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o For every edge e = (v,w) € E, there is a subset X;,i € I witk v € X; and w € X;.
e Forall 4,5,k € I, if j lies on the path from ¢ to k, then X; N Xj C X.
The treewidth of a tree-decomposition ({X;|: €},T) is max |Xi| — 1. The treewidth of G,
3

denoted by treewidth(G), is the minimum treewidth of a tree-decomposition of G, taken
over all possible tree-decompositions of G.

There are several alternative ways to characterize the class of graphs with treewdith < k.
See e.g. [1].

Next we introduce the (new) notions of the vertex and edge remember number of
maximal spanning forests of a graph.

Consider a maximal spanning forest T = (V, F') of agraph G = (V, E). (L., T contains
a spanning tree of every connected component of G.) To every edge e = (v,w) € E—~F, we
can associate its fundamental cycle, i.e. the unique cycle which consists of e and the path
from v to w in T. We define the vertex remember number of G, relative to T (denoted by
vr(G,T)), to the maximum over all v € V of the number of such fundamental cycles that
use v. Similarly, the edge remember number of G, relative to 7 is denoted by er(G,T),
and defined as the maximum over all e € F of the number of such fundamental cycles that
use e. We let degree(G) denote the maximum vertex degree of G.

We also use the notion of “minor”. A graph H is a minor of a graph G by a number
of edge-contractions, i.e., by a number of times replacing two adjacent vertices v, w by a
new vertex that is adjacent to all vertices that were adjacent to v or w.

3 Preliminary results.

In this section we give some preliminary results, dealing with the notions treewidth, vertex
and edge remember number and minor.

Theorem 3.1
For all gra,phs G = (V, E) and maximal spanning forests T = (V,F) of G : er(G,T) <
(G, T) < 4e812e@) (G, T).

Proof.
Suppose edge (v,w) € E is used by er(G,T) fundamental cycles. Then also er(G,T)
fundamental cycles use vertex v, hence vr(G,T) > er(G,T).

Next suppose vertex v € V is used by vr(G,T) fundamental cycles. Suppose v is
adjacent to edges e;,...,ex € E, and suppose edge ¢; is used by a; fundamental cycles
(1 £ i < k). Each fundamental cycle that uses v must use exactly 2 edges, adjacent to v,

2
k ¢ = > .
hence ¥°i; z; = vr(G,T), so er(G,T) > 11151{_a'<xk a; > 'vr(G T) > degre (G)vr(G, T). O

The following relation will prove helpful to give bounds on the treewidth of classes of
graphs.

Theorem 8.2
Let T = (V,F) be a maximal spanning forest of graph G = (V, E). Then treewidth
(G) £ max(vr(G,T),er(G,T) + 1).



Proof.

Let T' be the tree (V U F, F'), with F' = {(v,e)lv€ V,e€ F,Aw e V : e = (v,w)},i.e.T"
is obtained by adding an extra vertex in the middle of each edge in 7. We show how
to construct sets X;, ¢ € V U F, such that ({X;|i € VU F),T" = (VU F,F')) is a
tree-decomposition of G.

First, for all v € V, take v € X,, and for all (v, w) € F, take v,w € X(vw)-

Secondly, for each edge (v,w) € E — F, choose arbitrarily one of v or w, say v. Now
add v to each X, for all vertices 2 € V,z # w that are on the fundamental cycle of (v, w).
Only do not add v to X,,. Also, add v to X, for all edges ¢ € F on the fundamental cycle
of (v, w).

We now claim that we have a correct tree-decomposition of V. Clearly JX; = V.
For (v,w) € F,(v,w) € X(v,w)- For (v,w) € E — F, suppose v is chosen to be added to
Xz, X, for z,e on the fundamental cycle. There are two edges in this fundamental cycle
adjacent to w; one of them is (v, w), the other (w, z) for some z € V. Now v € X(w,z) and
weE X(w,z).

Finally, note that forall v € V, if v € X,,, and v € X;, then v € X for all j on the path
from ¢ to v in T”, by construction. It follows that for all 4, j, k € I, if j is on the path in 7"
from i to k, then X; N X C X;. So ({Xi|i € VU F},T') is a correct tree-decomposition.
ForveV:|X,| <14 vr(G,T);and for e € F : |X,.| < 2+ er(G,T). So the treewidth of
this tree-decomposition is at most max(vr(G,T),er(G,T) + 1). ]

We also use the following well-known result.

Lemma 3.3
Let H be a minor of G. Then treewidth (H) < treewidth (G).

Proof.

If G’ is a subgraph of G, then clearly treewidth (G') < treewidth (G). If a graph G’
is obtained from G by contracting the edge (v,w) to a vertex v’, then one shows that
treewidth (G') < treewidth (G) as follows. Let ({X;|¢ € I},T = (I,F)) be a tree-
decomposition of G with treewidth k. Let X; = X;, if v,w ¢ X;, and X| = (X; — {v,w})U
{v'}, if v € X; or w € X;. Clearly ({X;|i € I},T = (I, F)) is a tree-decomposition of G'
with treewidth < k. Now the lemma follows. O

In [12,13], Robertson and Seymour show that for every planar graph H, there is a constant
wp, such that every graph G, that does not contain H as a minor, has treewidth < wy.
However, the constants wy are very large. For a discussion of these results, see [10].

4 Main results.

In this section we give upperbounds for the treewidth for some classes of planar graphs.
First we consider the class of outerplanar graphs. A graph is outerplanar, if it is planar
and it can be drawn in the plane, such that all vertices lie on the exterior face. It can
be shown that every outerplanar graph is a series-parallel graph and hence has treewidth
< 2. The latter can also be shown in the following way.

For every outerplanar graph G = (V, E), there must be a vertex v with degree(v) =
1V degree(v) = 2. Suppose degree(v) = 2. Let (v,w) € E,(v,z) € E,w # z. Now



G' = (V - {v},(E - {(v,w),(v,2)}) U {(w,z)}) is an outerplanar graph, and we may
assume, with induction, that we have a tree-decomposition ({X;|i € I},T = (I, F)) of
G with treewidth < 2. There must be an i € I, with w € X; Az € X;. Now let
* ¢ I, I*=TIU{i*}, X;s = {v,w,z} and T* = (I*, F U {(4,4*)}). One easily verifies that
({Xili € I*},T*) is a tree-decomposition of G with treewidth at most 2.

A generalization of the outerplanar graphs are the k-outerplanar graphs. The notion
of k-outerplanar graphs was introduced by Baker [4].

Definition.
o A graph G = (V, E) is 1-outerplanar if and only if it is outerplanar.

e For k > 2, a graph G = (V, E) is k-outerplanar if and only if it is planar and it has
a planar embedding such that if all vertices on the exterior face (and all adjacent
edges) are deleted, then the connected components of the remaining graph are all
(k — 1)-outerplanar.

We will show a bound of 3k — 1 on the treewidth of k-outerplanar graph. We need a series
of lemma’s.

Lemma 4.1

Let G = (V, E) be a planar graph with some given planar embedding. Let H = (V, E’) be
the graph, that is obtained from G by removing all edges on the exterior face. Let T =
(V, F') be a maximal spanning forest of H. Then there exists a maximal spanning forest
T = (V, F)of G, such that er(G,T) < er(H,T")+2, and vr(G, T) < vr(H,T')+degree(G).

Proof.
Consider the graph K = (V,(E — F) U F'), i.e. the graph with edges in 77, or in G but
not in H. Let T = (V, F) be a maximal spanning forest of K, such that T/ C T, i.e. T
is obtained by adding edges from E — F to T'. Note that every fundamental cycle in K,
relative to T', must form the boundary of an interior face in K. As each edge is adjacent
to at most 2 interior faces, and each vertex is adjacent to at most degree(G) interior faces,
it follows that er(K,T) < 2, and vr(K,T) < degree(G).

As T is also a maximal spanning forest of G, and each fundamental cycle in G either is
a fandamental cycle in H, or a fundamental cycle in K,er(G,T) < er(K,T)+er(H,T') <
er(H,T') + 2, and vr(G,T) < vr(K,T) + vr(H,T") < vr(H,T") + degree(G). m]

Lemma 4.2
Let G = (V, E) be an outerplanar graph with degree(G) < 3. Then there exists a maximal
spanning forest T' = (V, F), with er(G,T) < 2 and vr(G,T) < 2.

Proof.

If one removes all edges on the exterior face of G, a tree or forest T/ = (V, F') results.
Clearly er(T',T') = vr(T',T") = 0. The result follows now as in lemma 4.1 by observing
that also each vertex is adjacent to at most 2 interior faces. (]

Lemma 4.3
Let G = (V,E) be a k-outerplanar graph with degree(G) < 3. Then there exists a
maximal spanning forest T = (V, F) with er(G,T) < 2k, and v7(G,T) < 3k — 1.

4



Proof.
Use induction to k. The case £ = 1 was shown in lemma 4.2. Let k > 2. If we remove
all edges on the exterior face of G, then each vertex on the exterior face has degree 0 or

1, so a (k — 1)-outerplanar graph is obtained. The result now follows with induction and
lemma 4.1. O

Lemma 4.4

For every k-outerplanar graph G = (V, E), there exists a k-outerplanar graph H =
(V', E'), such that G is a minor of H, and degree(H) < 3.

Proof.
We can replace every vertex with degree d > 4 by a path of d — 2 vertices of degree 3, in
such a way that the graph stays k-outerplanar. O

Now we are ready to prove the main results.

Theorem 4.5
For every k-outerplanar graph G = (V, E), treewidth (G) < 3k — 1.

Proof.

For k = 1, the result is well-known. Suppose k¥ > 2. By lemma 4.4, there exists a k-
outerplanar graph H, such that G is a minor of H, and degree(H) < 3. By lemma 4.3, there
exists a maximal spanning forest T’ of H, such that er(H,T) < 2k and vr(H,T) < 3k - 1.
By lemma 3.2, treewidth (H) < max{3k — 1,2k + 1} = 3k — 1. By lemma 3.3 treewidth
(G) <3k -1. a

Robertson and Seymour [12] define the radius of a planar graph as follows.

For every face R in a planar embedding M of G, define d(R) to be the minimum value
of k, such that there is a sequence of faces R,,..., Ri, with R, the exterior face, and
Ri = R, and for 1 < j < k, there is a vertex v that is both on face R;_; and R;. The
radius p(M) of M is the minimum value of d such that d(R) < d for all regions R of M.
The radius of a planar graph is the minimum of the radii of its drawings.

In [12], it is proved that a planar graph with radius < d has treewidth < 3d+1. As a
k-outerplanar graph has radius k or k+1 [5], from this result it follows that a k-outerplanar
graph has treewidth < 3k+4. So we improved on this bound with a constant 5. The proof
on treewidth of k-outerplanar graphs can easily be modified to give the following result.

Theorem 4.6
Let G = (V, E) be a planar graph with radius < d,d > 1. Then treewidth (G) < 3d.
Proof.

First observe that one can prove an analogue of lemma 4.4 for graphs with radius < d.
Hence, it is sufficient to prove the results for graphs with degree < 3. With induction to
d one can show: radius (G) < d and degree(G) < 3 = there exists a maximal spanning
forest T = (V, F) of G with er(G,T) < 2k and vr(G,T) < 3k. If d = 0, then G is a tree,
and the result follows directly. For d > 1, note that if every edge on the exterior face is
removed, then a graph with radius < d — 1 results. The proof continues as in the case of



k-outerplanar graphs. O

The last class of graphs that is considered is the class of the Halin graphs.

Definition.

A graph G = (V, E) is a Halin graph, if it can be obtained by embedding a tree without
vertices with degree 2 in the plane, and connecting its leaves by a cycle that crosses none
of its edges, and |V| > 4.

Theorem 4.7 _
Let G = (V, E) be a Halin graph.
The treewidth (G) = 3.

Proof.
By noting that radius (G) = 1, it follows directly from theorem 4.6 that treewidth (G) < 3.
(An alternative proof can be given by observing that G is a minor of a Halin graph H,
with degree (H) = 3, and then applying lemma 4.1.)

As G contains Ky, a clique with 4 vertices, as a minor (contract all interior vertices to
one vertex, a “wheel” results, and then contract further to Ky), treewidth (G) > treewidth

(Ks) = 3. O

The restriction |V| > 4 is usually not given with the definition of Halin graphs. Note that
we only exclude the degenerate case of a graph with 2 vertices and 3 parallel edges.

5 Final remarks.

It should be noted that all proofs are constructive, and can be transformed to polynomial
algorithms of small degree, not depending on the radius of the graphs involved or the
outerplanarity-number k, that actually find the tree-decompositions with the indicated
treewidth. In [5] it is shown that the radius and the outerplanairity-number k can be
determined in polynomial time for arbitrary planar graphs.
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