p;_, then o

stripelpj, pi] := stripe[p;_;, pi] — stripelp;, pj_,].
endfor.

endfor.

The correctness of Algorithm 3 is obvious from Figure 5: As the points p’ are
sorted in clockwise order a._ropnd p; and pj- is the direct successor of P§—1 in this
ordering, the triangle Ap;pip’_; must be empty. Hence, stripe[p, p;] is either the
sum (in the case (d1)) or the difference (in the case (d2)) of stripe[p’,_;,p;] and
stripe[p}, p}_,]. In the case (d1), the additional 1 appearing as term in the sum
corresponds to the point p}_,. Moreover, for the calculation of some element in
stripe, only values calculated previously are needed. Note that step (d) of the
algorithm only fills the entries stripe[p;, p;] with p; left of p;. The other entries can
of course be filled at the same moment.

Next, we consider the time and space complexity: Step (a) takes O(n?) time
and space and Step (b) takes O(nlog n) time and linear space. Applying the results
of Edelsbrunner, O’Rourke, and Seidel [8], Step (c) can be performed using only
quadratic time and space. Finally, Step (d) consists of two nested for-loops, and
each substep in the loop is a simple addition or subtraction. Hence, Step (d) costs
at most O(n?) time and space, too.

Thus we have proved the following theorem:

Theorem 4.1 We can preprocess a point set P in the plane in O(n?) time and
space, such that afterwards for each triangle in P, the number of points in it can be
determined in constant time.

5 Finding Minimum-Area Convex k-gons

In this section, we first show how to find a smallest area convex k-gon in O(kn3)
time and O(kn?) space. This result is then extended to empty convex k-gons and to
convex hulls of k£ points. The algorithm is based on the following observation. Let
C be the minimum area convex k-gon. Let p; be the bottommost vertex of C and
P2 and p3 the next two vertices in counterclockwise order. Now we can decompose
C into the triangle Ap;p;p; and the remaining (k — 1)-gon C’. Now obviously C’ is
minimal among all (k—1)-gons with p; as bottommost vertex, p; as next vertex and

Figure 4: The two possibilities for the triangle Azyz

10

all points on one side of the line I(p3,p;). So we could compute C’ for any possible
P1, pz and p3 and take the minimum of all possibilities. This suggests a dynamic
programming approach.

To be precise, we will construct a four-dimensional array AR such that the

element AR[p;, p;, pi,m] contains the area of the smallest convex m-gon C such that
(see Figure 6)

e point p; is the bottommost vertex,

e point p; is the next vertex in counterclockwise order, i. e., all points of C lie
to the left of the line I(p;, p;), and

e all points of C lie on the same side of I(p;, 1) as p;.

The minimum area convex k-gon is just the minimum of the O(n3®) values
AR[*,*,%,k]. Thus, our goal is to fill this array up to m = k. This is done in
the following way:

In the initialization step, we set all array elements AR[x, *,*,2] to zero (as the
area of a 2-gon is always zero). Moreover, we sort for each point p in P all the other
points in clockwise order around p and store these orderings. In contrast to the
previous sections we do not sort the halflines going from p through p; by direction
but sort the lines going through p and p; by slope, i. e., we do not distinguish on
which side of p the point p; lies on I(p, p;).

Now assume, we already filled all entries in AR with last index < m — 1. We
will describe how to fill all the entries for m for some fixed points p; and p; in linear
time (that means, only the point p; ist left to vary). Obviously, this will lead to an
O(kn®) total time bound.

We treat the possible points p; in clockwise order around p; (in the ordering by
the slope of lines calculated in the initialization step). We start with the successor
of p;. The basic idea is that when we treat a point in this ordering as candidate for
P1, the minimum m-gon corresponding to AR[p;, p;, pi, m] is either the same as for
pi’s predecessor in the ordering or it involves p; as new neighbor of p;. These two
possible cases are shown in Figure 6.

P} P}

i

Pj

S mo]

Figure 5: The cases (d1) and (d2) in Algorithm 3

11

e If p; lies to the right of the line segment p;p;, then nothing changes. No new
point can be used and AR(p;, p;, pr, m] is equal to AR[p;, p;,pred(p;), m].

e If p lies to the left of the line segment p;p;, then p; might be a vertex of the
minimum area polygon. In this case, the area is composed of the triangle
Apip;p and the minimum area (m — 1)-gon in AR[p;, pi, p;,m — 1]. Hence, we
set AR[p;, p;, p1,m| to the minimum of this value and AR[p;, p;,pred(p;), m).

Thus, for each point p;, we have to do O(1) work checking the two areas and this
gives a total amount of O(n) time. Summarizing the algorithm is as follows

Algorithm 4 (Finding the smallest k-gon)

TotalMinimum := oo;
for all points p; do
AR[pi, %, %,2] = 0;
for m := 3 to k do
Minarea := oo;
for all points p; above p;, in clockwise order around p;, do
for all points p;, in clockwise order of the directions of the lines I(p;, p1),
as described in the text, do
if py is to the left of p;p; then

(%) Minarea := min(Minarea, AR p;, pi, pj,m — 1] + area of Ap;p;pi);
endif;
AR|[pi,p;, p1,m] := Minarea;
endfor;
endfor;
endfor;

TotalMinimum := min(TotalMinimum, minimum of AR|[p;,*,*, k]);
endfor.

p; Pj
Di P Di
Figure 6: How to treat the point p

12

Theorem 5.1 (1) The convez k-gon, (2) the empty conver k-gon, or (3) the convez
hull of k points, with the smallest area can be found in O(kn®) time and O(kn?)
space. If only the area of the smallest convez k-gon or of the smallest empty conves
k-gon is required, we need only O(n?) space.

Proof: (1) The time complexity of O(kn?) follows from above. For the space
complexity, we observe that we do not have to store the complete four dimen-
sional array AR: For the calculation of the values AR[p;,*,*,m] only the values
AR[p;,*,*,m — 1] are needed. After having computed AR[p;, *, *, *] we can com-
pute the minimum of AR[p;, *, *, k] and recover the optimal solution by backtrack-
ing the computation that lead to the optimal value. If we are only interested in
the optimal value, we can forget AR[p;,*,*,m — 1] after computing 4 R[p;, *, *,m],
which reduces the storage by a factor of k. Alternatively, we could use a trick in
order to get the optimal solution with O(n?) space, at the expense of a time in-
crease by a factor of logk (cf. [10]): In a first pass, we only compute the area of
the optimal solution and the two “mid-points” P(lk/2]) and p(jx/2)+1) of the opti-
mal polygon (pu) = pi,P@),---,Pk)). Then we recursively compute the left half
(P(1)s P(2)s - - - » P(Lk/2]) P(k/2)+1)) and the right half (pqy, P1x/2)), P((k/2)+1)s - - - » Pk)) Of
the optimal polygon.

(2) The only difference to case (1) is that we have to take care that the polygons
we get are empty. Applying the results of Section 4, we preprocess the point set P
in O(n?) time and space. Afterwards, only empty triangles are used to compose the
minimum area polygons, i. e., the line (*) in the algorithm is executed only when
the triangle Ap;p;p is empty.

(3) In this case, the meaning of AR[p;,p;,pi,m] has to be changed: The first
three indices have the same significance as previously, but m is the total number of
points contained in the polygon, i. e., vertices and points inside. We again preprocess
P in O(n?) time and space to be able to determine the number of points in each
triangle in constant time. Then, in a similar way as above, we can calculate the
values AR|[p;, *,*, m] from the values AR[p;,*,*,m'], with m’ < m. Line (x) in the
algorithm is replaced by

s := the number of points inside Ap;p;pi;
if s < m then
Minarea := min(Minarea, AR[p;, p1, pj, m — s] + area of Ap;p;p1);

(*)
endif;

This time we have to store the whole three-dimensional array AR[p;, *, *, *] under
all circumstances, even if we are only interested in the value of the optimum. O

6 Other Weight Functions

The method presented in the previous section can be used to solve many other
types of minimization and maximization problems as well. To this end let W be

13

some weight function that assigns a real weight to any (convex) polygon C.

Definition 6.1 A weight function W is called decomposable iff for any polygon
C=(p1,...,Pm) and any indez2 <i<m

W(C) = O(W(<Pl, v api)), W((pl)pth-l’ R 7pm>)’ plvpi)

where takes constant time to compute. W is called monotone decomposable iff
O is monotone in its first (and, hence, in its second) argument.

In other words, when W is decomposable we can cut the polygon C in two
subpolygons along the line segment p;p; and obtain the weight of C from the weights
of the subpolygons and some information on the cut segment. For example, the area
of a polygon is a monotone decomposable weight function with $(z,y,p,9) = z+y.
Many different monotone decomposable weight functions exist. For example

e The perimeter. Here O(z,y,p,9) = z + vy — 2|7g)-
e Sum of the internal angles. O(z,y,p,q) =z +y. !

e Number of points of some set that lie in the interior. O(z,y,p,9) =+ y.

o Adding a weight w(p) to each point p we can take as the weight of a polygon
the sum of the weights of its vertices. O(z,y,p,9) = = + y — w(p) — w(g).
Similar we can take the maximal or minimal weight of the points as weight of
the polygon.

Not all weight functions are decomposable. For example the diameter is not
decomposable. Also the smallest internal angle is not decomposable.

Theorem 6.2 Let W be a monotone decomposable weight function. Let P be a set
of n points. The (1) convex k-gon, (2) empty convex k-gon, (8) convez hull of k
points in P that minimizes or mazimizes W can be computed in time O(kn®+ G(n))
time, where G(n) is the time required to compute W for the O(n®) possible triangles
in the set.

Proof: The method is the same as in the previous section with the obvious
modifications. The time bound follows. To prove the correctness, assume that some
polygon C is the optimal solution. Let C = (py,...,px) with p, the bottommost
vertex. Now split C in C’ = (p1,ps,...,px) and the triangle Ap,p;ps. Because W
is monotone C’ must be optimal among all k — 1 gons with p; and p; as first two
vertices, to the left of I(ps, p3). Hence, the method correctly finds C. O

Note that the monotonicity of the weight function is essential for the method to
be correct. The following result on the perimeter follows immediately.

1The sum of the angles can be minimized or maximized in an easier way. This will be pursued
in a subsequent paper.

14

Corollary 6.3 The minimum perimeter (1) convez k-gon, (2) empty convez k-gon,
(3) convez hull of k points can be determined in time O(kn?).

The method can also maximize area or perimeter but the bounds will be worse
than the methods of [1].

Corollary 6.4 Given a set P of n points, the convexr k-gon with vertices in P

containing the minimum or mazimum number of points of P in its interior can be
determined in time O(kn3).

Proof: ;From Theorem 4.1. it follows that G(n) = O(n3). O

All other weight functions listed above can also be minimized or maximized. In
all cases the time bound will be O(kn?). Storage for all these problems can be kept
to O(kn?). With some slight modifications also weight functions like the length of

the longest or shortest edge can be treated (although they are not decomposable)
in the same bounds.

7 Conclusions

In this paper we have given O(kn®)-algorithms for solving three different types of
minimum area k-point set problems. The methods use O(n) storage when k = 4 and
O(kn?) storage when k > 4. The methods are based on the dynamic programming
technique, using some special properties of minimum area polygons.

The technique was generalized to solve a large class of minimization (and max-
imization) problems involving some weight function on the polygons obtained. In
this way, for example, solutions were obtained for the minimum perimeter problem.

Many open problems remain. It is unclear whether our algorithms are optimal.
The only lower bounds known for the problems are Q(nlogn). If all n points are
extreme, it is easy to see that the minimum area k-point sets can be found in O(kn?)
time. So improvement might be possible. Also improving the space bound to O(n)
for all k is open.

Although our method can solve many types of minimization problems, as shown
in section 6, some problems can not be solved with it. In particular, problems with a
non-local weight criterion, like e.g. the minimum diameter, do not fit in the scheme.
It is open whether dynamic programming can be used to solve those problems as
well.

A final open problem concerns non-convex polygons. Rather than asking for
the minimum area convex k-gon we could simply ask for the minimum area k-gon.
For k > 3 this indeed need not be convex. At first glance a method similar to the
one proposed in section 5 might seem to work but this is not true. The problem is
that the polygon might become self-overlapping this way. Indeed, it is easy to find
examples where the smallest area k-gon is self-overlapping. Avoiding these polygons
seems very hard.

15

Acknowledgements. We would like to thank Helmut Alt and Emo Welzl for many
helpful discussions and Herbert Edelsbrunner for a useful comment simplifying and
improving the algorithm for k = 4.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric ap-
plications of a matrix-searching algorithm, Algorithmica 2 (1987), 195-208.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum
diameter and related problems, Proc. 5th Annual Symp. on Computational Ge-
ometry, Saarbriicken, 1989, to appear.

[3] D. Avis and D. Rappaport, Computing the largest empty convex subset of a set
of points, Proc. Symp. on Computational Geometry, Baltimore, 1985, 161-167.

[4] J.E. Boyce, D.P. Dobkin, R.L. Drysdale, and L.J. Guibas, Finding extremal
polygons, SIAM J. Computing 14 (1985), 134-147.

[5] D.P. Dobkin, R.L. Drysdale, and L.J. Guibas, Finding Smallest Polygons, In:
Advances in Computing Research, Vol. 1, JAI Press, 1983, 181-214.

[6] D.P. Dobkin, H. Edelsbrunner, and M.H. Overmars, Searching for empty con-
vex polygons, Proc. 4th Annual Symp. on Computational Geometry, Urbana-
Champaign, 1988, 224-228.

[7] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs
on Theor. Computer Science, Springer-Verlag, Berlin, 1987.

[8] H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of
lines and hyperplanes with applications, SIAM J. Computing 15 (1986), 341-
363.

[9] J.D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull. 26 (1983),
482-484.

[10] J.I. Munro and R.J. Ramirez, Reducing space requirements for shortest path
problems, Operations Research 30 (1982), 1009-1013.

{11] M.H. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons,
Bull. of the EATCS 37 (1989), to appear.

16

Finding minimum area k-gons

M.H. Overmars, G. Rote, G. Woeginger

Technical Report RUU-CS-89-7
March 1989

Utrecht University

Sunido :
; < Department of Computer Science
<
< 5 Padualaan 14, P.O. Box 80.089,

S
K e 3508 TB Utrecht, The Netherlands.
Tel. : ... + 31- 30 - 531454

Finding minimum area k-gons

M.H. Overmars, G. Rote, G. Woeginger

RUU-CS-89-7
March 1989

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN:0924~3275

Finding Minimum Area k-gons

Mark Overmars *
Giinter Rote t1
Gerhard Woeginger |

Abstract

Given a set P of n points in the plane and a number k, we want to find
a polygon C with vertices in P of minumum area that satisfies one of the
following properties: (1) C is a convex k-gon, (2) C is an empty convex k-gon,
or (3) C is the convex hull of exactly k points of P. We give algorithms for
solving each of these three problems in time O(kn®). The space complexity is
O(n) for k = 4 and O(kn?) for k > 5. The algorithms are based the dynamic
programming approach. We also generalize this approach to polygons with
many other properties like e.g. minimum perimeter, maximum perimeter and
area, containing the maximum or minimum number of points, of minimum
weight (for some weights added to vertices), etc., in similar time bounds.

1 Introduction

Given a set P of points in the plane, many papers have studied problems of deter-
mining subsets of points in P that form polygons with particular properties. One
of such problems deals with finding empty convex k-gons in a set of points. It is
well-known ([9]) that such k-gons might not exist for k£ > 7. Algorithms to find such
k-gons have been presented in [3, 6, 11]. The best known result works for arbitrary
k in time O(T'(n)) where T(n) is the number of empty triangles in the set, which
varies between O(n?) and O(n?).

Boyce, Dobkin, Drysdale, and Guibas [4] treated the problems of finding maxi-
mum perimeter and maximum area convex k-gons. Their algorithms work in linear
space and O(knlogn + nlog®n) time. Aggarwal, Klawe, Moran, Shor, and Wilber
(1] improved these results to O(kn + nlogn).

*Department of Computer Science, University of Utrecht, P.O.Box 80.089, 3508 TB Utrecht,
the Netherlands
- tFachbereich Mathematik, Freie Universitat Berlin, Arnimallee 2-6, D-1000 Berlin 33

ton leave from the Institut fiir Mathematik, Technische Universitat Graz, Austria

In application like statistical clustering and pattern recognition minimization
problems tend to play a more important role than maximization problems. Mini-
mization problems seem to be computationally harder than maximization problems
in this context. Finding minimum perimeter k-gons was studied by Dobkin, Drys-
dale and Guibas [5]. Their O(k?nlogn + k5n) algorithm was recently improved
to O(nlogn + k%n) by Aggarwal, Imai, Katoh, and Suri [2]. This recent paper
also studies problems like finding minimum diameter k-gons and minimum variance
k-gons.

In this paper we will concentrate on the problem of finding minimum area poly-
gons. For the case k = 3 the problem asks for the minimum area empty triangle. An
O(n?) time and O(n?) space algorithm for finding this triangle in a set of n points
in the plane is given in chapter 12.4 of Edelsbrunner’s book [7]. For k > 3 the best
known result was O(n*). (In [7] the existence of an o(n*)-algorithm for finding a
minimum area convex 4-gon is stated as an open problem (Problem 12.10).) When
k > 3 we have to define the problem more carefully. We can distinguish between
the following three problems (throughout the paper, let P be a set of n points in
the plane in general position):

(1) Find a convex polygon p1,ps,...,pr in P with minimum area.
(2) Find an empty convex polygon p;,ps,...,pr in P with minimum area.

(3) Find a point set {p1,p2,...,pe} C P such that the area of the convex hull of
this subset is minimal.

Note that when k£ = 3 all three problems are the same. (The smallest area
triangle is obviously empty.) Note also that in the third problem this convex hull
will only contain the points in the subset and no other points. So the subset is a
kind of cluster.

Our new results (combined with the known results for k¥ = 3) are summarized in
the following table.

F=3 F=4 E>5
time / space | time / space | time / space
(1) convex k-gon n? | n? nd, n kn3 | kn? (n?)
(2) convex empty k-gon n?, n? n®, n kn® , kn? (n?)
(3) convex hull of k points n? , n? n®, n kn3 , kn?

In the case k > 5, the space requirement is smaller if we only want to compute
the value of the smallest area, not the polygon itself. This is indicated in parentheses
in the last column.

The paper is organized as follows.

In section 3 we show how to solve the three problems in the case k = 4 in the
stated time and space bounds. The results are based on the concept of a type-0
chain that is introduced in section 2.

Section 4 shows how to calculate for all triangles determined by P the number
of points in their interior. This will be used in section 5 to obtain our efficient
algorithm for £ > 4.

The method is based on the dynamic programming approach. In section 6 this
technique is generalized to finding convex k-gons (and solving the other two prob-
lems) that minimize or maximize some general weight criterion. In this way we
obtain solutions to e.g. the minimum perimeter problem with the same time bounds
as stated above, which is better than previous solutions [2] for large k. Another ap-
plication finds the convex k-gon containing the smallest or largest number of points.

Finally, in section 7 we give some concluding remarks and directions for further
research.

The following notations will be used throughout this paper. By I(p1,p;) we
denote the directed line through the points p; and p, and by 7 p; we denote the line
segment from p; to p;. conv(P) is the convex hull of the point set P. Ap;pyps is
the convex hull of the three points p;, p; and p; (i.e., the triangle) and Op;p,p3p, is
the quadrangle formed by p;, ps, p3, p4 in counter-clockwise order. /p;paps denotes
the angle with apex p,.

2 Constructing Type-0 Chains

We start this section by giving a key definition of the paper.

Definition 2.1 Let Ty be a line segment. Let P be a set of points lying to the left of
I(z,y). We say, a point p € P is of type ¢ with respect to Ty and P, iff the triangle
Azyp contains ezxactly ¢ points of P in its interior.

In this section we will show how the set of all type-0 points for a given line seg-
ment ZF can be computed efficiently. We start with deriving a number of properties
for type-¢ point sets. First, let us fix the line segment 77 and the point set P. Thus
if we speak of a type-¢ point in the following, we always mean a type-: point with
respect to this Ty and P. W.l.o.g. we assume that Zy is horizontal and P consists
of points lying above 77 .

Lemma 2.2 (i) If p; is a type-i point, then the triangle Axyp, does not contain
any type-j point ps in ils interior, with j > 1.

(i1) For two type-i points p1,pz in P, (pyxy > Lpszy holds if and only if Lp1yx <
Lpayz.

(iii) If we sort the set of type-i points by decreasing angle /pxy, we get the same
sequence as if we sort them by increasing angle [pyzx.

Proof:

(i) If the type-; point p, lies in the interior of Azyp;, the whole triangle Azyp,
is a subset of Azyp,. Hence, the j points in Azyp, together with the point p, lie in
Azyp,. This implies that ¢ > j + 1 must hold.

(ii) Assume, /p1zy > Lp;zy and /p1yz > [p,yz holds. But then, obviously, p,
must lie in the interior of Azyp, and this is a contradiction to (i).

(iii) A straightforward consequence of (ii). O

Because of (iii), the following definition makes sense.

Definition 2.3 Let (ci,c,...,c.) be the sequence of type-i points, sorted by de-
creasing [pyx or by increasing /pzry. We connect the points c;' and c;'- +1 Dy straight

line segments. The polygonal curve we obtain is called the type-i chain C* of P with
respect to TY .

We now give a sequential algorithm that constructs the type-0 chain for a point
set P of n points and a segment 77 in O(n log n) time. The points are sorted around
r and are then visited sequentially. The type-0 chain C° under construction is stored
as a linear list. The variable low always contains the point p with smallest angle
Lzyp among the points considered so far.

Algorithm 1 (Construction of type-0 chains)
(a) Sort the points in P around z by increasing angle /pzy. This gives the
sequence py, Pz, ..., Pn-

(b) Initialization: C°:= (p,;), low := p,.

(c¢) For p := p; to p, do
If low is not contained in Azyp then add p to the end of C°.
If Lzyp < L(z,y, low) then low := p.

Step (a) takes O(nlogn) time, Step (b) takes constant time. Step (c) consists
of n substeps and each substep can be performed in constant time. Hence, the
algorithm has an overall running time of O(nlogn).

It remains to show that the algorithm works correctly and indeed finds the type-0
chain. Obviously, the point p, is a type-0 point: For any point ¢ in the interior of
Azryp,, the angle /qzy has to be smaller than /p;zy. As p; has the smallest angle
there is no such point and, hence, Azyp; is empty.

Assume the algorithm has reached some point p and low is maintained as indi-
cated. Consider the point p and its relation to the point low. The two possible cases
are shown in Figure 1. If low lies in the interior of Azyp, then p is clearly at least
of type 1. If low does not lie in the interior of Azyp, then p is of type 0: Any point
q in the interior of Azyp must have a smaller angle /qry and a smaller Zqyz. But
low is the point with smallest angle /zyq among the points ¢ with Zgzy < /pzy.

4

Theorem 2.4 Let 7 be a line segment, let P be a set of points all lying to the left
of l(z,y). Then the type-0 chain can be constructed in O(nlog n) time. If the points
in P are given in sorted order around z, then the type-0 chain can be constructed in
O(n) time.

3 Finding a Minimum-Area Four-Point-Set

We will now solve the minimum area convex k-gon problem for k& = 4. We first
consider problem (3): Let P be a set of n points in the plane. Find a subset Q
of P of four points such that the area of conv(Q) is minimized. The following two
observations reduce the number of candidates for the set Q:

Observation 3.1 Let Q be the area-minimizing set of four points for the point set
P. Then the convex hull of Q does not contain any point of P — Q.

Proof: Assume that conv(Q) would contain at least five points in P. If we
remove some extreme point from @, we get a smaller area set. O

Observation 3.2 The smallest area triangle in P containing at least one point is
the same as (one of) the smallest area triangle(s) in P containing exactly one point,
provided such triangles ezist.

Proof: Assume, the smallest area triangle Aabc containing at least one point
would contain at least two points d, e. Then the point e would lie in one of the
smaller triangles Aabd, Aacd or Abcd. O

Hence, it suffices to search for smallest empty quadrangles and for smallest tri-
angles with at least one other point in it. We first give a rough outline of the
algorithm:

low

z y z y

Figure 1: The two possibilities for the point pr4+; in Algorithm 1

Algorithm 2 (Calculation of the minimum-area four-point-set)
(A) For each p € P, sort all other points by angle around p.

(B) For all pairs (z,y) of points in P do
Let P’ be the set of points to the left of I(z,y).

(B1) Find the smallest area triangle Azyz with z € P’ and at least
one other point u of P’ in its interior.

(B2) Find the smallest area quadrangle Ozyzu with z,u € P’ and no
other point of P’ in its interior.

(C) Select the smallest area configuration of all the triangles Aryz and all
the quadrangles Oxyzu found in step (B).

Step (A) takes time O(n?logn). In the rest of this section, we will show how to
carry out Steps (B1l) and (B2) in linear time, using the results of the preprocessing
step (A). Since Steps (B1) and (B2) are performed for each pair of points, Step (B)
takes O(n®) time all together. Step (C) uses O(n?) time, as the minimum of O(n?)
values is calculated. Therefore, the whole algorithm runs in time O(n3). For the
correctness note that there will always be two points z,y in the correct answer with
the other points of the answer to the left of {(z,y).

Problem (B1) is easy to solve: We are given a line segment 7§ and a point set
P'. We want to find a point z € P’ such that Azyz contains at least one point of
P’ and such that z minimizes the area of Azyz under this condition. As the length
of the triangle’s baseline Ty is fixed, its area becomes minimal iff its height becomes
minimal. The triangle’s height is the distance of the point z from I(z,y). Therefore,
our algorithm is as follows:

Algorithm 2.1 (Solution of problem B1)
Construct the type-0 chain C° for P'.

Find the point z in P’ — C° with the smallest distance from I(z, y).
Output the area of Azyz.

Problem (B2) is more complicated. Of course, we can use the type-0 chain again.
As Ozryzu must be empty, the only potential candidates for z and u are the points
on the type-0 chain C° = (¢, ¢3,. .., cm). But now there are O(n?) possibilities to
choose z and u, whereas we want to do it in O(n) time.

Assume, the point z = ¢; has already been chosen and we want to find the point
u that minimizes the area of Ozyzu. Let C'(2) = (c1, ¢z, ..., ci—1) denote the points
on C° that lie before 2. The area of Ozryzu is composed of the areas of Azyz and
Azzu (see Figure 2). As z is fixed, the area of Azyz and the length of 77 are fixed,
too. Consequently, the area of Ozyzu is minimized iff the distance of u to the line
l(z, 2) is minimized. Hence, our problem is:

6

For each point z on C° = (c1,¢3,...,¢m), find the point u on C'(2) that
minimizes the distance of u to l(z, z).

It is easy to see that only the points on the convex hull of C’(z) are candidates
for the point u. This suggests the following approach: We treat the points in C° in
rotational order and maintain the convex hull of the points passed. Determining the
point on the convex hull nearest to I(z, z) is easy. Unfortunately this would require
O(nlog n) time. To avoid this we restrict our set of possible candidates even further.

First, we can throw away the upper chain of the convex hull, (the convex hull is
divided into the upper chain and the lower chain by the first point ¢; and the last
point ¢;_1) as there is always some point on the lower chain that is closer to the
sweepline than a point on the upper chain. Second, consider the following situation:
While sweeping over the chain C9 the angle /zzy decreases from 7 down to 0.
Now at some fixed moment, the sweepline becomes parallel to some edge ;¢; of the
hull. In the next moment, the slope of the line decreases and from now on, the
left endpoint ¢; will always be closer to the sweep line than the right endpoint c;.
Hence, we can throw away the right point ¢; (“left” and “right” always refer to the
positions on C?).

For an example, see Figure 2: The convex hull of C’(z) consists of the points
{1, ¢s, cs, €3, C2), the point ¢, lies in the interior. {c;,c3) constitutes the upper chain
of the hull and, hence, can be removed. At some moment, the sweepline has been
parallel to ¢zcg. Consequently, we can throw away the point cg and the remaining
points (1, ¢s) form the pruned sequence C"(z).

C"(z) has some nice properties: It consists of a convex sequence of line segments.
It starts at ¢;. The slope of the segments increases from left to right, but does not
exceed the slope of the line I(z, z). It is easy to see that the rigthmost point of C”(z)
is the closest point to I(z, z).

This leads to the following algorithm: C”(z) is stored in a stack S. The variable
last always contains the last element of the stack S, variable lbo contains the last but
one element of S. We will use the standard operations PUSH and POP. Variable

Co

Figure 2: The segment 7 , its type-0 chain and the triangle Azyz

Minarea stores the smallest area of configurations checked until now:

Algorithm 2.2 (Solution of problem B2)
(1) Initialization: PUSH(S, ¢;) and set Minarea := oo.
(2) For z :=¢;3 to ¢ do
(2.1) while [lbo is closer to I(z,z) than last] do POP(S);
(2.2) Minarea := min(Minarea, area of O(z, y, z, last);

(2.3) while [last lies to the left of I(lbo, z)] do POP(S);
(2.4) PUSH(S, 2);

endfor.

By the preceeding observations the correctness of Algorithm 2.2 is easily estab-
lished: The while-loop in (2.1) throws away points of segments that were parallel
to the sweep line since the previous point z treated; the while-loop (2.3) removes
points that do not lie on the lower chain of the convex hull. Also the time com-
plexity is easy to determine. Every point in C° is pushed, respectively popped, at
most once. Hence, the algorithm runs in linear time, provided the type-0 chain is
available (which it is because we computed C? in Algorithm 2.1).

The last thing that remains to show is that the quadrangle Oryzu found by
Algorithm 2.2 is indeed empty. Remember: Type-0 points z and u only guarantee
that the triangles Azyz and Azyu are empty. But Ozryzu does not consist of only
these two triangles (see Figure 3).

Fortunately, we can show that the remaining part is empty, too. Assume, it were
not. Consider the point g in the part that is closest to I(z,y). Obviously, Azygq is
empty and thus ¢ is of type 0. ¢ is contained in Azzu and is therefore closer to

[(z,z) than u. But this contradicts with the fact that u is the type-0 point closest
to l(z, 2).

Hence, we can give the following summarizing theorem:

Theorem 3.3 Let P be a set of n points in general position in the plane. There is
an algorithm that finds in O(n3) time and O(n) space a subset Q of P of size four
such that the area of conv(Q) is minimized.

U

Is this
part empty?

y

Figure 3: The quadrangle Ozyzu that has been found by Algorithm 2.2

Proof: The time complexity is obvious. But the way the algorithm is stated
above requires O(n?) storage. To get the claimed space complexity, we mix the
constructions of the type-0 chains and the area-calculations. First, we treat all
segments p1p; incident to p,. Observe, that the space used in this step is linear, as
we only have to store the sequence of points sorted around p,;. Then we treat all
segments incident to p;, p; and so on. This gives the claimed space complexity. O

To find the smallest area convex 4-gon, we simply skip Step (B1). It is easy to
see that this also gives the smallest area empty convex 4-gon, because the smallest
area convex 4-gon is necessarily empty (a property that does not hold for k > 4).

4 The number of points in all triangles

In this section, we show how to preprocess the point set P in O(n?) time and O(n?)
space such that, afterwards, the number of points inside any triangle in P can be
determined in constant time. This result will be used in Section 5. The strucure
derived by the preprocessing step is a two-dimensional array stripe[p;, p;] that stores
for each pair of points (p;,p;) in P the number of points in the vertical stripe
below the line segment 7;p;. Obviously, for a triangle Azyz with leftmost point z
and rightmost point z, the number of points in it is equal to the absolute value of
stripe[z, y| + stripe[y, z] — stripe|z, 2] (for an illustration, see Figure 4).

To calculate the values in the array stripe[*, x|, we treat the line segments from
left to right, according to their right endpoint. Line segments with the same right
endpoint are treated in clockwise order. This gives the following algorithm (the
cases (dl) and (d2) are illustrated in Figure 5):

Algorithm 3 (Calculating the number of points below each line segment)
(a) Initialization. Set all the elements stripe[*, *] to zero.
(b) Sort the points in P by x-coordinate from left to right. This gives the
SEQUENCE P1, P2, - -, Pn-
(c) For each point p; € P, sort all the points lying left of p; in clockwise
order around p;. This gives the sequences pi,pb,...,pi_,.
(d) For p; := p; to p, do
For j:=2toi1—1do
(d1) If p} lies to the left of p}_; then
stripg[pj-, pi] := stripelp}_,, p.] + stripe[p}, pi_,] +1.
(d2) If p} lies to the right of p}_; then
strz’pe[pg,p.-] = stripe[pg__l,p.-] - stripe[p;-,p;_l].
endfor.

endfor.

The correctness of Algorithm 3 is obvious from Figure 5: As the points pf; are
sorted in clockwise order a,;opnd p; and pj- is the direct successor of p;-_l in this
ordering, the triangle Ap;pip}_, must be empty. Hence, stripe[p},p;] is either the
sum (in the case (d1)) or the difference (in the case (d2)) of stripelp}_,,pi] and
stripe[p}, pi_,]. In the case (dl), the additional 1 appearing as term in the sum
corresponds to the point pj-_l. Moreover, for the calculation of some element in
stripe, only values calculated previously are needed. Note that step (d) of the
algorithm only fills the entries stripe[p;, p;] with p; left of p;. The other entries can
of course be filled at the same moment.

Next, we consider the time and space complexity: Step (a) takes O(n?) time
and space and Step (b) takes O(n log n) time and linear space. Applying the results
of Edelsbrunner, O’Rourke, and Seidel [8], Step (c) can be performed using only
quadratic time and space. Finally, Step (d) consists of two nested for-loops, and
each substep in the loop is a simple addition or subtraction. Hence, Step (d) costs
at most O(n?) time and space, too.

Thus we have proved the following theorem:

Theorem 4.1 We can preprocess a point set P in the plane in O(n?) time and
space, such that afterwards for each triangle in P, the number of points in it can be
determined tn constant time.

5 Finding Minimum-Area Convex k-gons

In this section, we first show how to find a smallest area convex k-gon in O(kn3)
time and O(kn?) space. This result is then extended to empty convex k-gons and to
convex hulls of k£ points. The algorithm is based on the following observation. Let
C be the minimum area convex k-gon. Let p; be the bottommost vertex of C and
p2 and p3 the next two vertices in counterclockwise order. Now we can decompose
C into the triangle Ap;p;ps and the remaining (k — 1)-gon C’. Now obviously C’ is
minimal among all (k— 1)-gons with p; as bottommost vertex, ps as next vertex and

Figure 4: The two possibilities for the triangle Azyz

10

all points on one side of the line {(ps3,p2). So we could compute C’ for any possible
P1, p2 and p; and take the minimum of all possibilities. This suggests a dynamic
programming approach.

To be precise, we will construct a four-dimensional array AR such that the
element AR[p;, p;, p1,m] contains the area of the smallest convex m-gon C such that
(see Figure 6)

e point p; is the bottommost vertex,

e point p; is the next vertex in counterclockwise order, i. e., all points of C lie
to the left of the line I(p;, p;), and

e all points of C lie on the same side of I(p;, p1) as p;.

The minimum area convex k-gon is just the minimum of the O(n3®) values
AR[*,*,% k]. Thus, our goal is to fill this array up to m = k. This is done in
the following way:

In the initialization step, we set all array elements AR[x, *,*,2] to zero (as the
area of a 2-gon is always zero). Moreover, we sort for each point p in P all the other
points in clockwise order around p and store these orderings. In contrast to the
previous sections we do not sort the halflines going from p through p; by direction
but sort the lines going through p and p; by slope, i. e., we do not distinguish on
which side of p the point p; lies on I(p, p;).

Now assume, we already filled all entries in AR with last index < m — 1. We
will describe how to fill all the entries for m for some fixed points p; and p; in linear
time (that means, only the point p; ist left to vary). Obviously, this will lead to an
O(kn?) total time bound.

We treat the possible points p; in clockwise order around p; (in the ordering by
the slope of lines calculated in the initialization step). We start with the successor
of p;. The basic idea is that when we treat a point in this ordering as candidate for
pi, the minimum m-gon corresponding to AR[p;, pj, i, m| is either the same as for
pi’s predecessor in the ordering or it involves p; as new neighbor of p;. These two
possible cases are shown in Figure 6.

P} o

i
Pj-1

I—pg._l \ 0 [‘ Di

Figure 5: The cases (d1) and (d2) in Algorithm 3

11

o If p; lies to the right of the line segment P;p;, then nothing changes. No new
point can be used and AR[p;, p;, pi,m] is equal to AR[p;, p;,pred(p), m].

o If p; lies to the left of the line segment P;p;, then p; might be a vertex of the
minimum area polygon. In this case, the area is composed of the triangle
Apip;p and the minimum area (m — 1)-gon in AR[p;, p1,p;,m — 1]. Hence, we
set AR[p;, p;, pi,m] to the minimum of this value and AR[p;, p;,pred(p), m].

Thus, for each point p;, we have to do O(1) work checking the two areas and this
gives a total amount of O(n) time. Summarizing the algorithm is as follows

Algorithm 4 (Finding the smallest k-gon)

TotalMinimum := oo;
for all points p; do
AR[p;, *,%,2] := 0;
for m :=3 to k do
Minarea := oo;
for all points p; above p;, in clockwise order around p;, do
for all points p;, in clockwise order of the directions of the lines I(p;, m),
as described in the text, do
if p; is to the left of p;p; then

(*) Minarea := min(Minarea, AR| p;, p1, pj, m — 1] + area of Ap;p;p);
endif;
AR[Pi’PjaPl,m] := Minareq;
endfor;
endfor;
endfor;

TotalMinimum := min(TotalMinimum, minimum of AR[p;, *, ¥, k]);
endfor.

p; p;
bi DI Di
Figure 6: How to treat the point p;

12

Theorem 5.1 (1) The convez k-gon, (2) the empty convez k-gon, or (8) the conver
hull of k points, with the smallest area can be found in O(kn®) time and O(kn?)
space. If only the area of the smallest convez k-gon or of the smallest empty convez
k-gon is required, we need only O(n?) space.

Proof: (1) The time complexity of O(kn®) follows from above. For the space
complexity, we observe that we do not have to store the complete four dimen-
sional array AR: For the calculation of the values AR|[p;,*,*,m| only the values
AR|[p;,*,*,m — 1] are needed. After having computed AR[p;, *,*,*] we can com-
pute the minimum of AR|[p;, *, *, k] and recover the optimal solution by backtrack-
ing the computation that lead to the optimal value. If we are only interested in
the optimal value, we can forget AR|[p;,*,*,m — 1] after computing AR[p;, *, *,m],
which reduces the storage by a factor of k. Alternatively, we could use a trick in
order to get the optimal solution with O(n?) space, at the expense of a time in-
crease by a factor of logk (cf. [10]): In a first pass, we only compute the area of
the optimal solution and the two “mid-points” p(jz/2)) and p(jx/2j+1) of the opti-
mal polygon (p1) = pi,P(2),---,P)).- Then we recursively compute the left half
(P P(@), - - - P(Ik/2)), P(Lk/2)+1)) 2nd the right half (pq), p(ik/2)): P(lk/2141)s - - - P(ey) of
the optimal polygon.

(2) The only difference to case (1) is that we have to take care that the polygons
we get are empty. Applying the results of Section 4, we preprocess the point set P
in O(n?) time and space. Afterwards, only empty triangles are used to compose the
minimum area polygons, i. e., the line (%) in the algorithm is executed only when
the triangle Ap;p;pi is empty.

(3) In this case, the meaning of AR[p;,pj,p1,m] has to be changed: The first
three indices have the same significance as previously, but m is the total number of
points contained in the polygon, i. e., vertices and points inside. We again preprocess
P in O(n?) time and space to be able to determine the number of points in each
triangle in constant time. Then, in a similar way as above, we can calculate the
values AR|p;,*,*, m] from the values AR|[p;, *,*,m'], with m’ < m. Line (%) in the
algorithm is replaced by

s := the number of points inside Ap;p;pr;
if s < m then

Minarea := min(Minarea, AR| p;, pi1, pj, m — 3] + area of Apip;p1);

(+)
endif;

This time we have to store the whole three-dimensional array AR[p;, *, *,*| under
all circumstances, even if we are only interested in the value of the optimum. O

6 Other Weight Functions

The method presented in the previous section can be used to solve many other
types of minimization and maximization problems as well. To this end let W be

13

some weight function that assigns a real weight to any (convex) polygon C.

Definition 6.1 A weight function W s called decomposable iff for any polygon
C=(p1,...,Pm) and any indez2<i<m

W(C) = O(W((pla v 7pt'>)7 W((plapi,pi-H, s apm>))p19pi)

where O takes constant time to compute. W is called monotone decomposable iff
& is monotone in its first (and, hence, in its second) argument.

In other words, when W is decomposable we can cut the polygon C in two
subpolygons along the line segment p;p; and obtain the weight of C from the weights
of the subpolygons and some information on the cut segment. For example, the area
of a polygon is a monotone decomposable weight function with $(z,y,p,9) =2+ y.
Many different monotone decomposable weight functions exist. For example

e The perimeter. Here (2, y,p,9) = z + y — 2|pg]|.
¢ Sum of the internal angles. O(z,y,p,9) =z +y. !
¢ Number of points of some set that lie in the interior. O(z,y,p,9) =z + 3.

¢ Adding a weight w(p) to each point p we can take as the weight of a polygon
the sum of the weights of its vertices. O(z,y,p,9) = 2 + y — w(p) — w(g).
Similar we can take the maximal or minimal weight of the points as weight of
the polygon.

Not all weight functions are decomposable. For example the diameter is not
decomposable. Also the smallest internal angle is not decomposable.

Theorem 6.2 Let W be a monotone decomposable weight function. Let P be a set
of n points. The (1) convex k-gon, (2) empty convezx k-gon, (8) conver hull of k
points in P that minimizes or mazimizes W can be computed in time O(kn®+ G(n))
time, where G(n) is the time required to compute W for the O(n®) possible triangles
in the set.

Proof: The method is the same as in the previous section with the obvious
modifications. The time bound follows. To prove the correctness, assume that some
polygon C is the optimal solution. Let C = (pi,...,px) with p; the bottommost
vertex. Now split C in C' = (py,ps,...,px) and the triangle Ap;p;ps. Because W
is monotone C’ must be optimal among all k — 1 gons with p; and p3 as first two
vertices, to the left of I(ps, p3). Hence, the method correctly finds C. O

Note that the monotonicity of the weight function is essential for the method to
be correct. The following result on the perimeter follows immediately.

1The sum of the angles can be minimized or maximized in an easier way. This will be pursued
in a subsequent paper.

14

Corollary 6.3 The minimum perimeter (1) convex k-gon, (2) empty convex k-gon,
(8) convez hull of k points can be determined in time O(kn3).

The method can also maximize area or perimeter but the bounds will be worse
than the methods of [1].

Corollary 6.4 Given a set P of n points, the convex k-gon with vertices in P

containing the minimum or mazimum number of points of P in its interior can be
determined in time O(kn3).

Proof: ;From Theorem 4.1. it follows that G(n) = O(n?). O

All other weight functions listed above can also be minimized or maximized. In
all cases the time bound will be O(kn3). Storage for all these problems can be kept
to O(kn?). With some slight modifications also weight functions like the length of
the longest or shortest edge can be treated (although they are not decomposable)
in the same bounds.

7 Conclusions

In this paper we have given O(kn?)-algorithms for solving three different types of
minimum area k-point set problems. The methods use O(n) storage when k£ = 4 and
O(kn?) storage when k > 4. The methods are based on the dynamic programming
technique, using some special properties of minimum area polygons.

The technique was generalized to solve a large class of minimization (and max-
imization) problems involving some weight function on the polygons obtained. In
this way, for example, solutions were obtained for the minimum perimeter problem.

Many open problems remain. It is unclear whether our algorithms are optimal.
The only lower bounds known for the problems are (nlogn). If all n points are
extreme, it is easy to see that the minimum area k-point sets can be found in O(kn?)
time. So improvement might be possible. Also improving the space bound to O(n)
for all k is open.

Although our method can solve many types of minimization problems, as shown
in section 6, some problems can not be solved with it. In particular, problems with a
non-local weight criterion, like e.g. the minimum diameter, do not fit in the scheme.

It is open whether dynamic programming can be used to solve those problems as
well.

A final open problem concerns non-convex polygons. Rather than asking for
the minimum area convex k-gon we could simply ask for the minimum area k-gon.
For k > 3 this indeed need not be convex. At first glance a method similar to the
one proposed in section 5 might seem to work but this is not true. The problem is
that the polygon might become self-overlapping this way. Indeed, it is easy to find
examples where the smallest area k-gon is self-overlapping. Avoiding these polygons
seems very hard.

15

Acknowledgements. We would like to thank Helmut Alt and Emo Welzl for many
helpful discussions and Herbert Edelsbrunner for a useful comment simplifying and
improving the algorithm for k = 4.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric ap-
plications of a matrix-searching algorithm, Algorithmica 2 (1987), 195-208.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum
diameter and related problems, Proc. 5th Annual Symp. on Computational Ge-
ometry, Saarbricken, 1989, to appear.

[3] D. Avis and D. Rappaport, Computing the largest empty convex subset of a set
of points, Proc. Symp. on Computational Geometry, Baltimore, 1985, 161-167.

[4] J.E. Boyce, D.P. Dobkin, R.L. Drysdale, and L.J. Guibas, Finding extremal
polygons, SIAM J. Computing 14 (1985), 134-147.

[5] D.P. Dobkin, R.L. Drysdale, and L.J. Guibas, Finding Smallest Polygons, In:
Advances in Computing Research, Vol. 1, JAI Press, 1983, 181-214.

[6] D.P. Dobkin, H. Edelsbrunner, and M.H. Overmars, Searching for empty con-
vex polygons, Proc. {th Annual Symp. on Computational Geometry, Urbana-
Champaign, 1988, 224-228.

[7] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs
on Theor. Computer Science, Springer-Verlag, Berlin, 1987.

(8] H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of

lines and hyperplanes with applications, SIAM J. Computing 15 (1986), 341-
363.

[9] J.D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull. 26 (1983),
482-484.

[10] J.I. Munro and R.J. Ramirez, Reducing space requirements for shortest path
problems, Operations Research 30 (1982), 1009-1013.

[11] M.H. Overmars, B. Scholten, and 1. Vincent, Sets without empty convex 6-gons,
Bull. of the EATCS 37 (1989), to appear.

16

