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The magnetic decoupling method, applied to highly ionized nuclear-excited 180 atoms, has yielded for the 198 
MeV 2 + state the value Jg I = 0.35 ± 0.04. In conjunction with the recently determined negative sign, this value agrees 
well with weak/-/coupling predictions. 

The study of hyperfine interactions in isolated ions 
has been extended in recent years to the highest ioniza- 
tion states of light atoms (Z = 6 - 12) [1,2].  The 
large magnetic fields associated with the single-electron 
ionic ground-state [3] have enabled the determination 
of nuclear magnetic moments for levels with lifetimes 
in the 10 -12 s range [4]. 

Indeed, the g-factor of the 180 (2 + ) level was the 
first to be determined in such an environment [5 ]. In 
that measurement, the time-integral version of the 
PAC technique was applied to magnetically separated 
1807+ ions recoiling into vacuum. As the fraction of 
ions in the ground state (with which the large HF field 
of 86 MG is associated [3] ) is not very well known, the 
g-factor could only be determined within rather broad 
limits (t ql = 0.20 - 0.36). As these limits depart con- 
siderably from the/-/coupling prediction of -0 .76 for 

2 a pure d5/2 neutron configuration, a determination of 
the sign and precise absolute magnitude were called for. 

* On leave from the Nuclear Physics Department, Weizmann 
Institute, Rehovot, Israel. 

A recent measurement utilizing the transient field ef- 
fect on recoil in polarized iron has shown the sign to 
be negative [6]. 

The following describes a PAC measurement of Igl 
by means of the magnetic decoupling method, in 
which the HF-interacting ionic system is subjected to 
an external magnetic field, applied along the beam di- 
rection. A preliminary result has been reported in ref. 
[16]. In the field range intermediate between free HF 
coupling and the Paschen-Back effect (which corre- 
sponds to an unperturbed correlation) the perturba- 
tion is governed by the ratio of the nuclear and elec- 
tron magnetic moments. The method has recently 
been successfully implemented in determining the g- 
factor of the 160 (3 - )  level in ions of low charge [7]. 
It has the advantage over the time-integral version of 
PAC (as far as data interpretation is concerned) of re- 
duced sensitivity [4] to the abundances of the perturb- 
ing electron configurations in the ionic ensemble. 

The 180 first 2 + level was populated in the reaction 
4He(180, a)180 using a 1806+ beam of 200 nA at a 
bombarding energy of 44 MeV from the K61n FN 
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Fig. 1. Schematic view of the experimental set-up 

Tandem accelerator. The 4He gas target was contained 
between a nickel entrance window (500 #g/cm 2 thick) 
and a gold beam stop (40 mg/cm 2 thick). The 1.98 
MeV "),-rays were detected in two 11.4 X 12.7 cm 
Nal (T1) scintillators in coincidence with inelastic 
knock-on a-particles leading to the first excited state, 
observed in a 500 tim thick silicon surface-barrier de- 

tector located 40 mm from the centre of  the target. 
The target and particle-detector assembly was 
mounted inside the 12 mm diameter room-tempera- 
ture bore of  a 100 kG superconducting magnet (fig. 1) 
The scintillators were placed at a face distance of  40 
cm from the target. This distance was dictated by the 
residual fields at the photomultipliers (despite elabo- 
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Fig. 2. Spectrum of knock-on a-particles 

rate magnetic shielding) rather than by finite-geometry 
considerations. No influence of the external field on 
the particle detector was observed. A typical particle 
spectrum is shown in fig. 2. The maximum gain change 
of the scintillators over the whole field range was 20% 
and no long-term magnetization effects were encoun- 
tered. The fast timing of 5 ns FWHM resolution was 
stable to within 2 ns throughout. The constancy of the 
relative scintillator efficiency was verified with singles 
spectra of a 6°Co source at each field setting before and 
after the coincidence run. 

The experiment consisted in measuring the coinci- 
dent ?-ray counting rate ratio R (450/90 °) as function 
of the applied longitudinal field, which was varied be- 
tween 0 and 82 kG. The absolute anisotropy W(45°)/ 
W(90°), plotted in fig. 3 as a function of the external 
field, was determined by normalizing each counting- 
rate ratio to the zero-field value measured in absorp- 
tion-free conditions (without the magnet). A small cor- 
rection for the motion of the ")'-ray source was also ap- 
plied. 

The anisotropy of the unperturbed correlation was 
measured on recoil in a metal backing. This was accom- 
plished with the aid of a 4He target (4/ag/em 2 thick) 
implanted at 60 keV into a 4.5 mg/cm 2 thick nickel 
foil. The target was bombarded at the same 180 energy 
and in identical detector geometry in a highly pure 3He 
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Fig. 3. Gamma-ray anisotropy versus applied magnetic field. 
The unperturbed value (open circle) was obtained on recoil 
in nickel. The solid line is a least-squares fit to the data. 

environment (for cooling) at a pressure of  40 torr. 
Under these conditions, no deterioration of the thick- 
ness or position of the 4He layer in the Ni foil were 
detectable over a two-day running period with a beam 
of 200 nA. The sharp energy dependence of the par- 
ticle yield ratio a 1/a 0 served to set and monitor the 
effective bombarding energy. 

For such a short-lived nuclear level (r2÷ = 3.4 ps 
[8,9])  it has been demonstrated [4, 5] that the per- 
turbation in free ions is almost exclusively associated 
with the single-electron-ion ground-configuration. In- 
deed, the strong zero-field perturbation observed in 
the present work confirms this and implies that about 
40% of all ions occupy this configuration over the nu- 
clear lifetime. This value is in line with known charge- 
state abundances [ 10] and the well-established predom- 
inance of ionic ground-state formation [4]. In this 
context, it should be borne in mind that the 180 ions 
emerge from the nickel entrance window into the gas 
at a velocity u i = 0.073 c and are abruptly decelerated 
to of = 0.048 c in the nuclear collision. Subsequent ion- 
atom collisions within the nuclear lifetime can be con- 
sidered infrequent and insignificant at the operating 
helium pressure of 150 torr on the basis of the follow- 
ing external data: 

a) measured charge-exchange cross sections [ 11 ] ; 
b) a very weak pressure dependence of the pertur- 

bation observed in similar ions [12]. 
The external field therefore acts on an ensemble of nu- 
clear-excited ions undergoing static hyperfine coupling. 
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As outlined in ref. [7],  the deduction of  the g-fac- 
tor from the data involves the diagonalization o f  the 
following Hamiltonian for each value o f  the applied 
field: 

J( = a ( l ' J )  - Hext(ll I + l l j)  z 

where I ~ i  ) and JOt j )  are the nuclear and electron an- 
gular momentum (magnetic moment)  operators and a 
is the free-ion HF coupling constant (for the single- 
electron oxygen-ion ground state, a = 5.40 X 10 -4 
X gl [eV] [3] ). The external field is applied along the 
beam direction which, in this detector geometry, coin- 
cides with the symmetry axis of  nuclear alignment 
(chosen for convenience as the z-direction). 

The interacting system is not isotropic, as the ex- 
ternal field introduces a preferred direction. Conse- 
quently, in the intermediate coupling region, the angu- 
lar correlation: 

w(o,r) = k~,k, Ak(a) Ak'("t) Gkk,Pk,(COS O. r) 

includes terms with k :/: k'.  
The curve through the data in fig. 3 represents a 

least-squares fit with the nuclear g-factor Igl I and the 
effective occupation probability a(l  s) of  the single- 
electron-ion ground state as parameters. This yields 
Igl I = 0.35 -+ 0.04 and o~(1 s) = 0.38 -+ 0.02. The error 
matrix shows that these values are virtually uncorre- 
lated [ ! 3 ]. Moreover, the interpretation is insensitive 
to the precise values of  characteristic time parameters 
such as the nuclear lifetime and atomic feeding times. 
The value and precision of  the g-factor is unaffected in 
this particular case by the inclusion of  the unperturbed 
value in the fit, although a factor of  two improvement 
in precision would be obtained for a similar improve- 
ment in the unperturbed value. 

The deduced value of  Igll is in good agreement with 
weak/'-] coupling calculations of  Ellis and Engeland 
[14],  in which the predominant d2/2 neutron configu- 
ration is accompanied by sizeable admixtures o f  other 

configurations. This calculation predicts correctly the 
magnetic moments of  the first 2 + and 4 + [15] levels 
and also their mean lifetimes, which are related to the 
E2 matrix elements for the transitions 4 + ~ 2 + and 
2 + -+ 0 +. 
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