ACHROMATIC NUMBER IS NP-COMPLETE FOR COGRAPHS AND INTERVAL GRAPHS

Hans L. Bodlaender

RUU-CS-88-25 August 1988

Rijksuniversiteit Utrecht

Vakgroep informatica

Paduaiaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454
The Netherlands

ACHROMATIC NUMBER IS NP-COMPLETE FOR COGRAPHS AND INTERVAL GRAPHS

Hans L. Bodlaender

Technical Report RUU-CS-88-25 August 1988

Department of Computer Science University of Utrecht P.O. Box 80.089, 3508 TB Utrecht The Netherlands

2 Definitions.

In this section we give a few definitions.

Definition.

A complement-reducible graph, or, in short, a cograph is a graph that can be obtained with the following rules.

- 1. A graph with one vertex and no edges is a cograph.
- 2. If G = (V, E) is a cograph, then the complement of G, $G^C = (V, E^C)$, $E^C = \{(v, w) | v, w \in V, v \neq w, (v, w) \notin E\}$ is a cograph.
- 3. If graphs G', \ldots, G^r are cographs, then the disjoint union of G', \ldots, G^r is a cograph.

Alternatively, one can define the class of cographs to consist of the graphs that do not have P_4 , a path with 4 vertices as an induced subgraph.

Definition.

A graph G = (V, E) is an interval graph, if one can associate to each vertex $v \in V$ an interval $[a_v, b_v] \subseteq \mathbb{R}$, such that $(v, w) \in E \iff [a_v, b_v] \cap [a_w, b_w] \neq \emptyset$.

In this paper, we use the following description of the Achromatic Number problem:

```
[ Achromatic Number ] Instance: Graph G = (V, E), positive integer k \leq |V|. Question: Is there a positive integer k \geq K, and a function f: V \rightarrow \{1, 2, \ldots, k\}, such that
```

- 1. for every edge $(v, w) \in E : f(v) \neq f(w)$ and
- 2. for every $i, j \in \{1, 2, ..., k\} : i \neq j \Rightarrow \exists v, w \in V : (v, w) \in E \cap f(v) = i \cap f(w) = j$?

It is easy to see that this formulation is equivalent to the formulation in [5]. Achromatic number is NP-complete, even if G is the complement of a bipartite graph (and hence every color $\in \{1, \ldots, k\}$ can be used for at most 2 vertices) (cf. [5], p.191). We call functions $f: V \to \{1, \ldots, k\}$, fulfilling properties (1) and (2) from the description of the Achromatic Number problem *correct colorings*.

3 Main results.

First we prove NP-completeness for Achromatic Number on graphs that are cographs and interval graphs, but do not need to be connected. Later we give an easy transformation to the connected case.