The Distributed Bit Complexity of the Ring:
From the Anonymous to the N on-anonymous Case

Hans L. Bodlaender
Shlomo Moran
- Manfred K. Warmuth

KUU-CS-88-33
November 1988

. Rijksuniversiteit Utrecht
% Vakgroep informatica

Padualaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454

* The Netherlands

The Distributed Bit Complexity of the Ring:
From the Anonymous to the Non-anonymous Case

Hans L. Bodlaender
Shlomo Moran
Manfred K. Warmuth

Technical Report RUU-CS-88-33
November 1988

Department of Computer Science
University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht
The Netherlands

The Distributed Bit Complexity of the Ring:
From the Anonymous to the Non-anonymous Case

Hans L. Bodlaender *
Department of Computer Science, University of Utrecht,
3508 TA Utrecht, the Netherlands.

Shlomo Moran **
Department of Computer Science, the Technion,
Haifa 32000, Israel.

Manfred K. Warmuth ***
Department of Computer and Information Sciences,
University of California,
Santa Cruz, CA 95064.

ABSTRACT:

The distributed bit complexity of an asynchronous network of processors is a lower bound on the worst case
bit complexity of computing any non-constant function of the inputs to the processors [MW]. This concept
attempts to capture the amount of communication required for any “useful” computation on the network.

The aim of this kind of research is to characterize networks by their bit complexity. In [MW] Moran and
Warmuth studied the bit complexity of a ring of n processors under the assumption that all the processors in the
ring are identical (anonymous [ASW]), i.e. all processors run the same program and the only parameter to the pro-
gram is the input of the processor. It was shown that for anonymous rings it takes Q(n logn) bits to compute any
non-constant function. We would like to release the assumption that the processors are anonymous by allowing
each of the processors to have a distinct identity (which becomes a second parameter to the program). If the set of
possible identities grows double exponentially in 7, then by a simple reduction to the anonymous case one can
show that the lower bound holds as well [MW].

In this paper we show that the Q(nlogn) bit lower bound for computing any non-constant function holds
even if the set of possible identities is very small, that is, n!*¢, for any positive €.

* Part of this work was done while this author was at the Laboratory for Computer Science at MIT being supported by 2 grant from the
Netherlands Organization for the Advancement of Pure Research (Z.W.0.).

** This research was supported by Technion V.P.R. Fund - C. Wellner Research Fund. Part of this work was done while this author was
visiting the University of California at Santa Cruz being supported by ONR grant N0O0014-86-K-0454.

*** This author gratefully acknowledges the support of ONR grant N00014-86-K-0454. Part of this work was done while this author
was visiting the Technion, Israel Institute of Technology, supported by the Wolberg fund.

1.INTRODUCTION,

Consider a distributed network of processors that communicate asynchronously along the links of the net-
work. Each processor receives an external input. The processors compute a function of the total input configura-
tion of the network and then terminate. The aim of this line of research is to establish lower bounds on the amount
of resources (complexity) required to compute any non-constant function on a given network. The lower bound

must hold for any algorithm that computes the non-constant function,

As a complexity measure of an algorithm we use the worst case message and bit complexity over all possi-
ble input configurations, all possible choices (if any) for the identities of the processors and all possible delay
times of the communication links of the network. The minimum worst case message and bit complexity for com-
puting any non-constant function on the network is called the (asynchronous) distributed message and bit complex-

ity, respectively, of the network [MW]. In this paper we give results about the distributed bit complexity of a ring

of n processors.

In general we seek to investigate how the distributed bit complexity depends on the network. Intuitively,
this complexity increases with the amount of "symmetry" given in the network which is determined by the two fol-

lowing factors.

a) The topology of the network: To compute the function value, each processor needs to get some global informa-

tion about the input configuration. Topological symmetry in the network makes it hard to gather global informa-

tion without causing a large number of messages/bits to be sent.

b) The degree of "anonymity" between the processors. Three cases are considered in the literature: In the first the
processors are anonymous (i.e. they have no id’s). In the second each processor has a distinct id. The id’s can be
used to break symmetry in the network and cut down message traffic. In a third case the network has one dis-

tinguished processor (the leader) who can coordinate the computation.

In the case where the network has a leader then this leader can coordinate the computation. It can first insti-
gate messages that collect the global information that is necessary to compute the non-constant function.
Secondly, it will broadcast the function value to the network. The bit complexity of such an algorithm can be
linear in the size (number of edges + number of vertices) of the network. Note that in some networks the topology

of the network distinguishes a small number of processors. For example in the star network the central processor

is naturally the leader and in a chain the two end processors can coordinate the computation. The definition of dis-
tributed complexity is mainly useful for highly symmetric networks, such as the ring, the hypercube or the torus,

Each of these networks is used in practice.

The distributed complexity of a network gives a theoretical limit of the capabilities of the network. It can be
used to guide the choice of networks used in practice. Previous research and this paper concentrate on the distri-

buted complexity of the ring of n processors. It leads to an interesting case study as to how the processors may

avoid symmetry.

The distributed bit complexity of a ring of n anonymous processors is 8(nlogn) [MW]. This holds for arbi-
trary ring size and input size. However the lower bound proof of Q(nlogn) in [MW] assumes that the processors
are anonymous or that the processors have distinct identities but the set of possible identities is very large

(Q(n2""), which is unrealistically large).

If the set of distinct identities is very small, i.e. in {1,2,-- - ,;n+c}, for some constant c, then it is easy to
compute non-constant functions in O (n) bits (use processor with identities in {1,2,---,c+1)} as leaders). We
show in this paper that the approach of giving processors distinct identities from a reasonably large set does not

help to break the Q(n logn) lower bound.

Theorem 1. Let f be any non-constant function on £* for some arbitrary alphabet Z, and let AL be any asynchro-
nous algorithm that computes f on ring of n processors, labeled with n distinct identities chosen from a set X of

size at least n'*, for some & > 0. Then the worst case bit complexity of AL is Q(nlogn).

Thus in highly symmetric networks such as the ring the only way to compute non-constant functions in
O (n) bits is essentially to pre-elect a leader. However, electing a leader costs Q(nlogn) messages even if the set

of possible identities is only of size cn , for any constant ¢ >1 [PKR, B1].

The proof of Theorem 1 is constructive: Given an algorithm AL that computes a non-constant function on a
ring of n processors, we use “cut-and-paste” techniques to construct a computation of AL in which Q(nlogn) bits
are sent. cut-and-paste method was first used in [MW] for the anonymous case, where the processors have no id’s.
When the processors have id’s then cutting and pasting is more involved, since in the final ring constructed all pro-
cessors must have distinct id’s from a small set of possible id’s (O (n!*%)). The key idea is to iteratively apply cut-

ting and pasting to many lines of processors in parallel. A case analysis shows that in the final set of lines there

must be a line that can be embedded in a ring of n processors with distinct id’s, and a computation of AL on this
line requires Q(n logn) bits.

Note that the lower bound of Theorem 1 does not depend on the size of the input alphabet and the size of the
ring. In contrast, it has been shown that that the distributed message complexity of the anonymous ring does
depend on both these sizes. Specifically, large input alphabets, as well as small non-divisors of the ring size, can

reduce the distributed message complexity of the anonymous ring [ASW, MW, DG, B2].

The main future challenge will be to determine the distributed bit complexity of other networks, such as the
hypercube. Recently, the distributed bit complexity of the torus was shown to be ©(n) [BB]. The proofs for the
case when the processors have identities are expected to be more involved (see this paper) than in the anonymous
case. Some techniques developed in this paper for rings are likely to be applied to other networks. Also, it is an

interesting open problem to determine whether the lower bound of Theorem 1 can be extended to the case where

the set of distinct identities is of size cn , for some constant c .

Probabilistic ways to break symmetry are studied in [AAHK] and the "probabilistic" distributed bit com-
plexity of anonymous rings is shown to be 8(nViogn). It would be interesting to know whether this bound

remains if the processors have distinct identities in a reasonably large range.

2. DEFINITIONS AND BASIC RESULTS.

A processor consists of an input letter and an id. Let I be the input alphabet, which is allowed to be arbi-
trary large. Let X be a set of id’s, and suppose that 1X | > n'*, for some constante > 0. Let 6=0, ' - 6,€X" be
an input word and x =(x;, - x,) be a sequence of n distinct identities taken from X. A ring configuration
R (o.x) consists of processors py, - - - ,p,, Where p; is connected by a link to Di(mod ny+1, (for i =1,- -+ n), and
processor p; has input 6; and id x;. A line configuration L(cGx) is defined similarly, except that there is no link
between p; and p,; informally, a line configuration can be viewed as a ring configuration in which there is an
infinite delay on the link connecting p, and p,. The size of a ring configuration (or a line configuration) is the
number of processors in the configuration. We use ““” to denote the concatenation of two sequences. Thus, for

line configurations L, = L (t,x) and L, =L (®,y), L1-L denotes the line configuration L (to,xy).

Consider an execution of some distributed algorithm on a ring or a line configuration. The history of a link
e in this execution, denoted by A (e), is the sequence of messages delivered on e with their directions. Formally,
h(e)= (dym\domy- - - d;m,), where d; is either R (for right) or L (for left), and m; e {0,1}* is the i message
delivered on e, in direction d;. A message is considered delivered when it is accepted and in case of a tie, mes-
sages from the left are delivered before message from the right. The length of a history is the number of characters
in it. Note that the length of a history of a link is at most twice the number of bits delivered on the link. In [MW]

a similar notion of history was defined for processors instead of links.

A history sequence of a line configuration L (¢,x) is a sequence H(L) = (p1,hy, P22, " * - Jhn_1.04), Where
the p;’s are the processors in L and 4; is the history of the link connecting p; and p;,;. A segment of size m of the
history sequence H (L) defined above is a sequence (p; .k, - * * JAi 4m—2.Pi+m—1) (i+m~1<n). The length of a seg-

ment of a history sequence is the sum of the lengths of the histories of its links.

Let Hy=(p1,h1, "« Jhu_1pa) and Hy=(q1,h"1, " * Jh m-1.9m) be two segments of history sequences, and
let & be a history. Then Hy-h-H, denotes the segment (p1,hy,* * * 21 Pn-h.q1.8 "1, * B m-1,4m). Finally, we
say that a history sequence H of a line configuration L is produced by the algorithm AL if there is an execution of

AL on L with history H.

A basic tool in our proof is converting executions of AL on ring configurations to executions on line confi-
gurations and vice-versa. Since the output value of any execution of AL on a ring configuration R (¢,x) must be
f (o) for all possible delay times of the asynchronous links, we may choose particular delay times for the proofs.
The basic delay strategy [MW], here called semi-synchronized execution, is an execution in which internal compu-
tation at a processor takes no time and links are either blocked (very large delay) or are synchronized (it takes
exactly one time unit to traverse the link); each unblocked link may become blocked at any time, and once it

becomes blocked it remains so indefinitely.

Consider an execution of AL on R (o,x) which is (fully) synchronized (no link is blocked), and assume that
this execution terminates in less than ¢ time units. Without loss of generality, let t = nk for some integer k. Asin
[MW], we associate the canonical line configuration D (6,x) =L (¢** x2*) with the ring configuration R (0,x).
The 2t = 2nk processors in D (0,x) are denoted by py 1,021, " * Pa1P12," " PagP 115" " * P ni- Note that, by
definition, processors p; ; and p”; ; have identity x; and input o;. Informally, D (0,x) consists of 2k copies of the

R (o,x) that were cut at the link p,—p, and then concatenated to one line of 2kn processors. Thus, processors Pij

and p’; ; in D (0,x) correspond to the processor p; in the j* and (k+j)* copies of R (0.x).

Let D =D(o,x) be a canonical line configuration. A canonical execution of AL on D is a semi-
synchronized execution in which fori = 1,- - - ¢, the i* leftmost link and the i rightmost links of D are blocked
at time i (by the definition of line configuration, the link connecting p,, and p*, ; is blocked at time 0). Finally,
the canonical history sequence of D , to be denoted by H (D), is the history sequence produced by to the canonical
execution of AL on D. The relation between a synchronized execution on a ring configuration R(c,x) and a

canonical execution on the corresponding line configuration D (6,x) is given by the following:
Lemma 2.1: [MW]. In a canonical execution of D (6,x), both p, , and py ; output f (x) and terminate. (]
The processors p, ; and p’y ; will be called the center processors of D (G ,x).

Lemma 2.2 [MW]: Let D =D (c,x) be the canonical line configuration of R =R(c,x), and let H =H(D). The
bit complexity of the synchronized execution of AL on R is bounded from below by half of the history length of

any segment of size n of H.

Proof: Any n consecutive histories in H are prefixes of the histories of the corresponding edges in a synchronized
execution on the ring configuration R (¢,x). The result now follows from the observation that the length of the his-

tory of a link is at most twice the number of bits delivered on it. [J

Lemma 2.3 [MW]: Let W,,...,.W, be k distinct words over an alphabet of size r > 1. Then there is a word W; s.t.

IW; 1 2log, (k/2) (for 1 <i <k) and IW,1+1Wl+- - - +1W |>(k/2)log, (k/2).

Proof: Represent the W; with an r -ary tree, s.t. each W; corresponds to a path from the root to an internal node or
a leaf of the tree. In the tree each leaf is responsible for some W;. Assume the overall length of the words W; is
minimized. Then in the corresponding tree all internal nodes except possible one internal node of maximum level
have degree r. Hence at least half of the nodes are leaves. The lemma is implied by the fact that the average
height of the leaves in an r -ary tree with v leaves is at least log,v. O

The above two lemmas imply the following,

Lemma 2.4: Let R =R (G,x) be a ring configuration, and let D =D (o,x). If there are n consecutive histories in a
H (D) that contain at least TIE" distinct histories, then the algorithm AL for computing f requires Q(n logn) bits in

the worst case. (3

In view of the above lemma, we assume the following for the rest of the paper.

Assumption Q : There is no canonical history sequence of AL in which n consecutive histories contain more than

'115" distinct histories.

In the below proofs we manipulate existing history sequences to create new ones. Two basic rules are used in our

manipulations, which are presented below.

Rule 1: Let H = (q1,81, " * * +qi P Qis1s * * * Mm-1.4m) De 2 history sequence that is produced by an execution E on
aline L = L(o,x), and let #’; be any prefix of #;. Then there are histories h’y, * * ,8"i- A'41,* * * St m—1, Where
h’; is a prefix of h;, such that the history sequence H' = (q1,h"1," * * ¢;,h"i,gis1, * * * h"1,.4m) is produced by some

execution E’ of AL on L.

Proof: Consider the execution E of AL on L. On a certain moment during this execution, the history of the i 'th
link will be A”’;. Then stop this execution by blocking all links. Clearly, for each j, 1<j<m, the history of the j’th
link will be a prefix of 4;. OJ

Rule 2: Let H =H-h-H, and H’ = H’\-h-H’, be two history sequences, corresponding to executions E and E’,
respectively, of AL on line configurations L =L,L,and L'=L",L’,, where h is the history of the links connecting
L, with L, and L’, with L’,. Then the history sequence H = H,-h-H’, is produced by an execution E of AL on

the line configuration L = L,L’,.

Proof: E is obtained by alternating the execution E, restricted to L,, and E’ restricted to L’;. Suppose
h=(dmy," - d,m;). Let e be the link between L, and L";. Then, for i from 1 to s: if d;=R, then do a part of
execution E on L, until message m; is sent on link e, else do a part of execution E’ on L’,, until message m; is

sent on link e. The resulting execution E of AL produces the history sequence Hy-h-H’yon L =L,L%. O

One specific way in which Rule 2 above will be used is the maximal shrinking: Consider a history sequence
H =Hy-h-Hyh-H; that comresponds to an execution of AL; then the history sequence H’=H-h-H, also
corresponds to some execution of AL. By repeated applications of this operation, any segment of a history
sequence can be shrunk to a segment in which all the histories are distinct (A similar technique was also used in
[MW]). If a history segment H is produced by some execution of AL on the corresponding line of processors,

then E (H) denotes one such execution.

3. CONSTRUCTING FAMILIES OF CONTRADICTING COMPUTATIONS.

Let T and © be two input configurations s.t. f (t)#f (w). We will construct two families of history
sequences F (1) and F () that correspond to executions of AL on T and ®, resp. The identities of the processors in
the history sequences in F (t) and F (@) will belong to sets X, and X, resp., where Xy X o=@, Xy _JX =X and
0< 11X, - X4l 1. F(1) and F () will have similar properties. The description and construction of F (1) is

given below:
Each history sequence H in F (t) will satisfy the following properties:
Property (a): There is an actual execution of AL , E (H), that produced H .

Property (b): H can be written as H = LE -y "LI -hc ‘RI -hg‘RE , where LE , LI, RI and RE are scgments of history
sequences connected by links having histories k. , hc and kg, satisfying the following:
Property (b1): There is a canonical line configuration D = D (t,x), where x € X", such that LI -hcRI is a seg-
ment of the canonical history sequence H (D). Moreover, the rightmost processor of LI and the leftmost pro-
cessor of RI (which are connected by a link with history h¢) are the center processors of D, and hence they
output f (1).
Property (b2): All the identities of the processors in LE-RE are distinct from each other and no id of a pro-

cessor in LE -RE is also an id of a processor in LI -h¢c-RI .

The segments LE and RE of H , as well as the histories A, and kg, may be empty. The segment LI-hc-RI will be

called the inner part of H.

To construct the set F (), we construct a list F = (Fg, - ,F;,"), where each F; is a set of history
sequences. F is the empty set, and F;,, is obtained by applying one of the operations (i) - (iii) below to F;. Even-
tually we get a set Fyy to which none of these operations is applicable; this Fy is F (1).

(i) ADD: Assume that there are n identities in X, that do not appear in any history sequence in F;, and let
x=(x1," - - X») be a sequence of such identities. Let D =D (z,x) be the canonical line configuration of R (t.x).
F;:, is obtained by adding H (D), the canonical history sequence of D, to F;. (Note that H (D) can be written as

LI -heRI, where hc is the history of the link connecting the center processors of D (T.x)).

(i) LEFT-JOIN (see Figure 1): This operation replaces two history sequences H and H’ in F; by their LEFT-

JOIN, which is the history sequence H defined below; the resulting set is F;,;. The property of H which we need

for our proof is that its inner part is shorter than the inner parts of both of # and H’. The definition of this opera-
tion follows:
Let H =LE-hy ‘LI -hc-RI-hg‘RE and H’ =LE"-hy"-LI’-hc"-RI"-hg “RE’ be in F;. The operation LEFT-JOIN can
be applied to the histories H and H’ iff they satisfy the following conditions:

(a) The identities appearing in H are distinct from those appearing in H’.

(b) The size of the inner part of H is at least as large as the size of the inner part of H’.

(c) There is a history h such that LI =LI-h-LI, and LI = LI -h-LI,’, where the size of LI, is at most n.

(d) LE is of size at most %n .
The LEFT-JOIN of H and H' is the history sequence H = LE -h-LI-hc"RI"-hg"RE’, where LE is obtained
by performing a maximal shrinking on the segment LE -h; -LI, (Note that all the identities in LE -h; LI, are
distinct and different from those of LI;’h-‘RI’hg ‘RE’.)

(iii) RIGHT-JOIN: This operation is defined similarly to LEFT-JOIN.

For the family F (1) to exist, we need the following lemma.

Lemma 3.1: Let F=(F,,- - ,F;, - -) be a sequence of sets of history sequences such that Fy=® and F,,, is

obtained by applying one of the operations (i) - (iii) above to F;. Then F is finite.

Proof: Recall the size of the canonical histories is 2¢. Define the cost C(H) of a history sequence
H =LE-hy -LI -heRI -hg ‘RE to be 3%~ , where s is the size of LI-h¢-RI ; the cost C (F) of F is defined as the sum
of the costs of the history sequences in it. Since each id can occur in at most one history sequence in F;, it follows
that F; contains at most n'*€ history sequences. Hence C (F;) is bounded from above by n'**-3%. We now show

that for all i, C (F;4) 2 C(F;) + 1, thus proving the lemma.

If F;,, is obtained from F; by the operation ADD, then C (F;4) = C(F;HC(H (D)) =C (F;+1. Suppose
F;,, is obtained from F; by a LEFT-JOIN operation (The case of a RIGHT-JOIN operation is similar). Now note
that the size of the inner part of H, the segment LI,-hc"RI’, is smaller than the size of the inner part of #” and
thus also smaller than the size of the inner part of H. This implies that C(H) 23C (") and C(H) 23C(H), so
C(Fi)=CERCHICH)-CHY2CEFNIL. O

Let F = F (z) be a set Fy satisfying the above lemma. Some basic properties of history sequences in F for

are given in the next lemma.

Lemma 3.2: For H = LE -hy ‘LI -he RI -hg *RE be in F (1) the following properties hold:

(@) BothLE and RE are of size at most %—n .

(b) Any segment of size < n in LI k¢RI contains at most Tl'i" distinct histories.

() Any identity occurring in H does not occur in any other history sequence in F .

(d) There is an execution E (H) of AL .

Proof:

(a) When a new history is constructed by a LEFT-JOIN operation, then the LE -segment of the new history is
produced by maximally shrinking an LE -segment of size at most —11-2- and part of an L/—segment of size at
most n. The latter part is contained in a canonical history sequence. Therefore by Assumption Q it contains
at most -1-15— distinct histories. We conclude that after maximal shrinking the new LE -segment has size at
most %n . A similar argument shows that the RE -segments of histories produced by a RIGHT-JOIN are at
most of size %n.

(b) This follows from Assumption Q ahd the fact that there exists a canonical line configuration that contains
LI-h.‘RI as a segment.

(c) This follows directly from the construction of F (T).

(d) This follows from the construction of F (1) and the correctness of Rule 2. [J

4.PROOF OF THEOREM 1.

Let F be F (o) for e {t,w}. We call a history sequence of F finished if a certain condition (defined below)

holds. We then show in the Main Lemma that the existence of such finished history sequences in both F (1) and

F () implies the Q(nlogn) lower bound. Finally we prove by a counting argument that if either F (1) or F(w)

does not contain a finished history sequence and the id set is large enough (n*€), then the same lower bound must

hold.

A history sequence H = LE -hy 'L -hc-RI -hg ‘RE in F 1s called left unfinished (right unfinished) if LI (RI) is

of size at least 11—2" and LE (RE) is of size at most l’—zn . A history sequence is called finished iff it is neither left

unfinished nor right unfinished.

10

Main Lemma: If both F (1) and F () contain a finished history sequence then the message complexity of AL is
Q(nlogn).

Proof: If H = LE -h; -LI -h¢cRI -hg ‘RE is finished then at least one of the following must hold:

(irl) Both LI and RI have size smaller than %n .
(ir2) BothLE and RE have size larger than 1‘—2n.

(ir3) The size of RE is larger than '113" and the size of LI is smaller than 11_2" .

(ir4) The size of RI is smaller than l‘—zn and The size of LE is larger than %n.

To prove the lemma it is suffices to show that if both F (t) and F () contain a history sequence satisfying
one of the properties (ir1)-(ir4) above, then the bit complexity of AL is (nlogn). This is done in the next 3 lem-

mas.

Lemma 4.1: If a history sequence H in F (1) satisfies (irl), then no history sequence in F () satisfies (irl), and

vice versa.

Proof: Assume that the lemma is false. Then there is a history sequence H,= LE by LI -hc-RI -hg"LE in F (1) that

satisfies (irl). So the size of the segment L/ -hs-RI is at most %n and all identities in this segment (and thus in all

of H,) are distinct). By Lemma 3.2(a) the size of LE and of RE is at most %n . Clearly the total size of H, is at

most —’2-n . By Property (b1), in the execution E (H) the center processors output f (t). Similarly, there is a history

sequence H , in F () that has size at most %n and in the execution E (H) the center processors output f (®).

Observe that all id’s occurring in H, and H ,, are distinct. Thus it is possible to embed the line configurations
of these history sequences into a ring configuration R = R (G,x) of size n: Concatenate the processors of H. and
H , and closé the line to a ring of size n by adding the needed number of processors. Now repeat both executions
E(H.) and E (H) on the corresponding segments of R (block all links not contained in the two segments). We get
an execution of AL on a ring of size n with distinct identities taken from X in which some processors output f (1)

and another output f (®). This is a contradiction. [

In view of the above lemma, we may assume without loss of generality, that F (t) does not contain a history

sequence satisfying (ir1). In the sequel we denote F (1) by F and show that no history in F satisfies any of the

11

conditions (ir2) to (ir4), unless the lower bound holds, Clearly, this completes the proof of the Main Lemma.
Lemma 4.2: If a history sequence H in F satisfies (ir2), then the bit complexity of AL is Q(nlogn).

Proof: Let H = LE -h; LI -h¢c‘RI-hg ‘RE be a history sequence satisfying (ir2). Assume first that LI -hc RI is of
size at most n. Then all the identities in H are distinct; moreover, by (ir2) the number of distinct histories in both

LE and RE is at least 11—2n , and by Lemma 3.2 (a) this number is at most %n . By Assumption @, the number of

distinct histories in LI -k -RI is at most %n. Thus, by applying maximal shrinking to L -h¢c-RI we get a history

sequence H whose size is at most %n, and which contain at least 11_2" distinct histories. By Lemma 2.3, the

length of H is Q(nlogn). Since H is of size smaller than n, it can be embedded in a ring configuration R of size

n. Thus, we have an execution of AL on R whose bit complexity is Q(n logn).

We are left with the case where the size of the inner part of H is larger than n. In this case we use a con-

struction depicted in Figure 2.

Let p = p; ; be the leftmost processor in L/, and let ¢ be the rightmost processor in 2/ which has the same
identity as p (note that g is either p; ; or p”; ; for some j). Let & be the history of the link to the left of g. Then
H can be written as LE -h; -H 1-h-H?2-hg ‘RE (see Figure 2(a)). Observe that all id’s in LE and H 2-hg ‘RE are dis-
tinct. Let H2 be the segment produced by maximal shrinking from H2. Replace H2 by H2inH to get the his-
tory sequence H=LE ‘hy-H 1-h -H_Z-hR ‘RE (see Figure 2(b)). By the definition of g, the segment H 2 is of size at

most #. Thus by Assumption Q it contains at most 11—2n distinct histories and hence H?2 is of size at most -l-li-n .

By Property (bl) of the history sequences in F (1) there is a canonical line configuration D, that contains
hy-LI-hc-RI as a consecutive subsequence, and in which p and g have the same identity. This implies that &, isa
prefix of h or vice versa, so assume that A; is a prefix of A. We use this to produce a history sequence of size less

than n that contains LE . Then we use the fact that LE has at least le- distinct histories to derive the lower bound

(In the symmetric case A is a prefix of 4, and one can construct a history sequence of size less than n that contains
RE). By using Rule 1 on 4 and h;, we get a history sequence H'=LE"-h;"-H 1"h;-H2"hp"-RE’ (see Figure 2(c))
that is produced by some execution of AL. By using Rule 2 on H and H’ (with & = k) we get a history sequence
H =LE-h -H?2-hg"RE’ (see Figure 2(d)), that is produced by another execution of AL. In H all the identities are

distinct. The sizes of LE and RE’ are at most %n , and the size of H2’ is at most llzn and thus the total size of H

sums to at most %n . As above we embed H in a ring of size # and run the execution E (H) on the segment H of

12

the ring. H contains the segment LE which has at least 11—2 distinct histories. Thus by Lemma 2.3 the length of LE
is Q(nlogn) and this completes the proof of the lemma. [J
Lemma 4.3: If a history sequence H in F satisfies (ir3) or (ir4), then the bit complexity of AL is Q(nlogn).

Proof: Let H=LE-h; LI -hc'RI -hg ‘RE be a history sequence satisfying (ir3) (the other case is similar). The proof

follows the same outline of the proof of Lemma 4.2, and is only sketched:

Assume first that LI -k -RI is of size at most n. In this case the proof is identical to the proof of the analo-
gue case in Lemma 4.2. Assume now that the size of the inner paﬁ of H is larger thann. Letp, q,and h be asin
Lemma 4.2. Then H can be written as LE -h; -H 1-h-H 2-hg ‘RE , as in the proof of Lemma 4.2. However, in order
to make the same technique work here, we must have that 4 is a prefix of i; and not vice versa (as only the size of

RE and not the size of LE is known to be at least le-n). Let ¢; be the link that has history #; and e be the link

that has history h. By the definition of canonical history sequences, the fact that & is a prefix of Ay holds if ¢, is
closer to the left center processor than e is to the right center processor, since this means that in the corresponding

canonical execution e was blocked before ¢ .
By (ir3), the size of LI is smaller than %n , and hence ¢, is at distance at most 11—2n from the left center.
Since there are at least n processors between e;, and e, e is distance at least %n from the right center, which

implies that h is a prefix of h;. This completes the sketch of the proof of Lemma 4.3 and proof of the Main
Lemma. (0OJ

The Main Lemma aboves implies that if both F (1) and F (@) contain a finished history sequence, then

Theorem 1 holds. Thus, in order to complete the proof of Theorem 1, it is suffices to prove the following:

Lemma 4.4: If F(1) or F(w) contains only unfinished history sequences, then the bit complexity of AL is
Q(nlogn).

Proof: We prove the lemma for F = F (t). First observe that there are at most n—1 identities in X, that do not

occur in any history sequence H in F (otherwise Operation (i) is applicable to F, in contrast with the definition

X l-n+1

F). Since each history sequence in F contains less than 2n distinct identities, there are at least M = 2n

distinct history sequences in F. At least half of the history sequences of F are either right or left unfinished.

Without loss of generality, assume that there are at least K =%M distinct history sequences in F that are left unfin-

13

ished. Note that K = n® for some ¢’ > 0.

LetH,,- - - Hx be the history sequences in F which are left unfinished. Then the left inner part of each H;
is of size at least 11_2"' Let Q; be the set of the histories of the first %n links of the inner part of H;. By the
definition of F, the operation LEFT-JOIN can be applied to no pair of these H;’s, and hence the sets Q; are dis-
joint. Let /; be the length of the minimal length history in Q;, and let j be such that /; =max{}; : 1 <i <K}. By
Lemma 2.3, [; = Q(logK') = Q(logn), which means that the inner part of Q; contains a history segment of size

ﬁn and of length Q(nlogn). By Lemma 2.2, the length of this segment is a lower bound on the bit complexity of

the synchronized computation of the ring R that corresponds to the inner part of H;. This complete the proof of

the lemma, and hence the proof of Theorem 1. 1]

14

REFERENCES

[AAHK] K. Abrahamson, A. Adler, L. Higham and D. Kirkpatrick, "Randomized Function Evaluation on a
Ring,” Tech. Rep. 87-20, Dept. of Comp. Sc., Univ. of British Columbia, Vancouver, Canada, 1987.

[ASW] C. Attiya, M. Snir and M. K. Warmuth, "Computing on an anonymous ring," extented abstract in
Proceedings PODC 1985, p. 161-173, 1985, to appear in JACM, October 1988.

{B1] H. L. Bodlaender, "A new lower bound technique for distributed extrema finding on rings of proces-
sors,"” Technical Report RUU-CS-87-11, University of Utrecht, August 87.

[B2] H. L. Bodlaender, unpublished note.

[BB] P. W. Beame and H.L. Bodlaender, Distributed Computing on Transitive Networks: The Torus,
Techn. Rep. RUU-CS-88-31, Dept. of Comp. Sc., Univ. of Utrecht, 1988. To appear in proceedings
STACS 89.

DG] P. Duris and Z. Galil, "Two lower bounds in asynchronous distributed computation,” proceedings
FOCS 87, p. 326-330, 1987.

[MZ] Y. Mansour and S. Zaks, "On the bit complexity of distributed computations in a ring with a leader,”
Information and Computation, Vol. 75, No. 2, 1987, pp. 162-177.

(MW] S. Moran and M. Warmuth, "Gap theorems for distributed computation,” proceedings PODC, p. 131-
140, 1986.

[PKR] J. Pachl, E. Korach and D. Rotem, "Lower bounds for distributed maximum-finding algorithms,"
JACM 31, pp. 905-918, 1984.

[R] K. Reidemeister, Einfuhrung in die Kombinatorische Topologie, Friedr. Vieweg & Sohn Akt. Ges.,

Braunschweig, 1932.

RTINS oo lde a2 g o B e RE R
h h he hr

history line H
............ LE; S 7 S * 1 . TSR ./ XSO
. W z e

history line H’

LE
@osesscseserscacscscesscocncctcsrssrcctscsses
N\, Ly RI’ RE’
2

) LEFT JOIN,H,of H and H’
(LE is obtained by maximal shrinking of LE -k -LI;.)

Figure 1: LEFT JOIN

16

....... LE ... UASUTNRURNRNY : & SUSUUURO q..4H2 .. veeneeRE ...
(a) history line H
ST SO SO HY oo, o 1H2. . L. RE . .o
L R D T

(b) history line H , obtained by maximal shrinking of H2

() history line H’, obtained by applying Rule 1 on H

(d) history line H , obtained by applying Rule 2 to H and H’

Figure 2: The construction of Lemma 4.2.

