Optimal Synchronization of
ABD Networks

Ephraim Korach, Gerard Tel, Shmuel Zaks

RUU-CS—88-23
May 1988

Rijksuniversiteit Utrecht

Vakgroep informatica

Padualaan 14 3584 CH Utrecht

Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454

The Netherlands

o
.
. ' Mg
:) JERTRERI
i SETR

Optimal Synchronization of ABD Networks
Ephraim Korach}, Gerard Tel}, Shmuel Zakst

Department of Computer Science, University of Utrecht,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract: We present a simple and efficient synchronizer for ABD networks, asyn-
chronous networks with bounded delay message delivery. The algorithms improve on
an earlier algorithm [Ch87]. Using a mathematical model for this type of synchroniz-
er we achieve optimality results for ABD synchronizers.

1 Introduction

Two models of computation have been used for the development of distributed algorithms: the
synchronous and the asynchronous model. In the synchronous model the execution of an algo-
rithm operates in cycles. The actions of a process in cycle (i+1) depend on its state after cycle
i and the messages sent to it in cycle i. Note that it is therefore necessary that all messages
that are sent to some process in cycle i are received before the process starts its computation
of cycle (i+1). We can think of the system as if there is a global clock, giving pulses at regu-
lar intervals. Computation takes place at clock pulses, and a message, sent at one pulse, is
guaranteed to be received before the next pulse. In the asynchronous model it is assumed that
there are no clocks and message delivery time is not bounded a priori.

The synchronous model is stronger than the asynchronous model. Consequently, distri-
buted algorithms for synchronous networks are more efficient than algorithms for asynchronous
networks. On the other hand, asynchronous networks are easier to build and have a potentially
higher performance. Therefore simulation algorithms have been designed to simulate synchro-
nous algorithms on asynchronous networks. These simulation algorithms are called synchron-
izers [Aw85]. The simplest of these mechanism ensures that exactly one message is sent over
each link in the network in every cycle. If the simulated algorithm sends more messages over
some link in some cycle, these messages must be packed in one larger logical message. If the
simulated algorithm sends no messages over some link in some cycle, a special ‘‘empty mes-
sage’’ must be sent. As a result of this policy, every process must receive exactly one

This work was partially carried out when the second author visited the Technion in December, 1987.
t Address of author: Department of Computer Science, The Technion, Haifa 32000, ISRAEL.

$ The work of the this author is supported by the Foundation for Computer Science (SION) of the Nether-
lands Organization for Scientific Research (NWO).

-2

message from every neighbor after every cycle. The next cycle is simulated when the message
of the current cycle has been received from all neighbors.

The addition of the empty messages makes the synchronizer inefficient for computations
that are ‘‘sparse’’ in time. The message complexity of the simulated algorithm equals its time
complexity multiplied by the number of edges in the network. Consider for example the con-
struction of a Breadth First Search tree in a network with E edges and diameter D. A simple
synchronous algorithm uses £ messages and time D. When the simple synchronizer is used to
simulate this algorithm, E«D messages are sent in time O (D). The situation is even worse for
the simulation of some recent election and spanning tree algorithms by Vitanyi [Vi85]. These
algorithms use a number of messages linear in the number of edges, but take exponential time.
The simple synchronizer would increase the message complexity to exponential.

Recently Chou et al. [Ch87] introduced a new network model, referred to as Asynchro-
nous Bounded Delay Networks (ABD Networks). This model is weaker than the synchronous
model but stronger than the asynchronous model. It is assumed that processes have local
clocks. These clocks run at the same speed, but they are not synchronized. Furthermore a
fixed bound on message delivery time is assumed. We choose our unit of time equal to this
bound and assume henceforth that message delay is bounded by 1.

Formally, if o is the global time of the sending of a message, and 1 is the global time of
its receipt, then

6<1T<G+1. (BD)

In our analysis we will always refer to a global clock time, but this global clock is of course
invisible to the processes. We assume that local clocks show a real-valued time and that time
for local processing is 0. These assumptions are justified because the granularity of the clock
tick and the time for internal processing are usually very small compared to message delay
time.

In ABD Networks a synchronizer can work without the empty messages. An initial ‘
exchange of START messages is required to make every process starts its local clock at
approximately the same time. After this initialization phase a processor will use its clock to
decide when the next cycle of the simulated algorithm is executed. The following two require-
ments must be satisfied:

(R1) If a process ¢ sends a message to its neighbor p in some cycle i, this message must be
received before p simulates cycle (i+1); and

(R2) if a process p receives a message it must be possible for p to determine to what cycle
this message belongs.

Requirement R1 is obvious because p s actions in cycle (i+1) depend on ¢ ’s message. Failure
to meet requirement R2 may lead to incorrect simulation as was noted by Lakshmanan and
Thulasiraman [TL87]. If the two requirements are satisfied each step of the synchronous

algorithm is simulated correctly.

To compare the speed of synchronizers we introduce the concept of cycle time. The
cycle time of a synchronizer is the time it takes to simulate one cycle of the synchronous algo-
rithm. When the simple synchronizer, described earlier, is used on an ABD Network, it real-
izes a cycle time of 1. No mechanism can have a smaller cycle time, because the simulated
algorithm may be sending messages all the time, and these messages can take time up to 1 to
arrive. Thus, the simple synchronizer is time-optimal, but it uses a lot of messages. From
now on we only consider the message-efficient type of synchronizer for ABD Networks.

Chou et al. [Ch87] presented two synchronizers. Their first synchronizer has a cycle
time of 2. To meet requirement R2, one bit is added to every message of the simulated algo-
rithm. This extra bit is avoided in the second synchronizer, but this is paid for with a cycle
time of 3. In this paper we present a synchronizer with a cycle time of 2, without the extra
bit. This clearly improves on the results of [Ch87].

It remained an open question, whether a cycle time of 2 is optimal for ABD synchroniz-
ers. We develop a mathematical model and answer this question in the affirmative as well as
in the negative. Depending on the topology of the network, some networks can be synchron-
ized with a cycle time smaller than 2, while for others 2 is optimal.

We also consider the case where clocks do not run at exactly the same speed, but instead
suffer from drift. Again we improve on the results of [Ch87].

This paper is organized as follows. In section 2 we present our ABD synchronizer. In
section 3 we develop our mathematical model. In section 4 we show that some networks can
be synchronized with a cycle time smaller than 2. In section 5 we show that for some net-
works 2 is optimal. In sections 6 and 7 we present two synchronizers for the case where
clocks suffer drift. In section 8 we consider directed networks. In section 9 we offer final
comments and suggestions for further research.

2 The Synchronizer

We first describe the initialization phase, explain when cycles are simulated, and show that R1
and R2 are satisfied. Throughout this paper we assume the network to be bidirectional. This
means that for every link pg there is a link gp in the reverse direction also. We refer to a
message, sent in cycle i, as a cycle-i message.

In the initialization phase a START message is sent over every link in the network.
Every process resets its local clock to O at the moment it sends START messages to all of its

neighbors. This is done exactly once in every process. Each process can start its clock and
send the messages spontaneously, but must do so at the latest upon receipt of the first START

-4-

message. We give the program for an arbitrary process p. Initially the value of started,, is
false.

procedure INIT:
(* Executed spontaneously (if — started,,)
or upon receipt of the first START message *)
begin CLOCK, = 0; started, = true ;
send START to every neighbor
end

upon receipt of START from neighbor ¢ do
begin if not started, then INIT ;
8pq = CLOCK,
end

The receiving times of START messages is stored, thus our algorithm uses more internal
storage than the algorithms in [Ch87]. By w, we denote the global time at which p executes
INIT, and by CLOCKI,(') we denote p’s clock reading at global time ¢. At time w),, CLOCK,
is set to 0, and we assume clocks run accurately. We adopt the following Clock Axiom:

CLOCK ") = t—w, (CA)
Let p and ¢ be arbitrary neighbors in the network and ¢ and 7 the global time of sending and

receipt of the START message ¢ sends to p. We have 6=w, and W, ST by virtue of the
algorithm, and 6<1t<0o+1 by the Bounded Delay assumption BD. It follows that w, <w,+1.

At time T, 8, is set to CLOCK," = 1— w,. It follows that
0<0,,, Wg—W, S8y <W,—w, +1. ap)

We refer to this equation as IP because it is the result of the Initialization Phase. Because we
have a link from p to ¢ also, the same holds with p and ¢ interchanged. It follows that
Iw,—w,1 <1and 3, <2

The simulated algorithm operates in cycles 1, 2, 3,... The synchronizer simulates cycle i
at local time 2i:

when CLOCK,, = 2i do
execute cycle i, using the cycle-(i— 1) messages stored so far

Theorem 2.1: Cycle-(i— 1) messages arrive before the simulation of cycle i.

-5.

Proof: Assume g sends p a message in cycle (i—1), and let the global time of sending and
receipt of this message be o and 71, respectively. By virtue of the algorithm
CLOCK® = 2(i—1). We now have

CLOCK? = 1—w, (CA)
<0o+1l-w, (BD)
= W, +2(i-1)+1-w, (CA)
<2, {IP)

so p simulates cycle { later thant. O

Theorem 2.2: The cycle number of a message can be determined using its local time of receipt
and information from the initialization phase.

Proof: Assume ¢ sends p a cycle-i message, and let the global time of sending and receipt of
this message be ¢ and 1, respectively. We now have

CLOCK®— 8,, = (1—w,)~ 8,, (CA)
> (0= W)= Wy — w, +1) (BD, IP)
= (Wy+2i = w,)— (W, — W, +1) (CA)
=2i-1

On the other hand,

CLOCK - 8,, = (t— w,)— 8,, (CA)
< (O+ 1= wp)— Wy = wp) (BD, IP)
= (Wy +2i +1- w,)— (W, - W) (CA)
= 2i+1.

] CLOCK"- 8, +1

3 l o

It follows that i =

Hence we adopt the following policy for storing messages from the basic algorithm:

-6 -

upon receipt of a message M from ¢ do
CLOCK"- §,, +1
1;
2
store M as a cycle-i message

begin i = |

end

This last routine completes the description of our synchronizer. Requirements R1 and R2 are
satisfied by theorems 2.1 and 2.2. The cycle time of the synchronizer is 2, and, by theorem
2.2, no extra bits are necessary to determine the cycle number of a message.

It is well possible for a process to receive a cycle-i message before it has simulated cycle
i itself. It is possible to receive a cycle-(i+1) message from one neighbor earlier than a
cycle-i message from another neighbor. But every message is stored for the correct cycle, and
every message is received in time.

3 A Mathematical Model

In the previous section we gave a synchronizer with a cycle time of 2, requiring no extra infor-
mation to be sent in the messages of the simulated algorithm. As we will see, this is a strong
result. In this section we will develop a mathematical model for ABD synchronizers to
improve on this result or prove its optimality. We concentrate on requirement R1.

Theorem 3.1: In a synchronizer with cycle time smaller than 2, p can not determine the cycle
number of a message from ¢ based on CLOCK,, and &, .

Proof: Assume g simulates cycle i at local time T and cycle (i+1) at local time T +2— A, for
some A>0. On the one hand, it is possible that w, = w, + 1~ —;—A, q’s START message to p

has delay O, and g sends a cycle-i message that suffers a delay of 1— %A. Because A>0 this
delay satisfies BD. We have qu =1- —;—A and at the moment of receipt of the message by p
CLOCK, — 8,y = T+1- %A. On the other hand, it is possible that w, = w,, ¢’s START
message suffers a delay of 1— %A, and g sends a cycle-(i+1) message that has delay O.
Again 5, = 1- %A and at the moment of receipt of the message by p

CLOCK, — 8,y = T+1- -;—A. Thus when §,, = 1- %A and a message is received at local

time 7 +3,, +1 —% it is not possible to determine whether this is a cycle-i or a cycle-(i+1)

message, even if p knows T. (We can give p’s START message a delay such that §,, is the

- 7 -
same in the two executions above. Thus, it is no use to make T dependent of 8,”,) 0

Therefore we feel that if the cycle time of a synchronizer is smaller than 2 it is necessary to
send extra information in messages. One bit suffices for this purpose.

Theorem 3.2: If a synchronizer satisfies R1, one bit information per message suffices to satisfy
R2 also.

Proof: Suppose p receives a message from g between the simulation of cycle j and (j+1).
Now p must determine the cycle number i of this message. By R1 and the fact that p has
simulated cycle j already, i 2j. Again by R1, ¢ simulates cycle (j+2) later than p simulates
cycle (j+1), and i < j+1 follows. Hence j <i $j+1. Let par be the parity of i and assume ¢
included par in the message. Now p can compute i using if par = par (j) then i := j else
i = j+1fi. So it suffices to include the parity of cycle numbers in messages of the simulated
algorithm. [J

Note that p does not need qu to determine cycle numbers. Let G = (V,E) be an undirected
graph.

Definition 3.3: A synchronizer function F for G is a collection of functions F,,p eV,
F,:INx[0,2)* — R, where d is the degree of p in G.

The interpretation of a synchronizer function F is as follows. If p has received START mes-

sages of its neighbors g,,..., ¢, at local times §,, s Opg, then p simulates cycle i at local
)

time F, (i, 8pq,5--s Opg). Henceforth we write Xp for 8,4 ... 8pq "

Definition 3.4: A scenario for G is a |V |+ |E |-tuple w,:peV; 8,,:qpeE] such that

Wy, 8, € IR and for all gp € E:

max(0,w, — w,) < §,, < W, —w, +1. (SA)

Theorem 3.5: An ABD synchronizer satisfies requirement R1 if and only if its underlying syn-
chronizer function F satisfies, for every scenario S, every link gp, and every i:

F,(i+1,8,)+w, ~ F,(i,8,)-w, - 12 0. (CO)

Proof: Suppose F satisfies CC. Consider a message, sent from ¢ to p in cycle i. This mes-
sage is sent at global time w, +F, (i,gq), and hence, by BD, it is received before
Wy +F,(i,8,)+1. Process p simulates cycle i+1 at global time w,, +F, (i+1,5,). From sec-
tion 2 we know that all w and & obtained during the initialization phase satisfy SA, i.e.,
Wp:peV; 8,y :gpeE] is a legal scenario. But then, by CC, w,+F,(i+13,)2
w, +F (i ,Xq)+ 1, and the message arrives in time.

Suppose CC is not satisfied for some scenario S = [wWp:peV; 8,,:qpeE], some edge gp,

-8 -

some i. Construct the following execution of the synchronizer. Process p awakes spontane-
ously at time w,, the START message over edge gp arrives at global time W, + 8pq' By SA,
all START messages satisfy the BD axiom and each process executes INIT no later than at the
receipt of the first START message. Let ¢ send a message to p in the i™ cycle of the simu-
lated algorithm. Because CC does not hold, the message may arrive too late. [

Thus correct synchronizers correspond with synchronizer functions satisfying CC for all S, all
gp, and all i. In the sequel, when we say a function satisfies CC we mean that this is the case
for all S, all gp, and all i. We also say that the function is correct.

Definition 3.6: For a synchronizer function F, the cycle time of F is

_ . F,(.3)
o) = Tax g lim =

We conclude this section by showing the correctness of the synchronizer of section 2 in this
model.

Theorem 3.7: The synchronizer function F, defined by F,@ ,3,,) = 2i, satisfies CC.

Proof: For all S, gp, i we have F,(i+1,8,)+w,—F,(i,8)-w,—1= 2i+2+w,
—2i-w,—-1=w,—w,+120by SA. O

This function clearly has a cycle time of 2.

4 Fast Synchronization

In this section we show that some networks can be synchronized with a cycle time smaller
than 2. First we consider the network K, consisting of two processors p and ¢, and two
edges pq and gp.

Theorem 4.1: There exists a correct synchronizer function for K, with a cycle time of 1%.

Proof: Take F, (i, 8pg) = 1o+ 8,4 and F, (i, 8,) = 15 +28.

F,(i+1,8,)+w, - F, (i,8,)- w, - 1

Foral s, i:

1. 1 1, 1

= 1—2—(l+1)+—2—8pq +WP- 15 - 38” —-wq -1

le_{...l_ —)+ _l(— +1)_ -1 SA
) Wy —wp)+w, 2 W, — W, W, (SA)

= 0.
The proof in the reverse direction is similar by symmetry. O
Theorem 4.2: A cycle time of 1% is optimal for K,.
Proof: Let F satisfy CC. For any pe (O,%), let S, be the scenario where w, = w, +%— P,
8 = 8 = 5 F satisfies CC for 5, 50 Fp(i+1,3) 2 Fy(i,5)+ 1~ p. This holds for
all p >0, and F, (i+1, %) >F,(, %)4» 1% follows. Repeat this argument with p and ¢ inter-

Fyig)

changed and find F,, (42, —) 2 F, (i, ~)+3. It follows that lim
2 2 i~yo0 l

22. 0O

2
We generalize the results for K, in two ways. Let K, be the complete network with n nodes,
ie,V={l,.,n}and E = {(p.q):p2q}.
Theorem 4.3: There exists a synchronizer function for the K, with a cycle time of 2— %
Proof: Take F, (i,8,,...8,_1) = (2 %)i + %(8,+...+8,,_1). We prove CC on edge 21:

Fl(i+1, 812, 813,..) +w— F2(l ,821, 873,) - Wy~ 1

= (- Ly 1 —o-1y_1 — W

= (2 n)(l+1)+n(812+813+...)+wl (2 n)l n(821+823+...) Wo 1

> (2- 71l-)+%((wz—w1)+(w3-w1)+...)+w1 (SA)
- %((wl—wzn)+(w3—w2+1)+...)— wa— 1

= 0.
The proof for the other edges is similar. O

Theorem 4.4: A cycle time of 2— %) is optimal for the K,,.

Proof: (Assume the & arguments of F, are listed in the order §, ,,1,8, p42,..) Let F satisfy
CC. For pe 0, --), let S, be the scenario where

wp=E forp <n

-10 -

Wn=1—P
&,"u

n
8 = £
"

8, = max(0, 1?%‘1-) for 1<q <n.

This tuple satisfies SA and proves that

Fia+, L2 y2F6, L 2 14221
nn nn n

This holds for all p > 0, and

Fia+, L2)2 F6. L, 2,)41+ 221
n n nn n

follows. Repeat this argument n times, with a cyclic shift of process names, and find

Foi+n, L2 y2F,G,L, 2 ye2n-1.
nn nn

It follows that oF) > 2— —'11- 0

The star network S, has nodes p, q,, ... g,y and edges pqy, ... pg,_; and qp, ..

Note that K, = S,. We generalize the above results for S, t0 S,,.
Theorem 4.5: There exists a synchronizer function for S, with a cycle time of ll.

. 1,1 : 1,
Proof: Take F,(i,5,) = 1i+- and Fo (i, 8,) = 12 +8,,. Now we have

Fpli+1,8,)+w, — F (,8,)~ w, — 1

1. 1 1,
= 1;(1+1)+?+wp- l-i-l—squ— ij— 1
21l 4+l iw —w,—w, +D-w, — 1
2 2 4 P [/} 9

and

Fo G+1,8,,)+ Wy, — Fp(i,8,)— w, - 1

« Gn-1P-

(SA)

1. 1. 1
= 1—2-(1+1)+8qu+qu—- 1-2—1 - E— Wp — 1

1 1
2 1-2—+(wp—wqj)+wqj— E—wp— 1 (SA)

=0
forall S, j, and i, hence F satisfies CC. O

Theorem 4.6: A cycle time of 1-%— is optimal for S, .

Proof: Modify the proof of theorem 4.2 for any of the edges of S,. O

We have seen that when the cycle time is smaller than 2 an extra bit in messages is necessary.
The value of ,, is not needed for determining the cycle number of a message in this case. In
all synchronizers in this section only the sum of §,, is needed in a process to determine when

a next cycle is simulated. Thus, all synchronizers in this section can be implemented in O (1)
internal storage.

5 Lower Bound Results

In this section we show that a cycle time of 2 is optimal for rings of size 4 and larger.
Theorem 5.5 facilitates the proof. It says that we may assume that a synchronizer function for
a ring is identical in each process, and symmetric in its two &-arguments. Recall that an quto-
morphism of G is an isomorphism of G onto itself and Auz(G) is the group of automorphisms
of G.

Definition 5.1: For a synchronizer function F for G, A € Aut(G), F +A is the synchronizer
function H defined by

Hy(i,8,) = Fyep)(i.3,).
(Eventually the elements of ’8, are reordered according to A.)

Lemma 5.2: If F satisfies CC, so does H = F+A, and o) = ofF).

Proof: Fix a scenario S, edge ¢gp, cycle number i. By definition we have Hp(i+1,'5p)+wp
—H (,8)-w,— 1= Fypi+1,8,)+w, —Fy)i,.8,)-w,—1. Now consider the
scenario §” = A +S where W) = w, ;) and &py = 8,-1,,y4-1,y F satisfies CC for this
scenario on edge A(p)A(@): i.€., Fagy(i+1,8 40+ W a)— Fai)i:Saq)— Wag)— 120.
But then H,(i+1,3,)+w, —H,(,8,)—w,~120. The second part of the lemma is
trivial. O

-12 -

Definition 5.3: For synchronizer functions F; and F,, 0y, 0; € R, 0,F;+0,F, is the syn-
chronizer function H defined by

H,(i,3,) = 61F1,(i,8,)+0,F;,(i,3,).

Lemma 5.4: If F, and F, satisfy CC, 6,,0,20, 0,+0,= 1, then H = 0,F+0,F, satisfies
CC and o(H) < max(ou(F,), o(F 5)).

Proof: For every scenario, edge, i, we have

H,(i+1,3,)+w, — Hy(i,3,)— w, - 1
= 01(F 1, +1,3,) 4w, — F1 (i, 8,)— w, — 1) +
0x(F 2, (i+1,8,)+w, = F;,(i,8,)— w, — 1)

20+0

because Fy and F, satisfy CC and 6,,06, 2 0. Furthermore, max, sup, and lim commute with
multiplication by a constant and in the following sense with addition:

max(T;+T,) < max(T,) + max(T,).
It follows that o(H) < 6,0(F ;) +0,0(F ;). O
Theorem 5.5: For any correct synchronizer function F there is a correct synchronizer function
H such that (i) o(H) < o(F) and (ii) for all A € Aut(G), H = H +A.

Proof: Let F be given. Take k = |Aut(G)l and define H = Y L(F +B). By lemma
B € Aut(G)

5.2 and 54 H is again correct and o(H) < o(F). Furthermore, for A € Aut(G), H *A =
(¥ LlFBpya= 3 LF.B.A)= H because Awr(G)+A = Aut(G). O
BeAuG) ¥ BeAu@G) ¥

The network R, has n nodes 1,..,n, and 2n edges (p,p+1) and (p,p— 1), where indices are
counted modulo 7.

Theorem 5.6: A cycle time of 2 is optimal for Ry.

Proof: Let F be a correct synchronizer function for R, By theorem 5.5 we may assume that
each process p has the same local function F, = F and that this function is symmetric in its
two d-arguments. For p e (0, 1), let Sp be the scenario where

wy = 0, 812= 1, 814= 0,

wy=1-p, 8p=1, 81 =0,

1
w3=1- -Z-P’ 84= 0, 8= =P,

Wy = 0, 841 = 0, 843 = 1.

These values are according to SA and because F satisfies CC for this scenario on edge 21 we
have F(i+1,0,1)2F(@,0,1)+2-p. Again this holds for all p>0, and
F(i+1,0,1) 2 F(i,0,1)+2 follows. Thus a(F) 22. O

Theorem §5.7: A cycle time of 2 is optimal for R,, n >4.

Proof: As the previous theorem. Extend scenario S p as given to a scenario for R, with

1n = 0, 45 =0,

w; = 0, 8,",'_1 = 0, 8,",'_,.1 =0 fori>4. O

The 2V cube Cy = (V,E) where V = {0,1}", and E = {(p.,q)e V%p and ¢ differ in one
bit}.

Theorem 5.8: A cycle time of 2 is optimal for Cy, N 2 2.
Proof: Modify the proof of theorem 5.6 for any surface of the cube. [

Because R; = K; and C; = R, = K,, we have now determined the optimal cycle times for all
rings, stars, complete networks, and cubes. If a synchronizer with a cycle time of 2 is used,
there are two options to satisfy requirement R2. A bit can be added to messages as described
in the proof of theorem 3.2. In this case the §,, need not be stored during the simulation and
the synchronizer can be implemented in O(1) storage per process. The other option is to use
the synchronizer in section 2. Then no extra bit is necessary, but the intemnal storage in a pro-
cess equals its degree in the network.

6 Drifting Clocks

Until now we have assumed that clocks run accurately. In the following two sections we will
develop synchronizers for the more realistic case where clocks may suffer a —small and
bounded- drift. By an €-bounded drift we mean that it takes a clock at least (1-€)A and at

most (14+€)A global time to advance an amount A. In other words, we replace the clock axiom
CA by CA-¢:

(1+€)" (¢t - w,) < CLOCK,) < (1-£)" (¢ — w),). (CA-€)

The constant € is known from the specification of the underlying hardware clocks. Typically &

-14 -

is very small, in the order of 1075 or 1075,

In this section we will present an algorithm that resembles the algorithm in section 2.
Cycle i is simulated at local time oi for some o > 2. It will tum out, as in [Ch87], that after
a finite number of cycles a new execution of the initialization phase is necessary. The initiali-
zation phase of this algorithm (and the algorithm in the next section) is the same as in section
2. As in section 2, we find that after initialization w, < w, +1 if edge gp exists. For §,, we
have again 8,, 2 0 and, using CA-¢ instead of CA,

0 <8y, (14€) 'wy = wp) < 8y < (1-8) YW, — w, +1). (IP-¢)
As mentioned above, cycle i is simulated at time o .

Theorem 6.1: All cycle-(i— 1) messages arrive in time for the simulation of cycle i if

1+e)o— 2

2e0 b

Proof: Again let 0,7 be the time of sending and receipt of a cycle-(i— 1) message from ¢ to
p. By virue of the algorithm we have CLOCK® = o(i—1). Thus

CLOCK® < (1-&) '(t— w,) (CA-€)
<(-ey (o+1-w,) (BD)
< (-gy N (+e)ali- 1) +w, +1- w,) (CA-¢)
< (1) {((1+e)ai- 1) +2). (IP-¢)

Cycle i is simulated by p when CLOCK,, = ai. The message is clearly in time if
(1-&)" ((1+e)o(i-1)+2) < o,
and this is equivalent to I1. O

Theorem 6.2: The cycle number of a message can be determined using its local time of receipt
and information from the initialization phase if

i < (1+e)’a— 2(1+3¢)

4e0 @

Proof: Let 0,7 be as above, then
CLOCK®- 8,, < (1-&)"'(t— w,)~ (1+&) '(w, — w,) (CA-¢, IP-€)
< -y Y o+1-w,)— (14e) 'w, — w,) (BD)

< (- (- oi— D+w, +1— w,)— (14€) ' (w, — w,) (CA-¢)

-15 -

1+¢
= o -D+ 82 = W)t
1+e 1
< = ofi- -
a(z l)+ e’ T . (IP-¢)
1+€ . 1+3e
= -1 .
- e~ D* 1- &
On the other hand, for a cycle-i message we have
CLOCK,? - 8,, > (1+€) 11— w,)— (1-&)"'(w, — w, +1) (CA-¢, IP-¢)
2 (14€) 10— w,)— (1-8)" 1w, — w, +1) (BD)
2 (14€)" (1~ &)oi +w, — wp)— (1—&) " \w, — w, +1) (CA-®)
_1-e . 2¢ w __1
1+¢ 1-¢ ~we)m 1Z e
1-¢ 2¢ 1
> o — - -
1+¢ 1-¢2 1-¢ (IP-€)
_1-¢e . 143
1+e 1-¢

So a process can distinguish a cycle-(i— 1) from a cycle-i message if

1+€ . 1+3 _ 1—-¢ . 1+3¢
= o(i- 1)+ < -
l—ea(l) 1-e2 1+¢ 1-¢2

and this is equivalent to I12. O

The reader may verify that (1+e)" ozei(l+3£) (1+2e):a- 2 (use € < 1 and o 2 2), hence I2

implies I1. With a fixed o, we can either simulate the number of cycles given by I1, and use
an extra bit for recognizing messages, or simulate a (smaller) number of cycles given by 12 and
use no extra bit. After this number of cycles the initialization phase must be executed again to
simulate more cycles. In the first case the synchronizer can be implemented in O (1) storage
per process, in the second case storage in a process equals its degree in the network.

To get a feeling of the values actually involved, and compare this algorithm with the
algorithm in [Ch87], we include an example computation. Assume the timers may miss a tenth

and set o = 7. Using I1 we find that 308571

f d a day, which makes & = ’
of a second a day, w es 864000

cycles can be simulated before reinitialization is necessary if an extra bit is used in messages.
Using 12 we find that 154286 cycles can be simulated before reinitialization is necessary if no
extra bit is used. The algorithm of [Ch87] simulates 142045 cycles when o = 8, using no

-16 -

extra bit.

7 Faster Simulation

In this section we develop a faster algorithm to synchronize ABD Networks with drifting
timers. No reinitialization will be necessary at all during simulation. The initialization phase
is again the same as in section 2. We postulate that cycle i is simulated at local time f (i),
and do not assume that f is a linear function.

Theorem 7.1: All cycle-(i— 1) messages will arrive in time if
f@2za fE-D+by, Jan
1—-¢ 2
h = and = .
Where 1= Tre 1= e
Proof: Again let 6,7 be the time of sending and receipt of a cycle-(i— 1) message from ¢ to
p. By virtue of the algorithm we have CLOCK® = f (i—1). Thus

CLOCK < (1-¢&) {(x~ w,) (CA-¢)
<(-& Y o+1-w,) (BD)
< (1-e) (A+e)f = D+w, +1-w,) (CA-¢)
< (1-&) {(1+O)f (i- D +2). (IP-¢)
= a)f (i~ 1D+b,,

So the message is clearly in time if f (i) 2 af (i—-1)+b,. O

Theorem 7.2: The cycle number of a message can be determined using its local time of receipt
and information from the initialization phase if

f@) 2 af G—1)+b,, (32)
1+€\2 24+ 6¢
here a, = and b, = .
where a, (1—8) 2 (1—8)2
Proof: Let 6,7 be as above, then
CLOCK® - 8,, S (1-&)" (- w,)~ (14&)" Y(w, - w,) (CA-€, IP-¢)
< (1-¢&) }(o+1- w,)— (14&)" '(w, — w,) (BD)

< (1-8) {(A-e)f (- D+w, +1-w,)— (1+)" 'w, — w;,) (CA-¢)

-17 -

1 1
= +ef(z—1)+ (-:2 ~Wp)+ =
l1+¢ 1
s 1= ef(_1)+1_52+1—s (IP-¢)
l+e
= -1
-7)+ 62
On the other hand, for a cycle-i message we have
CLOCK®- §,, > (1+6)"'(t— w,)— (1-&)"}(w, — w}, +1) (CA-g, IP-¢)
< (14e) 1 o— W) — (1-8) '(w, — w, +1) (BD)
2 (1+€)” 1((1+e)f () +wy — wp)— (1-€) 1w, — w, +1) (CA-¢)
=1-8ciy_ 28 o o y_ 1
= 1+ef() _& 0%~ W) 1-¢
1
g 1+ef(b~ 52— 1-¢ (IP-€)
= - Ltég
- l+ef()

So a process can distinguish a cycle-(i— 1) message from a cycle-i message if

1-¢€,,. 1+3s 1+e 1+3e
e AQ R b e A G Ve

or f(i)2ayf(i-1)+b,. O

Because a; 2a;, and by 2 by, again J2 implies J1. We note that the function f (i) =
i_ ai -1

b ‘; 11 satisfies f (i) = a f(i—1)+b. Hence, we can use the function f () = b, al 1
- -

a&—l

and use an extra bit for recognizing message, or use f,(i) = b, and no extra bit.

as— 1
These functions are exponential in i and thus have an unbounded cycle time. Yet, for all
values for which they can be compared with the functions in section 6, they perform better.

First consider the case where an extra bit is used in messages. In the previous section,
using o = 7, reinitialization was necessary after the 308571" cycle. This cycle is simulated at
time 7x308571 = 2159997. The synchronizer in this section simulates this cycle at local time
f£1(308571) = 900915. With no extra bit, reinitialization was necessary after the 154286%
cycle. This cycle is simulated at time 7x 154286 = 1080002. The synchronizer in this section
simulates this cycle at local time f ,(154286) = 450461.

-18 -

8 Unidirectional Networks

In this section we drop the assumption that the network is bidirectional. That is, the existance
of an edge gp no longer implies the existance of an edge pg. For simplicity we assume that
clocks run exact, i.e., we adopt the clock axiom CA as in section 2. The generalization of the
results in this section can be done as in the previous two sections.

Again, the initialization phase is as in section 2. After this initialization we have (for
every edge gp) w, <w, +1 and we find

0<8,, wg—w, S8, <w,—w, +1 ar)

as in section 2. We do not necessarily have w, <w,+1, but instead we have
W, <w,+d(p,q). Here d(p,q) denotes the distance from p to ¢. Define d, as
ma7§£ d(p,q) and assume d,, to be known by all processes. Further, a process simulates cycle
qp €

i at local time (d,, +1)i. It is easily seen that all messages now arrive in time. Because
d, 2 1, the cycle time of this synchronizer is at least 2, so there is no need for an extra bit in
messages. As in theorem 2.2 it can be shown that

(dm +1)i — 1 < CLOCK® - §,, < (dn +1)i +1

if 7 is the time of receipt of a cycle-i message from q.

9 Conclusions

Our results improve in several ways on previous ABD synchronizers. We presented several
synchronizers. For the ideal case, where clocks do not drift, we presented a synchronizer with
a cycle time of 2, which does not require an extra bit in messages. Internal storage needed in
a node to implement this synchronizer equals the degree of the node on the network. As an
alternative, the synchronizer can be implemented with O (1) storage per process, but then an
extra bit in messages is necessary. This is the first algorithm of [Ch87]. We presented several
synchronizers with a cycle time smaller than 2, for networks with special topology (complete
network and star). These synchronizers require an extra bit in messages, and can be imple-
mented in O (1) storage per process. For the case where timers do drift we presented two syn-
chronizers. Both synchronizers work faster if an extra bit is included in messages. This faster
mode, with an extra bit in messages, can again be implemented in O (1) storage per process.
Our second synchronizer for this case does not require that after a finite number of cycles the
network is reinitialized.

In the ideal case (no clock drift) we proved the optimality of a cycle time of 2 for some
networks. A topic for further research is to find optimal synchronizers for other networks than
the topologies studied here. Another topic for further research is to study the clock drift case

-19 -

in more detail. In section 7 we modeled the synchronizer as a function F:IN — R. Here also
5 pcould be taken into account and a different function could be used in every process. We
did not do this here because the gain of this approach in the ideal case (sections 3 to 5) was
limited to special topologies only. We expect this to be the case when clocks drift also.

There is an intimate relation between the problem of synchronizing an ABD network and
the problem of clock synchronization. Assume the clocks can be synchronized within A, i.e.,
at any moment ¢ we have |CLOCK,)~ CLOCK/)| < A. 1t is easy to see that a process can
now simulate cycle i at local time (1+A)i, and R1 is satisfied. In [LL84] it is shown that

clocks in the K, can not be synchronized tighter than within 1— —'1; This corresponds with

theorem 4.4.

10 References

[Aw85] Awerbuch, B., Complexity of Network Synchronization, Journal of the ACM 32
(1985) 804-823.

[Ch87] Chou, C.-T., I Cidon, LS. Gopal, S. Zaks, Synchronizing Asynchronous
Bounded Delay Networks, in: J. van Leeuwen (ed.), Distributed Algorithms: 2nd
Intemnational Workshop, Lecture Notes in Computer Science 312, Springer Verlag,
1988, pp. 212-218.

[LL84] Lundelius, J., N. Lynch, An Upper and Lower Bound for Clock Synchronization,
Information and Control 62 (1984) 190-204.

[LT87] Lakshmanan, K.B., K. Thulasiraman, On the Use of Synchronizers for Asynchro-
nous Communication Networks, in: J. van Leeuwen (ed.), Distributed Algorithms:
2nd Intemational Workshop, Lecture Notes in Computer Science 312, Springer
Verlag, 1988, pp. 257-277.

[Vi85] Vitanyi, P.M.B., Time-Driven Algorithms for Distributed Control, Tech. Rep.
CS-R8510, CWI, Amsterdam, The Netherlands, 1985.

