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SOME OBSERVATIONS FOR THE PIGEON
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Abstract. Several elementary combinatorial facts and complexity results are proved,
related to the pigeon hole principle.
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1 Introduction.

The “pigeon hole principle” (see e.g. Liu [3]) is a simple proof technique with
often amazing consequences when applied to combinatorial problems. In its most
elementary form, the pigeon hole principle asserts the following (for any n > 1):

“when n + 1 items are divided over n boxes, then at least one box
receives at least 2 items”.

There are many intriguing applications of the principle in mathematical contexts,
with Dirichlet’s result on the approximation of real numbers by rational numbers as
perhaps the earliest example known (cf. [2]). In this note we present some additional
combinatorial facts “when n + 1 (or more) items are divided over n boxes”, which
may serve as interesting classroom illustrations or exercises when the pigeon hole
principle is discussed. In section 2 we consider some aspects of the distribution of
N items over n boxes, and in section 3 we prove some (new) complexity results for
distributions over two sets of distinct boxes. Section 3 assumes some familiarity
with the theory of NP-completeness (cf. [1]).
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2 Items in boxes.

When n +1 items are divided over n boxes, it is very likely that some (many) boxes

remain empty. Empty boxes play a crucial role in the proof of the following fact (for
any n > 1).

Theorem A. Suppose N items are divided over n boxes, with 1 < N < 2n. Then
either all items end up in one box, or there is a set of k boxes containing precisely
k items (for some k > 1).

Proof.

(By omitting some empty boxes it is straightforward to reduce the proof to the
case in which we have n < N < 2n, but this is not essential for the argument.) As
N < 2n, the boxes cannot all contain at least 2 items. If there is a box with precisely
1 item, then the theorem is proved (take k = 1). If there are no boxes with precisely
1 item, then we argue as follows. Let e > 1 be the number of empty boxes, let b > 2
be the smallest number of elements in any non-empty box, and assume that not all
items end up in one box (which means that b < n). It follows that (n — e)b < N,
hence e > n—%’- > n—-zbl‘- = (b—2)-3 > b—2 and thus e > b—1. The theorem now
follows with k = b, by taking a box with b items and b — 1 boxes with zero items.
O .

In the proof of theorem A, empty boxes contribute to the count in exactly the
right way (i.e., they help in bringing the number of boxes up to k without changing
the number of items). In the following result this effect is much less apparent,
thus making it more intriguing and less straightforward than theorem A. The proof
actually uses the pigeon hole principle itself!

Theorem B. Suppose N items are divided over n boxes, with N #nand 1 < N <
n+1. Then either all items end up in one box, or there is a set of k boxes containing
precisely N — k items (for some k > 1).

Proof.

Suppose N items are divided over n boxes, and suppose also that the items do not
all end up in one box. It means that n > 1, and that there are at least two non-
empty boxes. Assume without loss of generality that the 1 and the n** box are
non-empty. If one of these boxes contains N — 1 items, then the theorem follows
with £ = 1. Thus assume that all boxes contain less than N — 1 items.

First consider the special case that N < n, with each item in a distinct box (i.e.,
the N items end up in exactly N boxes with 1 item per box). f N is even, then
the theorem follows with ¥ = 1N by taking 7N boxes with 1 item each. If N is
odd, then the theorem follows with ¥ = [JN] = |3N] + 1 by taking |1N] boxes
with 1 item each and 1 box with zero items (which exists because N < n). Thus
we may assume N =n + 1, or N < n and the N items actually end up in at most



N —1 boxes. In the latter case we simply eliminate some empty boxes from further
consideration and consider only some set of N — 1 boxes which together contain the
N items. It follows that we can assume that N = n + 1, for the remainder of the
argument.

Add one additional item to every box. (For simplicity we refer to the additional
items as “green items”, when necessary.) Let a; denote the number of items in
the #** box. Then ai,a, > 2,¥%a; = 2n + 1, and 1 < a; < n for every i. By
an application of the pigeon hole principle (cf. Liu [3], exerc. 4.47 or theorem E
below) it follows that there are an ¢ > 1 and [ > 0 such that a; + --- + Gy =N
or a; +--- + ajy1 = 2n. Consider the latter case first. It is impossible that ¢ = 1
and ! = n — 1. Thus either a; or a, is excluded from the sum and necessarily
a;+-+4+a;41 < (2n+1) — 2 = 2n — 1, a contradiction. Thus we necessarily have
a;+ -+ -+ aiy; = n which, after pulling out the green items, implies that the boxes i
through i +1 contain precisely n — (I+ 1) items. Thus the remaining k = n — (I +1)
boxes contain precisely (n + 1) — k = N — k items. (Note that I < n — 1, hence
k>1) O

;From the proof it follows that theorem B holds for N = n if and only if n is even.
Theorem B fails for N = n + 2 as well: consider the distribution with 3 items in the
first box, and 1 item in every other box. Then k boxes contain precisely k or k + 2
items, which is of opposite parity from N — k and thus not equal to it for all odd N
(i.e., odd n).

In an equivalent formulation for the case N = n + 1, theorem B asserts that either
all items end up in one box or there is a set of j = (n — k) boxes containing precisely
(n—j) = k items, for some j > 1. As either (n+1)—k > kor k > (n — k), theorem
B shows that the pigeon hole principle can be applied recursively within the given
set of pigeon holes as well. Here is another interesting consequence.

Corollary C. Suppose N + n items are divided over n boxes, with N # n and
1 < N < n+1, and suppose that no box remains empty. Then either there is a box
with precisely N + 1 items, or there is a set of boxes containing precisely N items.

Proof.

Divide the N + n items, and suppose that no box remains empty. Delete one item
from every box and consider the distribution of the remaining N items. Interpreting
theorem B and “re-inserting” the deleted items in every box, gives the result. [

3 Two sets of boxes.

Now consider the situation in which N items are divided over n red boxes and M
items are divided over m green boxes. Is there a (non-trivial) set of red boxes that



contains exactly as many items as some set of green boxes. Clearly this is true for
N = M, but in general the answer will depend on the way the items are actually
distributed over the red and the green boxes respectively. Let a; denote the number
of items in the ¢** red box (1 < i < n) and let b; denote the number of items in the
j** green box (1 < j < m). The question raised can be rephrased as the decision
problem for the predicate EQ(ay,---,@n;b1,- - ,by) which is defined to hold if and
only if there is a set of a;’s with exactly the same sum as some set of b;’s (taking
every “index” no more than once). We will also consider a “balanced” version of the
problem, in the form of the predicate BalEQ(ay,---,an;b1,- -, by,) which is defined
to hold if and only if there is a set of k¥ red boxes which together contain exactly as
many items as some set of k green boxes (for some k with 1 < k < min{n,m}).

A desired solution to the problems raised would consist of some necessary and suffi-
cient criteria for EQ(z1,: -+, Zn;¥1,°*,Ym) and BalEQ(z1,- -, Tn; Y1, - - Ym) Which
are easy to evaluate. In computational terms it means that we want an efficient
algorithm for deciding arbitrary instances of the predicates EQ and BalEQ. Let
NP denote the class of predicates that are decidable in nondeterministic polynomial
time (cf. Garey & Johnson [1]). A problem or predicate E is called NP-complete
whenever E € NP and every problem in NP can be polynomially transformed to E.
(Thus NP-complete problems are the “hardest” problems in NP.) Many important
and practical problems in computing have been shown to be NP-complete. As yet
no deterministic polynomial time (i.e., “efficient”) algorithm has been found for any

of these problems. (For more information about the theory of NP-completeness we
refer to [1].)

It is straightforward to verify that EQ € NP and BalEQ € NP. For example, a
nondeterministic algorithm for deciding EQ(ay,- - -,an; by, - -+, by) would proceed as
follows: write down a choice of the a;’s and a choice of the b;’s, compute their sums,
and output “true” if and only if the resulting values are equal. The executions of
the algorithm are polynomial time bounded (in the size of the input, measured in
bits). The argument for BalEQ is similar. It is also straightforward to see that EQ
is NP-complete, because it encompasses the so-called SUBSET-SUM problem ([1],
problem SP13) which is already NP-complete. In fact we have the following result.

Theorem D.

(i) EQ is NP-complete.

(ii) BalEQ is NP-complete.
Proof.

(i) SUBSET-SUM is the following problem (cf. [1]): given a sequence of non-

negative integers ay, - - - , a,, and an integer b, is there a subsequence of the a;’s
that sums to exactly b. Clearly SUBSET-SUM is just equal to EQ(z1,- -+, Zn;y)
and, because SUBSET-SUM is NP-complete, so is EQ.
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(ii) BalEQ appears to be different from any known problem in [1], but it can
be proved NP-complete as follows. Clearly BalEQ € NP. There also is a
polynomial transformation from SUBSET-SUM to BalEQ, as follows. Let
ai,-++,an,b be an arbitrary instance of SUBSET-SUM. Let ¢ be such that
2t > Y Ta; > 2t-1. (Thus t is polynomial in the size of the problem, in
bits.) Define ¢; = 2!+%-! and d; = ¢; = 2*%-2 for 1 < ¢ < n, and
consider the instance BalEQ(ay,:-+,an,C1,+ - Cn; b,d1, -+ ,dp,€1,-+-,€,). We
have to show that BalEQ holds in this instance if and only if the instance
of SUBSET-SUM is solvable. Suppose BalEQ holds, i.e., there is a choice
of k elements from {ay,---,an,¢1,-+,¢,} and a choice of k elements from
{b,dy,--,dn,e1,- - -, e} with exactly the same sum. If the choice from {a,- - -,
@nyC1,:**,Cn} contains [ of the ¢;’s (for some 0 < ! < k) then the choice
from {b,dy,---,dn,€1, ---,e,} necessarily contains ! of the d;’s and [ of the
e;’s (thus a total of 2! elements). Thus we have [ < k and the choice from
{a1,-++,an,c1,++,c,} must contain some a;’s. By inspecting the size of the
numbers involved, the a;’s that occur in the choice must sum to b. Conversely,
suppose there is a solution to the instance of SUBSET-SUM. Let it consist
of a choice of ! of the a;’s that sum to b, for some 1 < ! < n. Now the in-
stance of BalEQ holds for £k = 2] — 1: choose the same a;’s and ¢;,---,c_
from {@1,-+-,@n,¢1,*-+,¢n}, and chooseband d,,---,d;_; and ey, - - -, €;_1 from
{b,dy,---,dn,e€1,-+,€,}. The two sets of 2] —1 elements clearly have the same
sum. The instance of BalEQ is obtained by a polynomial time computable
transformation from the instance of SUBSET-SUM. It follows that BalEQ is
NP-complete.

a

We now return to the more direct context of the pigeon hole principle. In a way
the NP-completeness of EQ and BalEQ results from the “unbounded” size of the
numbers involved, as we shall see. (This relates to the discussion of polynomial
versus pseudo-polynomial time algorithms, cf. [1].) To get around it, we will now
make the strict assumption that 1 < a; <n(l <i<n)and1<b; <n(l <j<m)
We also assume that n = m. Let EQ’' and BalEQ' denote the correspondingly
restricted versions of EQ and BalEQ.

Theorem E.
(i) EQ’ always holds.
(ii) BalEQ' is decidable by a polynomial time algorithm.

Proof.



(i) We will prove the following, slightly stronger result: given 2n integersay,-- -, a,
and by,---,b, in the range from 1 to n, there are i,5 > 1 and k,! > 0 such
that a; + -+ + ai4x = b; + - - + bj41. The proof involves a nice application of
the pigeon hole principle, as follows.

Without loss of generality we may assume that $7a; < Y0'b;. For every
i(1 < i < n) let j; be the largest j > 0 such that a; + -+ + a; > bi+---+b;.
(The j; are well-defined.) Write a; +--- +a; = by + - - - + bj, + r; and observe
that 0 < r; < n for every i. If r; = 0 for some i, then we are done. Otherwise
we have 1 < r; < n for every i. As we now have n values in the range from 1
to n — 1, the pigeon hole principle can be used to assert that there must be
indices ¢ and 4; with 1 < ¢; < i3 < n such that r;, = ry,. Clearly j;, < i,
and in particular j;, > 0. It follows that a; 41 +--- + a;, = 41+ o+ by,

(ii) To solve BalEQ' we have to determine whether there exists a choice of k
elements from {a,,:--,a,} and a choice of k elements from {b;,---,b,} with
exactly the same sum, for some k > 1. (The problem is trivial when the two
sets are not disjoint.) While the number of subsets is “large”, it should be
observed that every subset sum is bounded by n?. For 1 <t < n let A:(l,r)
be defined to hold when there is some choice of ! elements from {ay,---,a;}
that sums to r (for 0 <1 <t and 0 < r < nt). Similarly define B;(l,r) for the
set {by,---,b}. Clearly A, and B, are trivial to compute. For t > 1, A;4, can
be computed from A, as follows: if r < a; then Ayy1(l,7) = A(I,r) otherwise
Apa(l,r) = Al,7) V Apa(l = 1,7 — a). For consistency we let A4,(0,0) =
“true” for all t. It easily follows that A;y; can be computed from A; in linear
time and hence, A, can be computed in polynomial time (for all arguments)
from A;. Similarly B, can be computed in polynomial time. Now BalEQ’
holds if and only if there exist k¥ and » with 1 < k < n and 1 < r < n? such
that both A.(k,r) and B,(k,r) hold. This is determined by a simple check of
all possible values for k and r, in polynomial time. O

Theorem E (i) shows that when N items are divided over n red boxes (N < n?) and
M items are divided over n green boxes (M < n?) and all boxes get a number of
items in the range from 1 to n, then there always is a (non-trivial) set of red boxes
that together contain exactly as many items as some set of green boxes. It follows
from the proof that the boxes in each set can in fact be chosen to be consecutive.
Another interpretation is the following. Let A = {a1,---,a,} and B = {b;,---,b,}
be two (possibly disjoint) sets of items with n items each, and let each item z have
a weight w(z) chosen from the integers ranging between 1 and n. Then there are
non-trivial subsets A’ C A and B’ C B such that the elements from A’ and B’ can
be exchanged without changing the total weight, i.e., w(A) = w((A — A’) U B) and
w(B) = w((B — B’) U A’), where w(A) = ¥ 4c4 w(a).
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