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PROGRAM SUMMARY

Title of program: RITSSCHIL
Caralogue number: AADA

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: CDC 175-100; Installation: State University Utrecht
Operating system: NOS /BE 1.5

Programming lunguage used: Fortran V

High speed storage required: 47000 words

No. of bits in a word: 60

QOverlay structure: 4 primary overlays

Peripherals used: card reader. disk. line printer

No. of lines in combined program and test deck: 4730

Keywords: shell model. second quantization, general reduction
formula

Nature of physical problem
A new program for nuclear (or atomic) shell-model calculations

is described. In comparison with other presently available
shell-model codes, the new program. called RITSSCHIL. can
treat a larger variety of operators and is more flexible. The
reduced matrix elements of tensorial shell-model operators are
calculated in a multi-shell space for nuclear (or atomic) shell-
model states.

Method of solution

With the use of the general reduction formula[l] the matrix
elements are expanded in terms of single-shell matrix elements
and the elementary matrix elements that describe the operator.

Resrrictions on the complexity of the problem

The program is suitable for all tensorial shell-model operators.
The number of active shells is limited only by a dimension
parameter in the program. which can be set by the user. The
order in which the active shells are coupled can be defined by
iput cards.

Typical running time

The running time depends strongly on the number of active
shells and on the dimensions of the computed matrices. For the
test run on a CDC 175-100 computer 31 s of CPU time was
required.

Reference
{1] J.B. French, E.C. Halbert, J.B. McGrory and S.S.M. Wong.
Advan. Nucl. Phys. 3 (1969) 193.

0010-4655 /85 /303.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)



366 D. Zwarts / Program for shell - model calculations

LONG WRITE-UP

1. Introduction

The program RITSSCHIL is a FORTRAN77 computer code for large spectroscopic calculations in the
microscopic nuclear (or atomic) shell model. It is suitable for all tensorial shell-model operators, such as
Hamiltonians (possibly including three- or more-body forces) and operators for electromagnetic transitions,
(many-)particle transfer, beta decay, etc. Starting from matrix elements of standard operators in single
shells RITSSCHIL calculates the matrix elements of the physical operators in a multishell basis. Since each
multishell problem is approached as a recurrent two-shell problem the number of active shells is limited
only by a dimension parameter in the program, which can be set by the user. The order in which the active
shells are coupled together (the coupling tree) can be defined by input cards. So if one works in a
proton-neutron formalism one may couple all proton shells together and all neutron shells together before
coupling the proton shells to the neutron shells. In comparison with other presently available shell-model
codes program RITSSCHIL can treat a larger variety of operators (e.g. for many-particle transfer) and it is
more flexible. In most cases program RITSSCHIL will also run faster and use less space.

To present the program. in this paper the theoretical background is discussed in section 2 and the set-up
of the program is described in section 3.

2. Theoretical background of program RITSSCHIL

The essential features of the theory behind the formalism of program RITSSCHIL are the use of second
quantization and the representation of all states and operators in terms of irreducible spherical tensors.

In this section a short survey of the theory is presented in order to introduce the formalism to the user.
For a more fundamental treatment the reader is referred to refs. [1,2]. After some preliminary remarks in
section 2.1, section 2.2 introduces very briefly the state operators and adjoint state operators which are
characteristic for the second-quantization formalism. In section 2.3 the transformation of operators to a
standard-form expansion is discussed. Finally, section 2.4 offers a presentation of the general reduction
formula which expresses matrix elements of operators acting in a multishell in terms of matrix elements of
operators acting in single shells.

2.1. Preliminary remarks

The present treatment leans heavily on the approach of French et al. [1] used for the construction of the
Oak Ridge-Rochester shell-model code. They chose for the expansion in spherical tensors because it allows
the full use of Racah algebra. The advantages of second quantization are the easy handling of particle
antisymmetry and the decomposability of operators, i.e. each operator can be expressed as a sum in which
each term can be decomposed into single-shell parts, each part operating in a different shell. The extensions
in the present treatment concern the iterative and more general set-up of the program (see section 3) which
touches the theory for example in the definition of standard operators and in the way physical operators
are transformed to a standard-form expansion.

Because the formalism does not depend on the set of quantum numbers considered. a direct-product
notation is used. The quantum number n or m stands for all (commuting) quantum numbers that concern
the occupation of a state; so in a proton-neutron formalism # stands for n, and n,. the number of
protons and the number of neutrons. A single Greek symbol (p. A, I'. ) represents the set of vectorial
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quantum numbers (final tensorial ranks) considered, for example the set {J, T} or {L, S} or {L, S, T}.
The further quantum numbers needed to complete the specification of a tensor are represented by the
Greek symbol « or 8. If in a formula a factor contains only occupation numbers or only vectorial quantum
numbers, this factor stands for a product of such factors, one for each represented quantum number. For
example a phase factor (—1)""" will be (~1)"»"»"""» in a proton—neutron formalism. In this way the
coupling of two tensors, represented by square brackets, can be defined by

[VIxwh e = ¥ (TLIT |2V W], (1)
I.r:

where the symbol {I'I_T"I!|£282.) stands for a product of Clebsch—Gordan coefficients, one for each of
the commuting vectorial quantum numbers considered. The reduced matrix elements of the Wigner—Eckart
theorem are represented by double-bar matrix elements:

20 (TR TT)

(nTLalWE Ty = (~1) (e W T )
- CTTT7
and
(_1)29
(Tl W [ nTay =—— S (PTQ | TL ) (I Ta W | T T e, (3)

Qr+17 rer

2.2. State operators and adjoint state operators

This section introduces very briefly the state operators (section 2.2.1), the adjoint state operators (section
2.2.2) and some special matrix elements of these operators (section 2.2.3). The only difference with the
treatment in refs. [1,2] is the introduction of a free coupling order of single-shell states (the coupling tree).

2.2.1. State operators
Let the symbol |} denote the vacuum state in which no particles are present and let |n =1 pp.) denote
the single-particle state with vectorial quantum numbers p and projection quantum numbers p_, then the

creation operator azp: can be implicitly defined by the relation

- gt
|n=]pp:>_app_.l > (4)
The operator alp: creates a normalized one-particle state and therefore it is called the state operator for the
one-particle state. This concept can be extended by defining the n-particle state operator Z(nI'T.a) as the

operator that creates the antisymmetrized and normalized n-particle state with quantum numbers n, I", T,
and a:

|nIT,a Y=Z(nl'l,a)| ). (5)

The n-particle state operators can be written as coupled products of n creation operators. The single-shell
state operators, which create states with all particles in the same orbit p, are for n =0, 1, 2 given by:

Z,(n=0)=1, Z,(n=1pp.)=al,. Z,(n=2TI.)= (—l/ﬁ)[ai)(ai],,‘;. (6)

The expression of single-shell state operators in terms of creation operators can be derived more generally
with the recurrent relation (n = n, + n,)

~ mngy R —12 n n n r
Z,(nI'T.a)=(-1) “(n,) 2 o Fal}plFlal(p2F2a2)>[zp(nlrlal)XZp(n2F2a2)]l‘:‘(7)
INa, e,
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The symbols (p"I'a|}p" I'a;(p" 504> denote the coefficients of fractional parentage (c.f.p.’s) known
from first quantization for the antisymmetrization and orthonormalization of the basis states. The binomial
coefficient (, )~ 172 is introduced for normalization, because the particle numbering has vanished in second
quantization. The phasefactor (—1)""* is required to let the order in which the state operators act agree
with the phase convention of the c.f.p.’s in first quantization, i.e. the particles are coupled in the same order
as in which they are created. The interchange of the two state operators yields this phase factor as follows
from the (anti-)commutation relation for state operators

Z(nZFZFZ:al)Z(nlrlrlzal) = (_1)”]”12(”1F1F1:a1)Z('TZI‘ZI‘Z:O‘Z)- (8)

For two-shell states, having particles in two different shells, this (anti-)commutation relation provides the
antisymmetry, while the Clebsch—-Gordan coefficients provide the orthonormality of the two-shell states if
the state operators are constructed with the relation

Z(an:[a]az]) = (_1)”1”1[21(”11110‘1) Xzz(”zrzaz)];{,- (9)

The operator Z; acts in one of the two shells and Z, in the other. The phase factor (—1)"": arises again
from the coupling convention mentioned above. Note that this factor vanishes if shell 1 and shell 2 contain
inequivalent types of particles, because the state operators for inequivalent types of particles commute.

Because the two-shell state operators thus constructed can be manipulated the same way as singe-shell
state operators, one can consider the combined shells as one new shell. So one can use eq. (9) iteratively for
the construction of state operators in spaces that consist of more than two single shells. To prevent the
appearance of binomial coefficients the two combined groups of shells have to be disjunct (i.e. without
equivalent single shells in common). The order in which the different single shells are coupled by iterative
application of this relation will be called the coupling tree of the active shells. The resulting configuration
space will be referred to as a multishell.

2.2.2. Adjoint state operators
The adjoint state operators can be introduced in the same way. If the symbol |0) denotes the closed core

and [n= —1 pp.) denotes the single-hole state with quantum numbers p and p.. then the annihilation
operator d,, is implicitly defined by
ln=—1pp. )=4a,, |0 ). (10)

The adjoint state operator Z(nI'T.a) is likewise defined as the operator that creates an n-hole state with
quantum numbers —n. I, I. and a:

|=n I y = Z(nI'T.a) |0 ). (11)

The adjoint state operators are related to the Hermitian conjugates of state operators by

S Il NS

Z(nlT.a)=(-1) {Z(nI'-T.)} . (12)
The phase factor (—1)!* is needed in this relation to maintain the tensorial character of the adjoint state
operators; (—1)' is added only to prevent the appearance of imaginary factors for the half-integer values
of I'.. From this relation it is also clear that an adjoint state operator acting to the left on the vacuum state
creates a particle state

rer.

(1 Z(nIT.a)=(-1) (nI'—T.a|. (13)

Each n-hole adjoint state operator can be written as a coupled product of n annihilation operators. For
n =0, 1, 2 the adjoint state operators are given by

Qe

Z(n=0)=1, Z(n=1pp.)=4a,,, Z(n=2IT.[p\])= TN (14)

1
(1+8,,) [
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For single-shell adjoint state operators the recurrent relation reads
Z,,(nFF_,a) = (Zl ) e . ZI (p"Ta| }p"‘F,a1(p"1F2a2)>[Zp(n]F1a]) X Zp(nzfzaz)] Il (15)
Loy lha;
and for multishell adjoint state operators one has
Z(nI'L[wa,]) = [ Z,(nTyey) X Zy (ny ey )] - (16)

nns.

Note that there is no phasefactor (—1)""2; the particles are annihilated in an order opposite to the order in
which they are coupled.
The (anti-)commutation relation for adjoint state operators is the same as for state operators

Z(n2F2F2:a2)Z(n1F1F1:a1) = (_1)”1"22(”1F1F1:0‘1)Z(”zrzrzzaz)- (17)
If the operators Z and Z do not have any orbit in common one also has

Z(”2112F2:“2)Z("1F1F1:a) = ("1)"|nzz(”1rlrlza1)Z(nzrzrz:az)~ (18)

2.2.3. Matrix elements of state operators and adjoint state operators
Using eq. (7) one can express the reduced matrix elements of single-shell state operators between
single-shell states in terms of c.f.p.’s

- 2r, (R 172 1 ’n 11
(nTa|| Z(n,ha;) [ hey) = (—1) “(n]) (2F+1)]/2<P Fa|}p" ey (0" 1ha, ). (19)

For (multishell) state operators acting on the vacuum state one can derive

"
er+1)"’

21

(—1)

A= S aITa| W T8,y
Qr+1)"* 7 o

(nTa|| Z(n'T"a') ||y = YOOI, |[TT.)(nI'T.a| Z(n'T'T.a’) | )
r.

= (-1)21‘(2F+ l)l/zsnn’al‘l”aaa" (20)
The matrix elements of adjoint state operators can be expressed in those of state operators

(-

(T’ || Z(n'T"a") || nTa)y = ————
Qr+1)"?

Y (ILI'IY [ I'TY(n'T'Ta| Z(n"T"IVa”) | nT L)
Lo

=_(__1L y (_1)1‘—1"71‘:+1‘_1{2F’+l
@r+1)"? rrr 2+

(el Z(n T T'a") | nT Ty

) (=1
Qr+1"? rere

1,2
}nr -y

(_1)1‘,1"—1‘:+1‘;’<F11“:/1“” — H"FI;>

x(=1)" T (nITa) Z(n'T" = TVa") W T'Tla’y
= (-1 nra) Z(n' T Q) | 0TS (21)
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So in particular
(N Z(n'Ta) | nTa)y = (nla Z(nT'a) |y = (= 1) (20 +1)"78,,8,4-8,- (22)

Using eq. (21) and an intermediate-state expansion one can derive a more general conjugation relation:

(nIo||[Z(nyLhe,) X Z(n, Ta,)] ”||I1F(X>

s A

et r /2 Irre S A
=(-1) e (29+1)1' > {F,F F,,\<nfa 1 Z(n, e, )| nT
n’' e [
X (0T | Z(n,I,,,) | nTe)
=(-1) T e+1)"" Y {l'l‘,F”}(_l) ! ("o Z(nlag) [0’ aly
n'rra’’ w-b

x (=1 " nTa Z(n, D) |0 T
= (=1 "N ra) [ Z(n L) X Z(n,Ta)] C Ty, (23)

where {:::} denotes a 6/-symbol. A special case of matrix elements of this type can be calculated by use of
an intermediate-state expansion

<nra|| [Z nlaau) X Z(n’r/)ab)] SZH n’lva,>

reQ-r 2 17T82 )
:(_1) ' (2Q+1)1/ { FIF/0}<nFa||Z I’I & u)”><||Z(” Ilra/))l|n1,a,>

er+Q
:(_1)1‘+sz+1”(29+1 1,2 (-1) } ORI
Qer+1er+1n'”

-ner+n -y er+n's,, 8,

e, oy,

= (D)™ Q22+ 1)778,1:8,0.0 1100, (24)

ac,

2.3. Physical operators in second-quantized form

To use the second-quantization formalism one needs not only a description of many-fermion states in
terms of creation and annihilation operators {section 2.2), but also the operators that one wants to use
should be represented in the same formalism. Section 2.3.1 shows that this is possible for all usual
shell-model operators and in section 2.3.2 the chosen method is discussed by comparing it with the
approach of French et al. [1.2].

2.3.1. The standard-form expansion of operators

Let O be any symmetric shell-model operator, i.e. O acts the same way on all indistinguishable particles
in a given state. The physical operator O can be decomposed into parts (spherical tensors) that are
characterized by a well-defined transformation under rotations of the three-dimensional frame of reference:

0=30%= 3 O (25)
2 Qnn’

In this formula O¥ represents a spherical tensor with well defined rank(s) 2. Each of those tensors O can

be split into tensors O, that annihilate n’ particles and create n particles. For scalar operators one has

2=0. For n=n’ O%. is a number-conserving n-body operator. For n > n’ O%. is an (n — n')-particle

transfer operator.
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In this way the Hamiltonian H is written as H = H", + H), + ... i.e. H is split into its one-body part,
its two-body part and possibly its three- or more-body parts. The electromagnetic transition operator
O(2L) can be written as O(&L)= O5(&L) and the a-transfer operator A is split into its separate
L-channels 4 =Y, A%,

The matrix elements of O, between any two states are fully determined by the matrix elements of O,
between n-particle final states and n’-particle initial states. So one may define O, by giving the values of
its elementary matrix elements, i.e. all matrix elements (—]) nla)|OL |n' T’y /(22 + 1)'/? for a
complete basis of n-particle states and a complete basis of n’-particle states. Therefore the only require-

ment necessary to define O in second-quantization formalism is that the elementary matrix elements of

the second-quantized operator O are the same as the elementary matrix elements of O%. This
requirement is met uniquely if one defines
nla|| O || n'T" o ~
0= Y (- i >[Z(nra)><z(n/r'a')]§;’_. (26)
nn —_— —1/2 -
ol OQ'F T)

The summation runs over a complete basis of n-particle states and over a complete basis of »’-particle
states.
In this way the second-quantized operators for H, O(&L) and A4 are:

A=Y (oI lodlalxa, ] + ¥ (oAl HS o) [Z(n=2T[pA])x Z(n=2 I[or])]s +

I'oAot
pSAOSET
5 - (pllO(&L)|IN) ty
O(aLm) =Y ===l [q [af xa,] -
oA (2L+1)
. =4 La|l A"
AM = n all A1) (n=4LMa)=3) (n=4 LMa|A"MYZ(n=4 LMa).

«  (L+1)7
By the use of eq. (24) it is easily shown that this definition meets the requirement:

20 <nFa|| 09

nn

T— I —1 ” }’I/F/(X,
oTa| 0L |nTay= ¥ (1) ?

Fala (2sz+ o <nTEl Z(nT) x Z(n Ta)) || n T)

= (nla||O2 ||n'T"a’) 20
2 (-1 2211 (122 +1)78,18,,8 18,0
Tal"a’
= (nTa|| O InT'&). (27)

Eq. (26) will be called the standard-form expansion of operator 0.
2.3.2. The standard operators

By choosing eq. (26) as the standard-form expansion one has implicitly chosen a set of standard
operators to be a basis for the space of all tensorial symmetric operators in the given multishell. These
standard operators were defined by

F(mQQ.SB)=[Z(nTa)x Z(n'I"a')] §. (28)

with m=n—n', §=n+n’ and B containing the determination of the ‘inner structure (I, &, I"” and «).
With egs. (25), (26) and (28) one can write the multishell matrix elements of any tensorial symmetric
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shell-model operator O as a linear combination of multishell matrix elements of these standard operators,
using the elementary matrix elements of O as coefficients:

F OSZ /1"/ ’ - _
GlajoaTay= Y ¥ (—1peialon ”'f/z ) i@ F(mQS) |7 T'a). (29)
nn’ 'al™a’ (2Q+ 1) ’

The present standard operators are different from the standard-form operators in refs. [1,2]. French et al.
define the standard-form operators as coupled products of single-shell standard-form operators (each
single-shell standard-form operator being a coupled product of a state operator and an adjoint state
operator). In the present approach each standard operator is a coupled product of one state operator and
one adjoint state operator (while according to eqgs. (9) and (16) the state operators are defined as coupled
products of single-shell state operators). E.g. a three-shell standard-form operator of ref. [1] is given in a
schematic notation by

F=[fixfixfi]=[lz1x 5] x[z, x 5] x[2: x 5]],
while a three-shell standard operator in the present approach is given by
F=[ZxZ])=[[z, Xz xz;]x[5 X3 x5]].

The approach of French et al. has the disadvantage that for the general case the calculation of the
expansion coefficients in the standard-form expansion is rather laborious, whereas in the present approach
the expansion coefficients are just the elementary matrix elements. The difficulty has not vanished but is
transferred to the calculation of the matrix elements of standard operators where it can be solved elegantly
because of the iterative approach.

The standard operators in the present approach obey the recurrent relation:

F(mQQ.SB)=[Z(nTa)x Z(n'T"a)] 5.
=[(- 1) [Z (nTay) X Zy(nyTaay)] %[ Zy(mi T ) x 2 (nsT5e)) |,
(LI
=(-1)"H(=1)" Y [Qr+ D)+ 1)(22, + )22, + 1)]1/2< L
39, | 2,02,2)

< [[Z,(nIhay) X Z, (i Tei)] % [ 2 (na T ) X 2o (msT3a5)]

(1151
= (=D Y [Qr+ 1)+ 1)(28, + 1)(22, + 1)]‘/'2< 1‘1’1“2'?[\
QIQ: \KZIQZQ)

X [F(m2,8,81) X Fy (m,2,8,8,)] .. (30)

where {:I} denotes a 9j-symbol. The subscripts, and , refer to the two shells that are coupled to get the
final multishell. Note that almost all parameters are determined by parameter 8; the summation is only
over £, and §2,.

For a given coupling tree this recurrent relation (iteratively used) is all one needs to write F(m§2§2.S)
as a sum of coupled products of single-shell standard operators (and to find in this way the expansion
coefficients of French et al. for the general case). But this has not to be done explicitly here, because the
programme needs only this relation in the iterative set-up.
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Note that for the operators H (up to two-particle parts), O(&L ) and A4 in section 2.3.1 the 9j-symbols
in the recurrent relation will contain always at least one zero-argument, so the 9/-symbols reduce to
6 j-symbols or even further.

2.4. The general reduction formula

In section 2.2 the multishell states are defined in a recurrent way (egs. (9) and (16)) and in section 2.3
the same is done for multishell operators (eq. (30)). Using these recurrent definitions one can derive also a
recurrent relation for multishell matrix elements, i.e. a formula to express matrix elements of operators in a
multishell in terms of matrix elements of operators in the two shells that, according to the coupling tree,
constitute the total multishell. A review of this derivation is presented in section 2.4.1, while in section 2.4.2
the resulting general reduction formula is discussed.

2.4.1. Derivation of the general reduction formula

Using egs. (29) and (30) one can reduce the calculation of multishell matrix elements of any symmetric
tensorial shell-model operator to the calculation of multishell matrix elements of the coupled operator
product [ F,(m,;2,8,8,) X (Fy(m,2,S,8,)]5 (for the notation see section 2.3.2).

The first step in the derivation of the reduction formula for the matrix elements of this operator product
is to show explicitly all Clebsch—Gordan coefficients involved in these matrix elements (to shorten the
notation the quantum numbers «, S and § are suppressed):

<”F”[F1(m|91)XFz(ngz)]”'|"/F,>
20

=y Dee PRI | (@) X B (my2:)] & T

(21“—«!91‘)& re.r
282

) s e PEY(< 1) 200 = D) F(mi@,) X B (ma@)] £ Z(n T ) |

(2'1“—?Hl4' re.r

(_l)m Z R i .

e — (I'TIQQ | ITH(|(-1) Z(n L) X Zy(n,15)] e
QT+ rar [Z,(mT e
X[Fl(mlﬂl)XFz(ngz)];zz:(_l)ni”(l[zl(”grl’)Xzz("’zrzf)]ll”)

(_1)212

=5 DB (OEQQNTT ) -, =1L T =13
QI+ 1)7" rerr,. .9, 2,113,

X (22,2, | QY (LTI T T (-1) (=)™
X<|Zl("1F1_Flz)zz("zpz_Fz:)Fl(mlﬂlglz)Fz(mz“Qzﬂz:)Zl(”irl’rl/:)zz(”/zrz’rz’:)|>
-1 - S ;

—*(w—l/z 2 (I'TQQ TN LT T Y(9202,.2,2,. | Q2T 3Ty | T'TY)
(21 +1) all z7s
X(_1)I‘I+I‘3fl‘:(_1)n',n':
X<Izl(nlrl_Fl:)zz(nzrz—FZ:)Fl(mIQIQ]:)FZ(mz‘ngzz)Zl(”,IFI,FI,:)ZE(’Z,ZFZlFZ/:)I>'

(31)

To separate the operators acting in shell 1 and those acting in shell 2 one has to interchange the operators
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Z, and F,, F, and Z,, and finally Z, and Z,. Therefore one needs the (anti-)}commutation relations for
state operators and standard operators acting in disjunct spaces. These relations can be easily derived from
the definition of standard operators (28) and the (anti-)commutation relations (8), (17) and (18). One
obtains

F1(m|91531:)22("zrz -Iy.)= (*1)”1”1222(’725 = D) Fi(m2,0,.), (32a)
Zy(m I B (my 2,82, ) = (= 1)”i"13Fz(mzﬂzgz.—)z(””‘fﬂ,;)~ (32b)

Because [y is an m -particle transfer operator (creating m, particles more than it is annihilating) and F, is
an m,-particle transfer operator one should have n} + m, = n, and n% + m, = n,. So one finds:

(_1)l‘l+1‘rli(_1)”’,,15
X<|Zl(nlrl _Fl:)Zl(nIFZ_FZ:)FI(H‘IIQI‘Ql:)F’.(mlﬂlgzl:)zl(”{FI,FI/:)ZZ(’?’ZFZ,FI/:)|>
_ (Al)l‘]‘rl}fl',(‘1)H’1n'l*m,n: baymstnin,

XN Z (I = T R (m@,2,) Z, (0T Zy (o 1y = Ty ) Fy (ms 2,2, ) Z, (05 T3T3.) 1)

J N LRV 2 ald all

=(-n"" »(— )" Zy (T = D) F (@020 Z (i DT |

X<lzz(’721‘2 )E(me 2,.)Z,(ny 1515 b
=(_1)mml<”11111:|F1(”7191~Ql_-)|"1F1F1':><”2F2F2;|Fz(ngzgz:)I”’ze/Fz,J
:(_1)’”1”:(_1)21-’; <F{F{:9191:|F1F1:>

@ +1)"?
1 20, (315 .82,8,. |I I2 >
QnL+1'""

(m || F(my2)) i I7)

X (~ (1| B (my@,) | m5 13). (33)

Realizing that 262 + 28, + 282, is always even and that
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one obtains after insertion of eq. (33) in relation (31) the desired general reduction formula:
(51
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2.4.2. Discussion of the general reduction formula

The recurrent expression (34) derived in the previous section is the pivot on which program RITSSCHIL
hinges. It is good to notice the generality of this formula. Because of the consequently used direct-product
notation also in this formula each factor should be interpreted as a product of such factors, one for each of



D. Zwarts / Program for shell -model calculations 375

the used occupation numbers and vectorial quantum numbers, respectively. So this formula is applicable
without any change also in a proton—neutron formalism or in an LST-coupling scheme.

A second point is the arbitrary coupling order of shells, the coupling tree. In eq. (34) shell 1 may be an
already coupled group of single shells, but also shell 2 or both. The only relevant restriction is that shell 1
and shell 2 have to be disjunct, which is used in the derivation of (34).

In the present approach the calculation of the multishell matrix elements of an arbitrary shell-model
operator in an arbitrary configuration space will involve the following steps. It is assumed that the basis
states and the standard operators of single-shell spaces are available. Also the single-shell matrix elements,
i.e. the matrix elements of the single-shell standard operators between single-shell basis states, should be
calculated in advance (which can be done using egs. (19) and (21) and an intermediate-state expansion).
Then a multishell basis of states can be constructed by iterative application of eq. (9). In this way each
multishell basis state is fully defined by its constituent single-shell states and the ranks of the (intermediate)
couplings. For each (intermediate) multishell a basis of standard operators can be defined in the same way
with eq. (28). By iterative use of egs. (34) and (30) the multishell matrix elements of standard operators
between basis states can be calculated. Finally, eq. (29) offers the possibility to transform these matrix
elements to the matrix elements of the shell-model operator one wishes to use. In the program this last
transformation is combined with transformation (30), so for each shell coupling only one transformation
has to be performed.

3. Set-up of program RITSSCHIL

The program RITSSCHIL is meant to be a very general shell-model code for the calculation of reduced
matrix elements of tensorial operators in a multishell configuration space. The user should be able to
choose his own set of quantum numbers, to specify the active shells and the order in which they should be
coupled together (the coupling tree), and to define the shell-model basis states and the operators he wants
to use. To be suitable for an arbitrary number of active shells and for an arbitrary coupling tree the
program is set up as a recurrent two-shell code. Each constructed two-shell configuration space is treated
again as a new single shell that can be used for further coupling. In order to define any symmetric tensorial
shell-model operator, the elementary matrix elements are introduced: each operator is defined by its
reduced matrix elements for a complete basis of final and initial states that contain the minimum number
of particles for which (a part of) the operator does not yield a trivial zero (see also section 2.3). For example
the usual Hamiltonian is defined by its one-body and two-body matrix elements.

The program RITSSCHIL has a modular set-up in order to make it easier for the user to understand the
program or to modify it for special purposes. As an aid to a good understanding the set-up of the program
is discussed in this section; some terms are introduced and some rather complicated parts are explained.

Section 3.1 surveys the construction of the basis states and operators. In section 3.2 the operator
transformations are explained. The principles for the calculation of the matrices are discussed in section
3.3. Finally, section 3.4 contains remarks on the parameters of the program, the error messages and the
hardware dependence.

3.1. The construction of the bases

Having defined the active shells and their coupling order (the coupling tree) one must construct for each
single shell and each (intermediate) multishell three bases, namely a basis

— for the states that will be used as initial and final states in the matrix elements;

— for the standard operators into which the physical operators are expanded (see section 2.3);

— for the state operators (and implicitly also for the adjoint state operators) in terms of which the standard
operators are constructed (see section 2.3).
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These three bases are referred to as the state basis. the operator basis and the state-operator basis,
respectively. The state-operator basis defines the states that are also used in the definition of the elementary
matrix elements of the physical operators one wants to use.

In section 3.1.1 the treatment of quantum numbers and the method of basis definition are introduced.
The way by which the basis constructions are controlled is described in section 3.1.2. The selection of
single-shell bases is discussed in section 3.1.3 and the construction of multishell bases in section 3.1.4.

311, Space lists and extended space lists

The basis states, basis operators and basis state operators (for shortness referred to as items) are defined
by a set of quantum numbers and an additional index counting the items with the same values of the
quantum numbers. Because of their different behaviour with respect to tensor coupling the quantum
numbers are divided into four groups: (i) the ‘occupation numbers’ determining the number of particles
(for operators the change in the number of particles) for each type of particles: (ii) the parity or parities of
selected groups of particles: (iii) the vectorial quantum numbers giving the multiplicities of the tensorial
ranks: (iv) the additive quantum numbers. Group (11) may be empty and the first element of group (iv) is
the quantum number S being the total number of particles. All basis states, basis operators or basis state
operators with the same values for the quantum numbers form together a space. The number of items in a
space is called the dimension of the space. E.g. the dimension of the space of J = 0 two-particle states for
the p-shell. which is constituted by the p; ,-shell and the p; .-shell. is equal to two, since there are two such
states. Because for further coupling only the possible sets of quantum numbers and the number of items
contributing to each set are relevant, the main information about a basis can be summarized by giving a list
of constructed spaces with their dimensions. This list 1s called the space list.

The remaining information about the bases. namely the inner structure of the different items in a space
hidden in the additional index. is fully determined by specifying for each item its parents. i.c. the two states
or state operators that are coupled together to get this item. E.g. one of the two J = 0 two-particle states for
the p-shell is a two-particle state in the p; .,-shell coupled to an empty state in the p, 5-shell. while for the
other two-particle state it is just the other way around. If an item of space PA (father) and an item of space
MA (mother) can couple to get an item of space JR (junior) also all other items of spaces PA and MA can
couple to get items of space JR, because they all have the same quantum numbers. So the coupling of space
PA and space MA yields a number of items equal to the product of their dimensions. If one puts all these
items in a fixed sequence one can specify all their additional indices using only one constant: let jr be the
index of a resulting item. pa the index of an item in PA and ma the index of an item in MA, then one may
define

jr=C{JR. PA. MA) +(pa — 1)N,, + ma. (35)

in which Ny, is the dimension of space MA and C(JR. PA, MA) is a constant depending only on the three
spaces concerned. C(JR, PA. MA) is called the cumulative dimension, because it counts the number of
preceding items of space JR resulting from the coupling of parent space combinations different from PA
and MA. So the inner structure of the items in a space can be specified by giving a list of combinations of
parent spaces with their cumulative dimensions for this space. This list is called the extended space list.
Because the adjoint state operators are implicitly defined at the definition of the state operators (according
to eq. {12)). they have the same space numbering and indices as the state operators. In the extended space
lists a parent conjugation code NC is added denoting whether the state operators or the adjoint state
operators are meant:

NC = 0 means [PA x MA]. NC =1 means [PA X MA]. NC =2 means [PA X MA]. (36)

Finally. one also needs a basis for the coupled operator products [ F\(m,2,5,8,) X F1(m282,5,f, N
(sce e.g. eq. (30)). Because the quantum numbers of these products are the same as those for the standard
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operators one may use for both the same space lists. Only the dimensions may be different for the operator
products, but this is not important because the operator products are not used for further coupling. So one
needs only the extended space lists for the operator products to specify their inner inner structure. Note
that in these extended space lists the spaces PA and MA are operator spaces instead of state spaces. The
conjugation code NC is used here also because all operators that can be obtained by Hermitian conjugation
of other operators are not constructed explicitly. In fact this is the only reason why the conjugation code
has been introduced, because for the other extended space lists the conjugation of the parents is already
determined by the kind of the list (NC = 0 for states and state operators, NC =1 for standard operators).

3.1.2. Restrictions for the bases

To enable the program and the user to restrict the construction of the bases to only those items that are
really necessary, the system of ranges is introduced. For each single shell or multishell and for each of the
three types of bases there are one or more sets of ranges, each set giving a lower limit and an upper limit
for each of the defined quantum numbers. The values of the quantum numbers of a constructed item
should meet all the requirements given by at least one of the sets of ranges for the shell and list type
concerned. The ranges are initialized to default values depending on the kind of the quantum number
concerned and can be modified by the user. Before the basis constructions are started each set of ranges is
refined as much as possible and reasonable with the strong correlations between the restrictions for
different quantum numbers, shells or list types. All items are used to construct items in the complete
configuration space. Hence, next to the ranges mentioned (specific for one shell and one basis type), for
each basis type there are also common ranges. The latter are derived from the restrictions for the final
configuration space but valid for each intermediate shell. These common ranges imply that each inter-
mediate item should either have a value for quantum numbers S (see section 3.1.1) that is lower than the
maximum value of S of the final items, or meet all the requirements given by at least one of the sets of
ranges for the final items. For operators the common ranges also take care that, if the final operators are
pure particle-transfer operators (so F = Z), the same holds for each intermediate operator.

3.1.3. Selection of single-shell spaces

It is assumed that for each single shell the bases have been constructed in advance and that the
information about these bases is available as space lists on a file. To define the inner structure of the
single-shell standard operators the file should contain also extended space lists for the operator spaces. The
inner structure of states and state operators is fully defined by the c.f.p.’s in the single-shell matrix
elements.

The program has to select from the file those spaces that meet the conditions given by the sets of ranges
for the single shells concerned. To avoid a resequencing of the single-shell matrix element labels later on in
the program (see section 3.3) only complete spaces of single-shell items are selected. So if one truncates an
operator space by prohibiting some of its constituent state operators. the complete operator space is
omitted.

The set of quantum numbers on the library file, used to define the bases, has to be roughly the same as
the set the user has chosen for the program. The possible conversions are that the program may omit some
quantum numbers, it may split up a quantum number into several quantum numbers concerning the
different types of particles (e.g. n becomes n, or n,,), and it may add a parity quantum number. Because in
this part of the program the single-shell quantum numbers are defined, one has to interfere in these
routines if one wishes to define single-shell quantum numbers in a different way, e.g. to define an additive
quantum number containing the number of oscillator quanta for harmonic-oscillator eigenstates.

3.1.4. Coupling and trimming
Each basis in a (intermediate) multishell is a direct product of two already constructed bases. For the
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construction of a mulushell basis one has only to find the possible quantum numbers to which the two
constituent bases can couple. The Racah algebra for the coupling is handled later on in the program in the
general reduction formula of the matrix calculation (see section 2.4.1 and 3.3). When coupling two tensors
most of the quantum numbers of the product are fully determined by the quantum numbers of the two
tensors: only in the resultants of the vectorial ranks there is some freedom. which causes that mostly more
than one product can be constructed.

In addition to the ranges restricting the bases an extra restriction is implemented for the operators: the
value of the occupation number should be nonnegative (or, in case there are several occupation quantum
numbers, the first nonzero value should be positive). This restriction is to prevent the explicit construction
of operators that can be seen as Hermitian conjugates of other operators in the same basis, because the
matrix elements of such operators can be derived easily from those of the other operators (by the use of eq.
(23)).

Having constructed a basis for the operators, one can use its space list for the construction of the
extended space lists for the operator products of eq. (30). It is tested whether the four state operators of the
parent shells. appearing in eq. (30), are also used to construct a standard operator with the same quantum
numbers as this operator product. If not. this operator product is not necessary for the calculations and 11 1s
omitted. But also the other way around: cach Z-quartet in a standard operator, that is not used for the
construction of an operator product. should be removed.

During and after the basis constructions all spaces that are not used for further coupling are eliminated,
in order to avoid the calculation of superfluous matrix elements later on in the program.

3.2, The operator transformation

The general reduction formula (34) vields reduced matrix elements of the coupled product of two
standard operators. For further use these operator products have to be transformed to standard operators
in the combined shell with the operator transformation (30). To get physical operators (if opted) the
standard operators have to be transformed too by the use of the elementary matrix of the physical
operators as described by eq. (26). Both transformations can be taken together into one transformation
from the coupled operator product to the desired final operators. All matrix elements calculated with the
general reduction formula are converted with this combined transformation to the matrix desired for the
shell concerned.

In this section the calculation of the transformation matrix elements is reviewed. The transformation of
operator products to standard operators is discussed in section 3.2.1 and the contraction of standard
operators to physical operators in section 3.2.2.

3.2.1. The transformation to standard operators

In the matrix calculation part of the program RITSSCHIL the multishell matrix elements are calculated
with the general reduction formula (34). This formula yields matrix elements of coupled products of two
standard operators. one acting in one of the two shells and one acting in the other shell. For further
calculations these matrix elements have to be transformed to matrix elements of standard operators in the
composite multishell with eq. (30). Because this transformation formula is straightforward the values of the
transformation matrix elements can be calculated easily. The problem is hidden in the additional indices of
the operator products and the standard operators. In fact the transformation is just a reordering and
recoupling of the four constituent parent state operators (the Z-quartet). Hence each operator product 1s
transformed to only those standard operators that have the same constituent Z-quartet.

Let the standard operator with space index JO and additional index jo. denoted as (JO - jo), be a coupled
product of state operator (JA - ja) and adjoint state operator (JB - jb). Then, according to eq. (35), one has

jo=CJO.JA, JB) + (ja — )N}, + jb. (37)
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State operators (JA - ja) and (JB - jb) are themselves coupled products of the state operators (PA - pa) and
(MA - ma), and (PB - pb) and (MB - mb), respectively. so one also has

ja=C(JA, PA. MA) +(pa—1)Ny, + ma. jb=C(JB. PB, MB)+(pb —1)Ny + mb. (38)
Insertion of eq. (38) into eq. (37) yields
jo=C(JO.JA,IB) + N, ,C(JA, PA, MA) + C(JB, PB, MB) + (pa — 1)Ny; (N + (ma — 1)N,p
+(pb — 1)Nyy + mb. (39)

The operator product has the same quantum numbers as the standard operator (JO - jo). so it has also the
same space index JO. Its additional index jt is different, however. Depending on the parent conjugation
code NC (see section 3.1.1) the operator product (JO - jt) has one of the following structures:

NC=0: (JO-jt)=[(PO:po)x (MO - mo)],
NC=1: (JO-jt)=[(PO-po)x(MO*mo)],
NC=2: (JO-jt)=[(PO~po)x (MO - mo)].
With the same method as used in the derivation of eq. (39) one can find for its additional index
jt = C(JO. PO, MO) + Ny,C(PO. PA, PB) + C(MO. MA. MB) +1 + (pa — 1)KPA
+(ma — 1)KMA + (pb — 1)KPB + (mb — 1)KMB (40)

with KPA, KMA, KPB and KMB as in table 1. So the transformation matrix elements have to contain the
stipulation that an operator product with index jt as defined by eq. (40) contributes only to a standard
operator with the same quantum numbers and with index jo as defined by eq. (39) with the same pa, ma.
pb and mb indices.

For single shells the matrix elements of standard operators are read from a file. Hence there is no
transformation needed. But for conformity and because also for single shells a contraction may be
performed. for singe shells a dummy transformation matrix is calculated.

To be able to perform a conjugation of the multishell matrix elements as described by eq. (23). a
conjugation phase factor is added to each matrix element. The operator-dependent part of this conjugation
phase factor (— 1)~ " is calculated in this part of the program and transferred via the transformation
matrix elements, so that in the multiplication part of the program the inner structure of the operator has
not to be analysed.

3.2.2. The contraction

In section 2.3 it is shown that physical operators can be written as linear combinations of standard
operators. The coefficients of these expansions are the elementary matrix elements of the physical
operators. Often the elementary matrix elements also depend on a number of parameters.

The standard option of the program is to calculate the multishell matrix elements of the standard
operators that appear in the expansion. In this way for each physical multishell matrix element the

Table 1
Parameters for the calculation of jt (see text)
KPA KMA KPB KMB
NC=0 NpgNuo Nus Nnmo 1
NC =1 NpgNyo 1 Nuo Nua

NC=2 Numo Nus NpaNno 1
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dependence on the separate elementary matrix elements is conserved explicitly. So the user may adjust all
elementary matrix elements independently after the geometrical calculations of program RITSSCHIL.

If one does not wish to adjust all elementary matrix elements independently, one may ask the program
to perform a contraction. In this case the program performs the transformation of the matrix elements of
standard operators to the matrix elements of the physical operators as described by eq. (26). This
contraction will be performed if the concerned elementary matrix elements are offered to the program on a
file. Because the elementary matrix can be written on this file as linear combinations of a number of
parameters, the dependence on the different parameters can be kept separate. So the user may adjust all
parameters after program RITSSCHIL has finished.

Although the standard operators in eq. (29) are standard operators in the complete configuration space,
the contraction has not to be delayed till after the last shell coupling. As soon as an operator in an
intermediate shell has a value for quantum number S that is equal to the maximum value for S in the
complete configuration space, it is certain that this operator will be coupled only with unit operators in the
remaining shell couplings. At this moment it already has the same quantum numbers as the final operator
and it will not be used to construct other operators, so it can be contracted. This contraction changes the
dimensions of several operator spaces. Hence the contraction forces a revision of space lists and extended
space lists.

For Hermitian physical operators one has

(IO nTay = (~1) " (nTa|O|n'Ta. (41)

So for contracted operators the operator-dependent part of the conjugation phase factor of the matrix
element is put equal to one.

3.3. The matrix calculation

The most time-consuming part of the program is the matrix evaluation. To save time and space
RITSSCHIL calculates only those matrix elements for which the initial state equals the final state or
precedes it in the ordering of the basis states. All other matrix elements can be obtained by interchanging
the initial and final state with eq. (23) or (41). In order to be able to perform such a conjugation a phase
factor is added to each matrix element giving the change of sign at conjugation. For number-conserving
standard operators this conjugation implies that the operator in the matrix element is replaced by an
operator with the same quantum numbers, so with the same space index, but in most cases with a different
additional index. Hence. if in the program conjugations have to be performed, an inversion table should be
available with the change in additional indices for number-conserving operators. Operators that are not
number-conserving are replaced by operators that are not explicitly defined at the basis construction. It can
be assumed (as is done already in section 3.2.1) that the additional index of nonnumber-conserving
operators is not changed at conjugation.

In the approach of the program RITSSCHIL it is assumed that for single-shell spaces all needed matrix
elements are offered to the program on a file. The program has to read those matrix elements and to adjust
the space indices of the final state, initial state and operator to the space definitions used in the program.
Because only complete spaces have been selected (see section 3.1.3) the additional indices have not to be
adjusted and the inner structure of the three items is not to be analysed. Maybe a contraction should be
performed, so also the single-shell matrix elements pass through a transformation routine. The gathered
single-shell matrix elements are finally written to temporary direct-access files. Each shell has its own
direct-access file. It is opened and written for every shell in turn, according-to the coupling tree, and it is
closed as soon as it has been used for further coupling.

For multishells the matrix elements are calculated with the general reduction formula (34) followed by a
transformation as discussed in section 3.2. First the required information for the multishell concerned is
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made available: the transformation matrix elements. the temporary direct-access files with the matrix
elements of the two constituent shells, the needed space lists and extended space lists, and some tables. For
each final and initial state space a list is made of operator spaces that fit in between. For this selection
attention is paid not only to quantum number conditions (1, = 1, + n,,. triangle conditions, ¢tc.). but also
to possible future use of the matrix elements. As soon as in a matrix element on an intermediate multishell
the final and initial states contain already the maximum number of particles desired for the complete
configuration space, they will be coupled only with empty states in the remaining shell couplings. Because
only the unit operator fits between empty states, the operator in the matrix element concerned will be
coupled only with the unit operator in the remaining shell couplings. So the operator should already have
the quantum numbers as desired for the operators in the complete configuration space.

The application of the general reduction formula is straightforward. The multiplication factor in the
formula depends only on the quantum numbers of the nine states and operators concerned, so it can be
calculated once for all matrix elements with the same ‘junior’ and ‘parent’ spaces. The most complicated
part of the matrix calculation is the multiplication of the two ‘parent’ matrix elements. Both the search for
the two ‘parent’ matrix elements on the two (possibly rather large) direct-access files and the calculation of
the proper indices for the ‘junior’ matrix elements need a large amount of administration. The calculated
matrix elements are finally transformed into matrix elements of standard operators or physical operators
and are written again to a temporary direct-access file.

3.4. Final remarks

The program RITSSCHIL has been developed at a Cyber 175-100 computer. To minimize the
dependence on the hardware and to facilitate the adaptation of the programme to special calculations,
extensive use 18 made of the possibility in FORTRAN77 to define parameters. Almost all array dimensions
and all operations that have to do with the word length of the machine are defined by parameters. which
can be set easily by the user.

To save space or to enable a fast comparison. several times some information is stored in one computer
word, although the information consists of more than one integer n,. These packed labels are constructed
as a sum of the contributing integers. each integer multiplied by a constant (/= ¥k n,). To avoid loss of
information the quotient of such a constant and the next higher constant of the same label has to be an
integer number larger than the maximum value of the integer that is packed by the use of this constant
(k,+1/k, > n,). The proper choice of the constants depends on the size of the calculations and also on the
word length of the machine on which the program runs. So all packing constants are defined with
parameters. Also all array dimensions that are not completely fixed by the structure of the program are
defined with parameters. The name of a parameter is the same through all of the program and .t is
exclusively used for this parameter. So it is easy to change a parameter value consistently.

The program has an autodiagnostic system, which takes care that the execution of the program is
terminated with a message as soon as an error is detected. With the exception of the array references in the
six-j routine (S6J). all array references are tested on overflow by comparing the actual maximum indices
with the parameters defining the dimensions. The packing of labels is also tested. but mostly only via the
consistency of the packing constants and dimension constants.

Program RITSSCHIL is a link in a chain of programs. Before the program can be run. one has to
prepare appropriate files with the definition of the single shells and the single-shell matrix elements and
optionally also a file with the elementary matrix elements that define the physical operators one wants to
use. The output files will contain the definition of the multishell standard bases and the matrix elements of
the physical operators between standard basis states. To get physically relevant quantities (binding
energies, transition probabilities, spectroscopic factors, etc.) one has to transform the matrix elements on
the standard basis to matrix elements on a basis of cigenstates of the Hamiltonian. obtained by a
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diagonalization of the Hamiltonian matrix. Hence, accompanied by appropriate preparation programs and
programs for finishing off, program RITSSCHIL can be a powerful and flexible tool for microscopic
shell-model calculations.
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11 STATE SPACES OF SHELL OP3

IDX . DIMENSION N P (J] (TI] s
1. 1 0 ) 1 1 0
2 . 1 1 1 4 2 1
3. 1 2 ) 1 3 2
5 . 1 2 ) 3 1 2
5 . 1 2 o s 3 2
6 . 1 2 0 7 1 2
7. 1 3 1 2 2 3
8 . 1 3 1 4 2 3
9. 1 3 1 4 4 3

10 . 1 3 1 6 2 3
11 . 1 3 1 8 2 3
2 Z-OpP. SPACES OF SHELL OP3

IDX . DIMENSION N P {J] (T) s
1. 1 ) ) 1 1 )

2 . 1 1 1 4 2 1
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4 OPER. SPACES OF SHELL OP3

IDX . DIMENSION N P (J] (T) 5
1. 1 ) 0 1 1 o
2. 1 0 o 3 1 2
3. 1 o 0 3 3 2
4, 1 1 1 4 2 1
% STATE SPACES OF SHELL OP1

IDX . DIMENSION N P (J) (T} s
1 1 ) o) 1 1 )
2 1 1 1 2 2 1
3 1 2 o 1 3 2
4 1 2 0 3 1 2
5 1 3 1 2 2 3
2 Z-OP. SPACES OF SHELL OP1

IDX . DIMENSION N P {J] [T} s
1. 1 0 ) 1 1 )
2. 1 1 1 2 2 1
4 OPER. SPACES OF SHELL OP1

IDX . DIMENSION N P [J] [T} s
1. 1 o 0 1 1 o
2. 1 o ) 3 1 2
3. 1 o ) 3 3 2
4, 1 1 1 2 2 1
7 STATE SPACES OF SHELL p

IDX . DIMENSION N P (J)} (T] 5
1. 5 : 3 1 2 2 3
2. 1 3 1 2 4 3
3. 5 : 3 1 4 2 3
8 . 3 3 1 4 4 3
5 . 4 ; 3 1 6 2 3
6 . 1 3 1 6 4 3
7. 2 3 1 8 2 3
2 Z-OP. SPACES OF SHELL p

IDX . DIMENSION N P (J] (T] s
1. 1:. 1 1 2 2 1
2. 1 1 1 4 2 1
2 OPER. SPACES OF SHELL P

IDX . DIMENSION N P (J] (T] s
1. 4 ; o 0 3 1 2
2. 4 o o 3 3 2

THE MINIMAL NEEDED VALUES OF SOME PARAMETERS:
MOM; ¥ % xxx MRN: 12 MSP: 13 MSX: 8 MTR: 8 MZ4:
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MATRIX LIST OF SHELL 1 = OP3 =0 * O

(LYFTAP NUMBER: 31)

FINAL SPACE RECORDCOUNT RECORDLENGTH
7

19

27

41

57

71

87

115

139

167

187

YOO W

-
o
R N e ]

[
[

MATRIX LIST OF SHELL 2 = OPl =0 * O

(LYFTAP NUMBER: 32)

FINAL SPACE RECORDCOUNT RECORDLENGTH
1 7

19

27

41

57

"M p W N
R ]

MATRIX LIST OF SHELL 3 = P=1%*2

(LYFTAP NUMBER: 33)

FINAL SPACE RECORDCOUNT RECORDLENGTH
1 47

61

199

281

411

465

515

N d WN
e

THE MINIMAL NEEDED VALUES OF SOME PARAMETERS:
MIV: o MJO: 2 MME : 8 MSI: 5 MSO: 11



SURVEY OF LYFTAP

1 P
515 [¢]
4097 48

34363965448 1.73205080756880
68723736601-2,44948974278299
68727930912 1.58113883008402
103091830792 1.73205080756877
137447407641 1.58113883008407
137455763488 .730296743340165
171815534617 2.449483974278304
8193 56
34368192536 1.99999999999986
8194 62
34363965448 2.44948974278302
12289 132
34363965464-2.12132034355955
34372354064-.612372435695764
34376581136 .790569415042050
68727898121-2.58198889747143
68732092432 1.36930639376283
68736319504~ ,353553390593222
103091863585-1.99999999999979
103096057865-2.82842712474603
137447374872 1.93649167310350
137459957776 1.49999999999984
171811340312-1.11803398874985
171819728929 1.54919333848274
12290 142
34363998225~ .999999999999869
171802951705 3.16227766016820
12291 200
34363965472 1.73205080756873
68727898120 1.46059348668034
103083442201-1.22474487139151
103087669273 2.21359436211763
103091863560 3.16227766016817
137447374873 .547722557505111
137455763464-1.09544511501025
137455796256 2.39999999999969
171815501849 .774596669241411
171819728928-2.19999999999968
16385 220
34363998233-3.46410161513755
34376581137-2.23606797749962
68740513809-2.44948974278290
16386 230
34363965456-1.73205080756877
103083474968 2,23606797749966
16387 256
34363998241 2.82842712474591
34376581136~1.99999999999981
68732125217-1.13137084989832
68740513808 1.26491106406723
16388 282
34363965472 2.44948974278294
68723736601 4.47213595499909
68727930888-1.99999999999983
103087669273~4.47213595499903
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28679 20

34363998216-2.999999999999380
68727898120-1.15470053837917
103087636505 1.22474487139151
103091863560- .999999999999954
137451601952 1.41421356237296
137455796232—.9999999999999549
171819696160 .547722557505168

34372386825-2.82842712474603

34363998216 3.16227766016817

34363998232 1.22474487139154
34372386832~1.76776695296621
68723703832 1.58113883008406
68727898145 .816496580927652
68732125200 .790569415042054
103087636504 ,645497224367833
103096025097-1.6329931618553%
103100219408 .499999999999968
137447407640 1.11803398874979
137459990544~ .866025403784359
171815501848~ .866025403784366

68723736593-2.23606797749963

34363998240—.999999999999925
68727898144 1.27017059221706
103083474969~ ,707106781186507
103091830792 1.82574185835043
137443180569 1.22474487139151
137447407641 .316227766016810
137455763488 2,07846096908239
171811307545-.774596669241415
171815534617~ .447213595499923

34368192520-2.82842712474589
68727930905 3.16227766016800
103091863577-1.99999999999991

34363998224-2.236067/97749960

34368192521 3.99999999999959
68723736600-1.99999999999975
68736319497 1.,78885438199970
103096057880 3.,99999999999957

34363998240 3.16227766016806
68727898120-1.54919333848285
68727930912 3.79473319220151
103091830816 2.44948974278289

387

68723703833-1.41421356237298
68727898144 .912870929175199
103087669273 .707106781186514
137447374873~ .912870929176199
137455763464~ .577350269189594
171815501849 1.41421356237301
171819728928 2,84604989415118

34376581153-1.99999999999979

34368192521-1.99999999999982
34376548368 1,36930639376282
68723736600 2.73861278752560
68727930913 1.41421356237292
68736286736 .204124145231900
103087669272 1.11803398874979
103096025121 .516397779494277
103100252176 .866025403784388
137455796257-1.78885438199961
171811307544 1.93649167310361
171815534616-1.49999999999988

103083474976-2.,82842712474584

68723736584 2.82842712474591
68727930912 2,19999999999976
103087636505~1.27801930084524
103091830816 1.15470053837914
137443213337 3.53553390593243
137451601952 .799999999999898
137455796232 .632455532033639
171811340313~1.34164078649976
171819696160 1.73205080756878

34372386833~ ,999999999999922
68736319520 2.52982212813436
103100252192-3,46410161513703

103083442200 1.73205080756880

34372386832-1.99999999999984
68727930904 .894427190999817
68736319521 1.69705627484747
103100252193~-1,78885438199969

68723703833 3.46410161513744
68727898144 2.,93938769133941
103087636505~3.46410161513737
103091863584 3.16227766016790
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20483 346
34363998217 3.46410161513741
34368192545 1.46969384566972
34376548368~.670820393249858
68723736600-1.76776695296621
68732125217-2.39999999999969
68736319497 1.26491106406726
68740513808-.223606797749961

103087636504-1.25499003980094
103100219408~1.77482393492969
137451601944 3.07408522978771
137459990561-1.83303027798180

20484 368
34363998216-4,89897948556577
68727930888-3.57770876399938
103083474969 4.58257569495544
137451601952-4.09878030638276

20485 412
34363965448 4.09878030638350
68723703833 2.50998007960193
68727898144 2.59229627936281
103083442201 .547722557505089
103091830792--1.46385010942269
137447374873-1.89736659610076
1374516019452 .86854866240211

24579 426
34363998233 ,999999999999876
34376581128 3.57770876399938

24580 444
34363965464-1.73205080756872
34368159777 .979795897113135
34372354064~1.73205080756868

24581 456
34363998232 4.,09878030638330
34372386849~ ,692820323027444

24582 466
34363965448 2.89827534923765
34363998240 4.73286382647896

28677 494
34363965464-2.44948974278283
34372354057-2.61861468283170
34376548368-.925820099772420
68727930904-1.73205080756879
68736319521~4.05674042269584

28678 500
34363998240-3.09838667696546
28679 516

34363965448 2.26778683805522
68723703833~2.26778683805509
68727930912 1,24211800681571
4 o]
16777215 48
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34368159753~2.68328157299952
34372354064~ .670820393249862
34376581136 .387298334620702
68727898136 2.46475150877292
68736286729-2.19089023002049
68736319521 .799999999999901
103083442200 2,80624304008023
103087669272 2.17370651192815
103100252176-3.07408522978758
137455763480~1.77482393492963

34368192529 1.09544511501019
68727930912~ ,565685424949159
103087669280~2.59229627936273

34363965472 1.94422220952215
68723736601 1.44913767461878
68727930888-1.18321595661985
103083474969 .948683298050394
103091830816 3.70328039908975
137447407641 1.09544511501019
137455763488 3.24037034920333

34368192537 4.02492235949907
34376581152 .565685424949159

34363998232-2.23606797749954
34368192521-3,99999999999964
34372386832-2,23606797749953

34368192521-3, 34664010613604
34376581136~-3,09838667696550

34363965472 3.66606055596417

34363998232 4.24264068711869

34372354081 .828078671210733

34376581136-1.60356745147434

68732092440-1.96396101212369

68723736601 4.89897948556600

34363965472 4.30282299360337
68723736601-3.92792202424741

16777215 1

34368159777 .848528137423770
34372386832 1,16189500386210
68723703832-.612372425695750
68727930904 1, 42302494707561
68736286753 .692820323027462
68740481040 .387298334620706
103083474968 1.62018517460185
103096057889-1..83303027798207
137451569176 1.77482393492978
1374565796248 1.02469507659582

68723736601 .999999999999901
68732125201~1.99999999999978
137447407641-2.89827534923744

34363998240 3.36749164809615
68727898120 2.04939015319177
68727930912 2,99332590941877
103087669280 .489897948556564
103091863560-2,53546276418537
137451569177-1.65615734242140
137455796256 1.44321070632708

34372386848 3,39411254969494
34380775441~ .632455532033610

34368159753-3,09838667696567

34368192545 1.26491106406716

34368192545 2.,11660104885136

34363998216 3.74165738677362

34368192545-2.19089023002036
34372386825-4,53557367611037
68727898136 2.99999999999979
68732125208-3,40168025708263

34363998216 3,92792202424764
68727898144 5,01996015920375



