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Jean-Marc Robert!  Leonidas J. Guibast Mark H. Overmars!

Abstract

Let S be a family of n points in E4. The ezact fitting problem asks for
finding a hyperplane containing the maximum number of points of S. In
this paper, we present an O (min{;’f_—l—log %,nd}) time algorithm where
m denoted the number of points the hyperplane. This algorithm is based
on upper bounds on the maximum number of incidences between families of
points and families of hyperplanes in E4 and on an algorithm to compute these
incidences. We also show how the upper bound on the maximum number of
incidences between families of points and families of hyperplanes can be used
to derive new bounds on some well-known problems in discrete geometry.

1 Introduction

The problem of approximating families of points in E? by hyperplanes is encoun-
tered in fields such as statistical analysis, computer vision, pattern recognition and
computer graphics and it is usually referred to as the linear approzimation or the
linear regression problem. The problem consists of finding the “best” hyperplane
approximating a family of points. There are many possibilities for the optimality
criterion used. For example, a hyperplane minimizing the maximum orthogonal Eu-
clidean distance to the points or minimizing the sum of these distances can be used.
In [13], [24] and [25], algorithms solving these problems are presented.

In this paper, we consider a variation of this approximation problem: the ezact
fitting problem. This problem asks for finding a hyperplane containing the maximum
number of points among a given family of n points in E9. It can be solved easily
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in O(n?) time by transforming the points into hyperplanes in the dual space [14].
A solution to the exact fitting problem corresponds to a vertex of the hyperplane
arrangement incident to the maximum number of hyperplanes. By sweeping every
two-dimensional “slice” of the hyperplane arrangement, it is possible to find such
a vertex in O(n?) time as follows: Take any d — 2 hyperplanes and compute their
common intersection 7. If m corresponds to a plane, the topological line sweep
algorithm of Edelsbrunner and Guibas [15] is used to sweep the line arrangement
formed by the intersection of the remaining hyperplanes with 7. If » has a dimension
greater than two, the corresponding slice of the hyperplane arrangement is simply
discarded. This construction has been used in [23] and [2] to solve some other
problems. This is the best algorithm known so far to determine whether there exist
(d+1) points lying on a common hyperplane; proving its optimality is a well known
open problem. On the other hand, it is quite simple to determine in linear time
whether there is a hyperplane containing “almost” all the points, i.e., n — ¢ points
for any fixed c. Take ¢ + 1 groups of d linearly independent points. One of these
groups should determine the hyperplane containing the n — ¢ points.

We present in this paper a quality-sensitive algorithm solving the exact fitting
problem. The algorithm find a solution fast if it contains many points. More pre-
cisely, the running time of our algorithm depends inversely on the number of points
lying on an optimal hyperplane. Hence, the running time varies from O(n) when
a fixed fraction of the points lie on the solution to O(n?) when a fixed number of
the points lie on the solution. This algorithm is a generalization of the algorithm
presented in [22] for the planar case.

In the next section, we present upper bounds on the maximum number of inci-
dences between families of points and families of hyperplanes in E9. These results
are only sensible when we restrict our attention to so-called restricted sets where any
d points span a hyperplane or the intersection of any d hyperplanes has dimension
at most 0. We also present an algorithm to compute these incidences. These two
results are essential for developing our algorithm solving the exact fitting problem.

In Section 3, we give an algorithm to find all the hyperplanes containing at least
m points among a restricted family of n points in E4 in O min{;'%'i—;log -",'-.-,n“})
time. Here the parameter m is given as part of the input. This solution gives an
optimal linear time algorithm when m represents a fixed fraction of the points, i.e.,
m = en for some constant 0 < € < 1. This algorithm is then used to solve the
exact fitting problem. A hyperplane containing the maximum number of points of
the family can be found in O (min {;ﬁf_—l— log &, 71“}) time, where m is this maximal
number of points. In this case, only the family of n points is given as input, i.e., m
does not need to be known in advance.

Finally, in Section 4, we derive new bounds on some well-known problems in
discrete geometry. By using the upper bounds on the maximum number of incidences
between families of points and families of hyperplanes, we obtain a new upper bound
on the maximum number of pairs of points at unit-distance among S-restricted
families of points in EY, i.e., sets in which no d+1 points lie on a (d — 1)-dimensional
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hypersphere. We also obtain a lower bound on the minimum number of different
distances between the points of S-restricted families of points in E¢. Finally, we
give a new upper bound on the maximum number of furthest neighbors pairs among
S-restricted families of points in E9.

2 Incidences between Points and Hyperplanes

Let P be a family of distinct points and let H be a family of distinct hyperplanes
in E4. A point p in P is incident to a hyperplane h in H if p lies on h. The
first problem considered in this section is to find an upper bound on the maximum
number of incidences between families of points and families of hyperplanes.

In the plane, tight upper bounds on the maximum number of incidences be-
tween families of points and families of lines have been derived. These results are
summarized in the following theorem.

Theorem 2.1 ([31], [12]) Let I>(x,y) be the mazimum number of incidences between
x distinct points and y distinct lines in the plane. Then, I(z,y) is in O(z¥y¥ +z +

y)'.

In higher dimensions, the maximum number of incidences between z distinct
points and y distinct hyperplanes matches the trivial zy upper bound. Consider a
line ! in E3 containing z distinct points and lying on y distinct planes. In this case,
the number of incidences is exactly zy. This example can be generalized to higher
dimensions. Let f be a (d — 2)-dimensional flat in E? containing z distinct points
and lying on y distinct hyperplanes. Even if any k + 1 points span a k-dimensional
flat, for 0 < k < d — 3, the number of incidences is still zy . To avoid these trivial
cases we define a family of points to be restricted iff any d points span a hyperplane.
Similar, we define a family of hyperplanes to be restricted iff the intersection of any
d of them has dimension at most 0. For restricted families of points and hyperplanes
we prove upper bounds strictly smaller than the trivial one. Note that restricted
does not mean “in general position”. A restricted family of points is not necessarily
in general position. For example, a set of points in E® on a plane can be a restricted
family.

A (})—cutting of size k for a family H of hyperplanes in E? is a collection of k
(possibly unbounded) d-dimensional simplices with disjoint interiors covering E<.
Furthermore, the interior of each simplex is intersected by at most O(@) hyper-
planes. Chazelle and Friedman [8] proved that any family H of hyperplanes has a
()-cutting of size O(r?), for any r larger than some constant ry depending on d.
This (1)-cutting is constructed by triangulating the arrangement of O(r) specific
hyperplanes of H according to some particular criterion [11].

' Throughout this paper, we use the asymptotic notations based on sets (see [6]).



By using such a concept, the following upper bound on the number of incidences
between families of points and restricted families of hyperplanes in E4 can be de-
rived.

Theorem 2.2 Let Iy(z,y) be the mazimum number of incidences between r dis-
tinct points and a restricted family of y hyperplanes in E® Then, I;(z,y) is in
O(x’f‘%:_fyﬂ":f +z+y).

Proof Let P be any family of = distinct points and let H be any restricted family
of y hyperplanes in E4. Let I;(P; H) denote the number of incidences between
the points in P and the hyperplanes in H. The incidences between the points
in P and the hyperplanes in H can be encoded with a directed bipartite graph
G:zy = (W, V3, E) with z sources and y sinks. Each source in Vj corresponds to a
point in P and each sink in V, corresponds to a hyperplane in H. The family of
edges E encodes the incidences between the points and the hyperplanes. Since the
intersection of any d hyperplanes has dimension at most 0, G,,, does not contain any -
K3 4 subgraph. In such a case, Kovari, Sés and Turan [26] gave two different upper
bounds on the cardinality of E. The first one implies that I;(P; H) € O(zy*® + y)
and the second one implies that I;(P; H) € O(yz*T + z).

Let C be a (1)-cutting of size O(r?) of H. Let P; C P denote the family of points
lying in int(A;) (i.e. the interior of the simplex A; of C) and let H; C H denote the
family of hyperplanes intersecting int(A;).

Let p € P be a point lying on a face F' of some simplex A; of C. Suppose that
the dimension of F is greater than 0. By adding p to P;, the incidences between
p and the hyperplanes intersecting int(A;) are counted in I4(P;; H;). Thus, only
the incidences between p and the hyperplanes supporting A; and containing F are
not counted. Since the intersection of any d hyperplanes has dimension at most 0,
the number of hyperplanes supporting A; and containing F is at most d — dim(F).
Hence, the number of incidences between p and the hyperplanes in H not considered
in the subproblems I4( P;; H;) is at most d.

Now, suppose that the dimension of F is equal to 0. In this case, the number of
hyperplanes containing p but avoiding int(4A;) is unbounded. Let v be the number
of points lying on vertices of the simplices of C. Obviously, v € O(min{z,r4}). The
maximum number of incidences between these v points and all the hyperplanes in
Hisin O(yv*F +v) C O(y(r?)*T + z).

Therefore, the number of incidences between the points in P and the hyperplanes
in H is given by

L(P;H) < ¥ L(P;H)+O0@(r®) T + 1) +do
A;eC
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This follows from the fact that I;(P;; H;) € O(|P;||H;|* + |H;|) and the fact
that |H;| € O(%) and 2 |P;| = z. By choosing r = [zﬂz_f/yﬂl'fj we obtain that

2d-2

I(P; H) € O(z ¥t y5 4 z). The choice of r is valid if and only if ViiFly<z <
y4. Otherwise, the upper bounds of [26] can be used. If z > y?, I;(P; H) € O(z)

and if z < \/r3* 'y, I4(P; H) € O(y). Therefore, the theorem can be proven by
combining all the three cases. 0

Using the dual transformation between points and hyperplanes [14], the following
upper bound on the number of incidences between restricted families of points and
families of hyperplanes in E? can be derived directly from Theorem 2.2.

Corollary 2.3 Let Ij(z,y) be the mazimum number of incidences between z dis-
tinct hyperplanes and a restricted family of y points in E?. Then, I}j(z,y) is in

242

This corollary gives an O(z3y? + z +y) upper bound for I3(z,y) which matches
the one given in Theorem 2.1 and an O(x3y% +z +y) upper bound for I3(z,y) which
is better than the O(z4/5+%y3/5-% 4 y 4 zlogy) upper bound presented in [16].

We now consider the problem of finding an efficient algorithm to compute the
incidences between families of points and families of hyperplanes. In the plane,
algorithms computing the incidences between families of points and families of lines
have been presented. These results are summarized in the following theorem.

Theorem 2.4 ([1], [27]) The incidences between z distinct points and y distinct
lines in the plane can be computed in O((zylogy)? + (z + y)logy) time.

We now present an O((zy log min{z, y})ﬁ-l +(z+y)log min{z, y}) time algorithm
computing the incidences between families of z points and families of y hyperplanes
in B9 where one is a restricted family. This algorithm is an extension of the algo-
rithm developed by Agarwal [1] and it is based on the following results presented
by Chazelle [7]:

® A (})-cutting of size O(r?) for a family of n hyperplanes in E¢ can be computed
in O(nr?-1) time, for any rq < r < n;

o A family of n hyperplanes in E4 can be preprocessed in O(n?) time to allow
for point-location in O(log n) time per query.

Let P be a family of = points and H be a family of y hyperplanes in E9. Let us
first consider the case where z > Eyﬁ Preprocess the hyperplanes in H in O(y?) time
for point-location. By locating the face of the arrangement containing a given point
p in O(log y) time and by enumerating the ¢ hyperplanes incident to that face, the
hyperplanes incident to p can be computed in O(logy +¢) time. If the arrangement
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is represented with the incidence lattice (see [14]), it is possible to enumerate all
the hyperplanes incident to a face of the arrangement in a time proportional to the
number of hyperplanes incident to that face. Hence, the incidences can be computed
in O(y? + zlogy + #incidences) time. The upper bounds of [26] can be used to
prove that #incidences is in O(zd—?ly + z) when one of the families is restricted.

Therefore, the incidences can be computed in O(z logy) time.

Now, suppose that z < % and y < i:%x. Split the y hyperplanes into g
groups of fg] elements. For each subproblem, preprocess the hyperplanes in O((¥)?)
time for point-location and find the incidences between the points in P and these
hyperplanes. The ¢ hyperplanes incident to a given point can be determined in

O(log £ + ¢t) time. Thus, the incidences can be computed in O(g{ (f)" +zlog £} +
#incidences) time. Let g be equal to [y/(zlogy)?] (since z < B%, g > 1). Hence,

the incidences can be computed in O(y(zlog y)dﬁl + #incidences) time. As we
observed earlier, #incidencesisin O(x T y+z) when one of the families is restricted.
Therefore, the incidences can be compute in O(y (i log y)d‘?') time.

Finally, suppose that y > %. By reformulating the problem in the dual space,
this case corresponds to the first case. Thus, the incidences can be computed in
O(ylog z) time. ‘

By combining the three cases, we obtain Algorithm Inc;, computing the inci-
dences between z points and y hyperplanes in E4 in O(y(z log y)dﬁl + zlogy) time.

This algorithm can be used as a subroutine to obtain a better solution. Without
loss of generality, suppose that the number of points z is smaller than or equal to the
number of hyperplanes y. Otherwise, simply reformulate the problem in the dual
space. If z is very small compare to y (i.e. if cr:% < y, for any constant c), the point-
location technique can be used to compute the incidences in O(y log z) time. From
now on, suppose that z < y < % (notice that logy € O(logz) in this case). By

computing a (1)-cutting C of H, the problem of computing the incidences between
the points and the hyperplanes is divided into O(r?) subproblems: the subproblem
S; associated to the simplex A; of C is composed of the points P: lying in int(A;)
and the hyperplanes H; intersecting int(A;). The points lying on the faces of the
simplices are treated differently depending on whether the families of points or the -
families of hyperplanes are restricted. Let p be a point of S lying in the interior of a
face F of some simplex A;. Suppose that any d points in P span a hyperplane. If F
is a facet, p is added to P; and the hyperplanes in H containing the facets of A; are
added to H;. Thus, any hyperplane incident to p is in H;. Note that at most (d+1)
hyperplanes are added to H;. If F is not a facet, p is put in a family B. Since any d
points span a hyperplane, there are at most (k + 1) points in P which can lie on a
k-dimensional face of a simplex, for 0 < k < (d — 1). Since a d-dimensional simplex

has (‘:ﬂ) k-dimensional faces [21], at most "¢_%(k + 1)(:1-:) points are put in B

for each simplex. This implies that |B| is in O(min{z,r9}). Now, suppose that the
intersection of any d hyperplanes in H has dimension at most 0. If F is a vertex,



p is put in B. Here again, |B| is in O(min{z,r?}). If F is not a vertex, p is added
to P; and the hyperplanes supporting A; and containing F' are added to H;. Thus,
any hyperplane incident to p is in H;. Since the intersection of any d hyperplanes
has dimension at most 0, there are at most (d — k) hyperplanes in H which can
support A; and contain F, for 0 < k < (d — 1). Hence, at most Y¢-1(d — k) (:_t:)
hyperplanes are added to H;.

Therefore, the incidences between the points in P and the hyperplanes in H are
given by the incidences between the points in P; and the hyperplanes in H; plus the
incidences between the points in B and all the hyperplanes in H.

The time complexity of this algorithm is determined by the time to construct the
subproblems plus the time to solve them. The (1)-cutting C of H can be computed
in O(yr?-1) time (see [7]). During the construction of the cutting, the hyperplanes
are distributed among the simplices. To divide the points among the subproblems,
we preprocess the O(r) hyperplanes used to construct C for point-location. This
can be done in O(r?) C O(yr4~') time. For each point p € P, locate a cell of the
arrangement containing p and then find a simplex in that cell containing p. This can
be done in O(log r + rl4/2) time. The O(log r)-term comes from the point-location
query for finding a cell of the arrangement containing p and the O(rl9/2l)-term comes
from the fact that each cell of the arranigement is divided into at most O(rl#/2l)
simplices. Thus, the overall time needed to distribute the points in P among the
subproblems is in O(zlogr + zrl¥/2) C O(xlogy + zr4-1). Each subproblem S; is
reformulated in the dual space and the incidences between the dual points and the
dual hyperplanes are computed with Algorithm Inc,. Therefore, the subproblem
S; consists of computing the incidences between O(¥) points and z; hyperplanes.
Note that 3 z; = . Finally, the subproblem consisting of computing the incidences
between the v points in B and all the hyperplanes in H can also be solved by using
Algorithm I'nc,. Hence, :

T (2,y) < 3 T (i, 2:) + O(yr*" + zlogy + or%") + T (v,y)
AeC

€ O (a:(%.’-log:v)i}l + ri(ylogz) + :clog:c) .

7= . .
Let r be equal to [ —L:;:] Since y < cﬁ;, r is large enough to be sure
(ylogz)d

that a (})-cutting for the hyperplanes exists. By combining this algorithm and the
algorithm based on the point-location when clfs; < y, we obtain Algorithm Inc,

computing the incidences between the points in P and the hyperplanes in H. The
following theorem summarizes the result.

Theorem 2.5 The incidences between x distinct points and y distinct hyperplanes

in B9, where one of the families is restricted can be computed in O((zy log min{z, y})atr 4+
(z + y)log min{z,y}) time.



E.g., assuming £ = y = n the result states that for d = 2 the incidences can be
computed in time O(n*/3log?/*n) and for d = 3 in time O(n%2log®*n). Also, for
any dimension the time bound is strictly smaller than O(n?).

3 The Exact Fitting Algorithm

In this section, we give a quality-sensitive algorithm solving the exact fitting problem
for restricted families of points in E9. Let S be a such family of n points, i.e., any
d points in S span a hyperplane. We first show how to find all the hyperplanes
containing at least m of the n points in S. Later, this solution will be used to find
a hyperplane containing the maximum number of points in S. The following upper
bound on the maximum number of distinct hyperplanes containing at least m of the
n points in S is derived from Corollary 2.3.

Lemma 3.1 Let S be a restricted family of n points in E? and let N(S,m) be the
mazimum number of distinct hyperplanes containing at least m of the n points in S.
Then, N(S,m) is in O (max{;-;ﬁd-_—l-, 1 })

Proof The number of incidences between the N(S, m) hyperplanes and the n points
in S is at least mN(S,m). By Corollary 2.3, the maximum number of incidences

between N (.S, m) hyperplanes and n points is in O(nﬂf:TN(S, m)%g’ +n+ N(S,m)).
By combining these two facts, the result follows immediately. O

We are now ready to present our first algorithm to find all the hyperplanes
containing at least m of the points n in S.
Algorithm MinN1

Input: Family S of n points in E“ such that any d points span a hyperplane and
an integer m such that d < m < n.
Output: All the hyperplanes containing at least m points.

1. Em < 24,
(a) Dualize the n points.

(b) For each set of d — 2 dual hyperplanes do:

i. Let = be the intersection of these d — 2 hyperplanes. If r is not a
plane, go to the next iteration of Step 1b.

ii. Sweep the line arrangement determined by the intersection of the

remaining hyperplanes with 7 and output all the vertices incident to
at least m lines.

2. Otherwise,

(a) Split S into the two subsets of |3] and [%] points, respectively.
(b) For each subset, find all the hyperplanes containing at least | 2| points.
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(c) For each candidate found in Step 2b, determine how many points lie on
it.
(d) Output all the candidates containing at least m points.
End of the Algorithm
The first step of this algorithm can be done in O(n?) time. Each of the ( 422) two-

dimensional slices of the hyperplane arrangement can be processed in O(n?) time
with the topological sweep line algorithm [15]. Then, the running time of Algorithm
MinN1 can be expressed by the following recurrence

TPMm,m) € On%) ifm<2d,
rm) < 70 (3] [3]) +7 (5] [3]) + #4m i

The function Vl(d)(n,m) corresponds to the time taken by Step 2c and depends
on the number of candidates found in Step 2b and how fast they can be checked
with Algorithm Inc; developed in the previous section. Let #cand(n,m) be the

total number of candidates. By Lemma 3.1, #cand(n,m) is in O (max {—Ta'—, — })
Hence,

’ d
d Fesy d
@ SR G ! on n
Vi¥n,m) e O ((ma,x{mu_l,m}nlog m) + (max{mzd_l,m} +n) log m) .

To simplify the analysis of the recurrence, suppose that n = 2* and m = 2¢ and
let t9(s,t) denote the value T{¥(2¢,2). If 2t < s, #cand(n, m) is in O(Tﬂ—n') and
the recurrence becomes

tMs,1) € 0@2™),
t(s,t) < 29s-1,t-1)+

zda T:T zda
o (a2 =0) " + (s +2) (-0
2"t£d)(s —k,t—k)+
k-1 ; 2d(a-—t) d 9d(s—i) -

By solvmg this recurrence, ¢\ )(s t)is in O(‘IT_T(S —t)). f 2t > s, #cand(n,m) is
in O(%) and the recurrence becomes

IN

t(s,t) < 2t0(s—1,¢— 1)+ O(2% (s — t))T + 2°(s — t))
< 2D —kt—k)+

(g 2 [(2;(:') t)) = + 2 (s — t)]) .




In this case, the recurrence can be applied as long as 2(t — k) > (s — k). After 2t —s
iterations, the value of t{)(2s — 2t, s — t) is given by the first part of the analysis.
Hence, t{(s, t) is in O(535yr(s —t) +2°(s —t)(2t — s)) C O(53=my(s —t) +2*(s—)s).
A solution for the case where m and n are not power of two can also be obtained. For
large enough n, the maximum number of candidates #cand(n,m) is non-decreasing
in n and non-increasing in m and the time complexity of Algorithm Inc,, T,(f:)cz (z,¥),

is non-decreasing in both z and y. Hence, T{¥(n, m) is non-decreasing in n and non-
increasing in m and the general solution is given by

nd

md-1

n n
T n,m) € O ( log ~ + nlog ;log n) .

We refer to [6] and [5] for a good treatment of the conditional asymptotic notations.
Thus, Tl(d) isin O (;’ﬁf_—, log %) when m is smaller than or equal to _::Lr_ We now

logd—1I n
present another algorithm to deal with the case where m is “close” to n, i.e., when

m is larger than —-;'r_—l_——
logd=l n

Algorithm MinN2

Input: Family S of n points in E4 such that any d points span a hyperplane and
an integer m such that d < m < n.
Output: All the hyperplanes containing at least m points.

1. Set k to be equal to max{[Z],d}.

2. Split S into [ %] subsets of k% points (one subset may have less than k2 points).

3. For each subset, find all the distinct hyperplanes containing at least k points
with Algorithm MinN1.

4. Candidates must appear as answer for at least % subsets. Determine those
hyperplanes.

5. Output all the candidates found in Step 4 containing at least m points of the
total set. o

End of the Algorithm

The time complexity of this algorithm is given by the following expression
T{0(n,m) < [ 2] TR, K) + V{0, m)

The function Vz(d)(n,m) corresponds to the time taken by Step 5 and depends on
the number of candidates found in Step 4 and how fast they can be checked with
Algorithm Ine,.
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Suppose that k is equal to |2 |. Thus,

Tg(d)(n,m) < @ (l%r , l.%J) Vi (n,m)

2°|

nd n
< 0 (md-l log ;) + Vi n,m).

In order to obtain an upper bound on V{?(n,m), first suppose that n = 2* and
m = 2! and let #cand(2*,2t) be the maximum number of candidates found in
Step 4. By Lemma 3.1, the number of distinct hyperplanes containing at least 2°—*
of 2222 points is in O(2*~*). Hence, the total number of hyperplanes found in
Step 3 is in O(2!). Now, suppose there are 2! points lying on a hyperplane h. This
hyperplane is defined by the points of at least 24-3* subsets. To obtain this lower
bound, find the “best” distribution of the 2¢ points lying on h among the subsets
defined in Step 2 to minimize the number of subsets having at least 2°~* of these
points. This distribution is obtained by putting 2°~* — 1 of the points in each subset
and by packing the remaining 2%~* points in the fewest number of subsets. Hence,
the hyperplane h is defined at least |22¢~*/(222=2 —2:=t +1)| > 24-3 times implying
that #cand(2°,2) is in O(23+-3).

The O(234-3¢) candidates can be determined efficiently by adapting an algorithm
finding repeated elements in a multiset. In [28], Misra and Gries showed how to
find the O(c) values that occur more than n/c times in a multiset of n elements
in O(nlogc) time. Hence, the hyperplanes appearing at least 24~3* times among
the O(2*) hyperplanes can be found in O(2!(s — ¢)) time and can be checked in
O((24-3(s — t))z%r + 2°(s — t)) time with Algorithm Inc,. Thus, V;?(2?,2!) is in
O((24"'3'(s—t))3{'f +2°(s—t)) implying that T5(2?,2t) is in O(22*~t(s—t)). A similar
result can be obtained when m or n are not powers of two. For large enough values
the number of candidates, #cand(n,m), is non-decreasing in n and non-increasing
in m ‘and the time complexity of Algorithm Inc;, T,(:,):2 (z,y), is non-decreasing in
both z and y. Hence, Vz(d)(n,m) is non-decreasing in n and non-increasing in m
which implies that T{?(n,m) € O (-,-"—"gi—, log %)

The case where k is equal to d can be treated similarly. In this case, the can-
didates correspond to the hyperplanes appearing at least & time among the list of
O(n) hyperplanes produced in Step 3 in O(n) time. These O(1) candidates can be
found with the algorithm presented in [28] and checked with the naive brute-force
algorithm in O(n) time. Thus, Téd)(n, m) € O Sﬁ;— log ,1,'7)

By choosing the brute-force algorithm based on the topological line sweep algo-
rithm when m < logn, Algorithm MinN1 when m < ﬁ:r— and Algorithm MinN2

ogd-1 n

otherwise, we obtain the following result
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Theorem 3.2 Let S be a restricted family of n points in E4. It is osseible to deter-
mine if there are m points in S lying on a hyperplane in O (min {mﬁ'f:r log F':.""d})
time.

We are now ready to present our algorithm to solve the exact fitting problem for
restricted families of n points in E9.

Algorithm EF

Input: Family S of n points in E¢ such that any d points span a hyperplane.
Output: A hyperplane containing the maximum number of points.

Set : to 1.
Find all the hyperplanes containing at least - points of S.

If there is no such hyperpiane, increase 7 by 1 and go to Step 2.

S S

. If there are such hyperplanes, check all of them and output the hyperplane
containing the maximum number of points.

End of the Algorithm

Suppose there are m points in S lying on a hyperplane. Algorithm EF stops
when 3 is smaller than or equal to m i.e. after [log 2] iterations. Hence, the time
complexity of this algorithm is given by

floo 1 | pd n
Tédl')‘(n’m) € O( Z min d—1 log ] | ’nd )
=EE (E Rt

The following corollary summarizes the result

Corollary 3.3 Let m be the mazimum number of points lying on a hyperplane in
a restricted family S of n points in E4. Algorithm EF determines these points in
0 (min{;’—}i—r log 2,n4 ) time.

4 TUnit-Distance and Other Problems

We complete this paper by indicating how to use the combinatorial upper bounds
derived in Section 2 to obtain new bounds for some well-known problems in discrete
geometry. We start by giving an upper bound on the maximum number of incidences
between so-called S-restricted families of points and families of hyperspheres in E9.
A d-dimensional hypersphere in E?, or more simply a hypersphere, centered at the
point ¢ and with a radius r is the locus of points at distance r of c. A (d — 1)-
dimensional hypersphere in E? corresponds to the intersection of two hyperspheres.
By convention, a (d—2)-flat represents a degenerate (d—1)-dimensional hypersphere
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in E4. We call a family of points in E? S-restricted iff no d+1 points lieon a (d—1)-
dimensional hypersphere. Let & be the geometric transformation mapping points in
E“ to points on the paraboloid in E4+! defined by the equation z441 = ¥%, z? and
hyperspheres in E9 to non-vertical hyperplanes cutting the paraboloid in E4+!. For
a point p = (p1, p2, ..., Pa), U(p) corresponds to the point (py,p2, ..., Pa, L=y p?). For
a hypersphere o centered at ¢ = (¢, ¢, ..., cq) and with a radius r, U(o) corresponds
to the non-vertical hyperplane defined by the equation z44; = ¥4, 2¢iz; + (r? —

4 | ¢?). This geometric transformation preserves the incidence relation. Using this
geometric transformation, an upper bound on the maximum number of incidences
between S-restricted families of points and families of hyperspheres in E? can be
derived directly from Corollary 2.3. The assumption on the families of points implies
that any (d + 1) points projected on the paraboloid under &/ span a hyperplane.
Hence, we can apply Corollary 2.3 to obtain the following result.

Corollary 4.1 Let I} be the mazimum number of incidences between z distinct

hyperspheres and an S-restricted family of y points in EY. Then Ij(z,y) is in
2d d41

O(emhryfdit 4 2 4 y).

The O(z#y? + z + y) upper bound for I2(z,y) matches the one presented in [12].
In the plane, the assumption that no three points lie on a 1-dimensional hypersphere
holds if and only if the points are distinct, i.e., all families of distinct points is the
plane are S-restricted.

This result can be used to find an upper bound on the maximum number of
pairs of points at unit-distance among S-restricted families of n points in E4. This
maximum number is denoted f44(n). This problem has been posed by Erdés [18].
He presented an Q(n'*°(")) lower bound and an O(n?) upper bound for f¥(n).
Since then, the lower bound has not been improved but the upper bound has been
reduced to O(n#) by Spencer, Szemerédi and Trotter [30]. For f*(n), Erdés [19]
gave an §)(n# log log n) lower bound and an O(n?) upper bound. In [12], Clarkson et
al. reduced the upper bound to O(n¥20(=("")) where a(n) is the functional inverse
of Ackermann’s function. For d > 4, an example attributed to Lenz in [19] shows
that the lower bound for f}9(n) is in 2(n?). On the other hand, Chung [9] presented
an O(n?~?/(4+2)) ypper bound for fy4(n) for families of points without three points
belonging to more than ¢ hyperspheres, for some absolute constant c.

As observed in [30], the maximum number of pairs of points at unit-distance
in families of n points is at most half the maximum number of incidences between
families of n points and families of n unit-hyperspheres centered at these n points.

Therefore, Corollary 4.1 gives directly the following upper bound on f§¢(n) for S-
restricted families of points.

Corollary 4.2 For S-restricted families of n points in E? the mazimum number of
pairs of points at unit-distance fy4(n) is O(n%i_ll).

13



Unlike the upper bound presented in [12], our O(n*?) upper bound for f¥4(n)
holds only for families of points without four points lying on a circle (or on a line).

Another problem introduced by Erdds [20] is to determine the minimum sum of
the number of different distances from each point in families of n points in E?. Let
S be a family of n points in E4 and let §(p, ¢) denote the Euclidean distance between
two points. Let ga(S, pi) = |{6(pi, p;) | p; € S}| be the number of different distances
from the point p; in S and let g¥(S) = ¥; 9a(S,pi) be the sum of the number of
the different distances from each point in S. Finally, let g¥(n) = min{g}(S)|S C
E4 and |S| = n} be the minimum sum of the number of the different distances
from each point in families of n points. The problem is to find lower and upper
bounds for g¥(n). In [20], an O(n?//Tog ) upper bound for g¥(n) is presented. On
the other hand, an (n7) lower bound for g5 (n) is derived in [12] using the upper
bound on the maximum number of incidences between n points and n circles. By
using their reduction, a lower bound for g7(n) can be determined for S-restricted
families of points. Around each point p; in S, put g4(S, p;) hyperspheres containing
all the points. The number of incidences between the n points in S and these g5 (S)
hyperspheres is exactly 2('2') Each pair of points in S determine two incidences.
By applying Corollary 4.1, the number of incidences between the points and the

d41

hyperspheres is in O(gf(S)i?ngnﬁFlf + g3(S) + n). Hence, gf(S)ﬂ?%Tn is in

Q(n?), implying that ¢3(S) € Q(nﬁﬁ) for any S-restricted family of n points. This
gives the following result.

Corollary 4.3 For S-restricted families of n points in E9 the zninimum sum of the
number of different distances from each point g¥(n) is in Q(n %),

This corollary gives a lower bound on the minimum number of different distances
determined by families of n points in E4. This value is denoted fy(n). Erdos [18]
proved that /n — 1 —1 < f,(n) < cn/+/logn. The lower bound has been improved
several times. Recently, Chung, Szemerédi and Trotter [10] proved that f(n) is in
Q(nt/log® n), for some fixed c. Finally, Moser [29] gave a Q(n¥) for fi(n). An easy
way to obtain a lower bound on f4(n) is to observe that fs(n) is in Q(gF/n). For
S-restricted families of points, it is possible to obtain the following lower bound for
fa(n) by applying Corollary 4.3.

Corollary 4.4 For S-restricted faznilies of n points in E? the minimum number of
different distances fy(n) is in Q(nF).

Finally, the last problem considered in this section is to determine an upper
bound on the maximum number of furthest neighbor pairs among families of n
points in E9. This maximum number is denoted f,{"(n). A point p; is called a
furthest neighbor of the point p; if §(p;,p;) = max,, §(p;,pr). Each point has at

least one furthest neighbor. Thus, a pair (p;, p;) is a furthest neighbor pair if p; is
a furthest neighbor of p;.
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Avis (3] showed that f"(n) is equal to 3n —4 for even n > 4 and equal to 3n —4
or 3n—3 for odd n > 5. Edelsbrunner and Skiena [17), with a more precise analysis,
proved that f;"(n) = 3n — 4 for any n > 4. For d > 3, an example presented by
Avis, Erdds and Pach [4] shows that the lower bound for fJ"(n) is in Q(n?). On
the other hand, an O(n722(=("") upper bound for f{"(n) is presented in [12] for
families of n points without three collinear points. The proof of this upper bound
is quite involved and is based on the structure of the arrangement of spheres in E?3.

The problem of finding an upper bound for f§”(n) can be reduced to the prob-
lem of finding an upper bound on the maximum number of incidences between
S-restricted families of n points and families of n hyperspheres. Around each point
pi in the family, put a hypersphere with a radius of max, 6(pi,p;). By applying
Corollary 4.1, we obtain the following upper bound on fJ"(n) for S-restricted fami-
lies of points.

Corollary 4.5 For S-restricted families of n points in E4 the mazimum number of
furthest neighbor pairs fi"(n) is in O(n%).

This gives an O(n'?) upper bound for f3"(n) for families of n points in E3
without four points lying on a circle (or on a line). This bound can not be compared
to the O(n%2o(°(")z)) upper bound for families of points in E3 without three collinear
points given in [12]. Both assumptions on the families of points are not comparable.

5 Conclusion

In this paper we presented a bound on the number of incidences between restricted
families of point and hyperplanes in E?. From it we derived algorithms for comput-
ing such incidences and for solving the exact fitting problem. We also derived some
further combinatorial bounds on e.g. the number of unit-distance pairs of points.

A number of open problems remain. The O (min{mﬁ'?;- log 2, nd}) time algo-
rithm for solving the exact fitting problem for families of n of points in E? might not
be optimal. Any improvement to the algorithm computing the incidences between
a family of hyperplanes and a family of points will be reflected in the time complex-
ity of our solution. For example, an optimal O(x2/3y?/3 + z + y) time solution for
computing the incidence between z distinct points and y distinct lines in the plane
would reduce the time complexity of our algorithm to O § .

Another interesting open problem is to extend the exact fitting problem to fam-
ilies of convex objects. For example, suppose we have a family of n line segments in
the plane. Find a line intersecting at least m of these line segments. This problem
can also be solved in O(n?) time by sweeping the dual arrangement with a topolog-

ical line (see [15]). But one would prefer an algorithm whose complexity depends
on m.
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