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HIERARCHICAL PARALLEL MEMORY-SYSTEMS,
AND MULTI-PERIODIC SKEWING SCHEMES

Gerard Tel and Harry A.G. Wijshoff

Department of Computer Science, University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. The theory of skewing schemes deals with the problem of distributing data in paral-
lel memories, in such a way that parallel computations can proceed efficiently. Until now skew-
ing schemes have been studied from the viewpoint of the BSP and ILLIAC IV architectures. In
the present paper we are concerned with hierarchically organized parallel memory-systems, for
which a new class of skewing schemes is introduced, namely the multi-periodic skewing
schemes. We show that multi-periodic skewing schemes are an extension of both the periodic
skewing schemes and the diamond schemes for traditional parallel memories. It is also shown
that the schemes work out very well for many applications and, in particular, a bound on the
minimum number of memory banks needed for certain applications is derived. Furthermore,
multi-periodic skewing schemes can be represented at the cost of only a small amount of
space, which makes them of practical interest.

1. Introduction.

The availability of data in multi-processor computations heavily influences the actual per-
formance of such computations. For this reason considerable attention has been given to the
problem of storing data in such a way that the data can be retrieved rapidly and without much
overhead cost. Until now the problem has been studied mainly in the context of the BSP and
ILLIAC IV architectures, which contain a number of memory banks that are directly connected
(via an interconnection network) to a number of processors [1,3]. See figure 1. In this context
classes of data mappings known as skewing schemes have been defined, and a study was initi-
ated of the validity of certain skewing schemes for collections of data templates. Suppose
there are M parallel memories and letO, 1, ..., M—1 represent the memory banks.

Definition 1.1. A skewing scheme s is a map from Z to the (finite) set {0,1,...,.M-1}.
Thus a skewing scheme s denotes how the elements of a d-dimensional array, which is the

most common data structure in numerical computations, have to be distributed over the
memory banks. (We ignore the assignment of individual addresses within the memory banks.)
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Definition 1.2,

() A data-template T is defined to be any finite set T={d, @, . . . vd,_1} with @; e
Z? and @, = 0(=(0,0,...,0)).

(i) An instance T(X) of a data-template T (X € Z%) is defined by TR) =
{@dotx, 342, . . . ydp_ 143}

(ili) A skewing scheme s is valid for T iff V% s|T@) is an injection.

A template denotes a "vector" of array elements which the processors want to access in paral-

lel. If a skewing scheme is valid for a template T, then the processors can fetch (or store)
each instance of T in one memory cycle.

In many of today’s Supercomputers the memory system is more complex and hierarchi-
cally organized, e.g. the CRAY-1 comprises a main memory, divided into 16 memory banks,
feeding data to and from a set of scalar and vector registers. In figure 2 the overall structure of
such a system is depicted. In a hierarchically structured memory it is obvious that one should
not consider all the instances of a certain template T, but only those which do not overlap too
much. For, whenever a particular instance of T has been processed, it is likely that this
instance is still kept in the data-buffers. If the next instance of T which has to be processed
overlaps the previous instance, then only the non-overlapped part of it needs to be fetched from
the memory banks.

For this purpose, we shall consider only those instances T(X) of T, with X € L and L a lattice
<z
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Definition 1.3. A lattice L ¢ 24 is defined to be any set L={A,.? X+ +hy 2, |\ e ZZ},
with i)], e ,i’deZd, and det(?c’l, e ,.?d)¢0. {.?1, e ’i’d} is called the basis OfL, and the
determinant A(L) of L is defined by A(L)= |det(Z,..X,)|.

It can be shown that A(L) is independent of the particular basis chosen for L. Points
=@ P2 ... ,p;) and 9=(91, 92, - - . ,q;) are said to be equivalent modulo L, notation
p=q,ifp—q e L.

It appears that for commonly used templates T there always exists a lattice L ¢ Z°, such that
(1) A(L)y=O(IT)), and (ii) for all ¥ € Z? there exists a ¥ € L such that y € T@). See figure 3
for some examples (d=2).

Definition 1.4. Let L be a lattice c Z° A skewing scheme s is L-valid for T iff Vel
s[T(X) is an injection,

General skewing schemes are not much of practical interest if a high price must be paid
for representing the scheme and computing the bank number. Periodic and linear skewing
schemes were introduced to remedy this problem [1, 4, 5, 6]. These schemes are completely
defined by finite tabular information, and can be represented by a single arithmetic formula [6].
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In section 2 of this paper we show that periodic skewing schemes are too "strong" for just
obtaining L-validity. Therefore we introduce a weaker and more general version of these
schemes: the multi-periodic skewing schemes. It turns out that the multi-periodic skewing
schemes also are an extension of the diamond schemes of Jalby et. al. [2], and thus appear to
be a suitable unified class of schemes for a great variety of purposes. We show in section 3
that multi-periodic schemes are quite suitable for skewing a collection of templates, such that
they are L-valid for this collection of templates. In section 4 we show that multi-periodic skew-
ing schemes can be compactly represented, like ordinary periodic schemes.



2. Multi-periodic skewing schemes.

We first recall the definition of periodic skewing schemes. A thorough study of these
schemes can be found in [5, 6].

Definition 2.1. A skewing scheme s: Z%—{0,1,..,M~1} is called periodic if there exist
dody, ... ,dy_€Z’ and a lattice L c Z® such that for all i€ {0,1,....M-1}
s~Yi)={@;+2| PeL}.

The following proposition directly follows from [5, prop.4.1].

Proposition 2.2. Given a periodic skewing scheme s, a template T and a lattice L < Z°.
Then s is L-valid for T iff s is valid for T.

From proposition 2.2 follows that, while the property of L-validity is weaker than unrestricted
validity, the two notions are equivalent for periodic skewing schemes. To take full advantage
of the weaker requirement of L-validity we need a class of skewing schemes, which are as
attractive as the periodic schewing schemes, but which are not as strictly tied to the lattice
structure. The skewing schemes which fit these conditions are the multi-periodic skewing
schemes, introduced in the following definitions.

Definition 2.3. Let L ¢ Z? be a lattice, with basis 7,7, . . . ,X4. For every 2eZ% let
a+L = {@+X|XeL}=2Z%. Let nZ be the isomorphism: 17: #+L — Z¢, with
n? (@+i1 Ry Hig ot 4y ) = (viz - . . ,ig). The d-reduced skewing scheme s of a skew-

ing scheme s: Z"—){O,l,...,M—l} is defined by s,?: Z“—)A, A < {0,1,.,M-1}, and
LG )=s (857

Definition 2.4. A skewing scheme s: Z%—{0,1,....M~1} is called multi-periodic if there exists
a lattice L ¢ Z? such that for all e Z? sL7 is periodic. (L is called the underlying lattice of
s8.)

Note that the periodic skewing schemes are multi-periodic.

Proposition 2.5. Given a skewing scheme s: Z2¢ —{0,1,...M-1}. If s is periodic, then s is
multi-periodic.
Proof:

Take L=Z¢. O

We show that the multi-periodic skewing schemes are an extension of the diamond schemes as
well. Diamond schemes were introduced by Jalby et. al.[2]. We give the definition in our
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lattice-framework. Let S, be the symmetric group, i.e., the group of permutations on M ele-
ments.

Definition 2.6. A skewing scheme s; Z¢ —{0,1,...,.M-1} is called a diamond scheme iff there
exists a lattice L ¢ Z? with basis {%,%,, ... %3}, and d commuting permutations
AbAz ... ,AygeSy such that for all ¥ € Z¢ and for all 1<i<d: S(X+X;) = A (8(X)). (L is
called the underlying lattice of s.)

Jalby et.al.[2] actually defined the diamond schemes only for the case that the underlying
lattice L is defined by an orthogonal basis. In order to prove that the multi-periodic schemes

are an extension of the diamond schemes, we need the following characterisation of periodic
schemes.

Lemma 2.7. Lets: Z¢ —{0,1,...,.M-1} be a skewing scheme using M memory banks. Then s
is periodic iff V Xe Z? 3 63eSy V e Z, s§+R) = S2(s(¥)).
Proof:

The proof makes use of the following fact. ;
Fact 2.7.1. [5, prop. 2.3] A skewing scheme s is periodic iff for all X, ¥’ € Z7: if 5(X) = s(3),
then for all X', ¥, with ¥~§* = %3, s@") = s(Y).

(=>) Let s be a periodic skewing scheme, and ¥ e Z°. Define o3 as follows: if s(y) = p,
¥ € Z°, then 02(p) = s(X+Y). This definition is sound because, if s(y)=p and s@)=p for 72
then from fact 2.7.1 follows that s (+¥)=s(+Z). It is obvious that o3 fits the conditions.
(e=)Let ¥, Z, V', 2" be such that s(¥)=8(Z) and ¥'-Z’=3-2. Define X=y—y(=2"-2). Then
s(Y )=03(s(¥)) and $(Z")=03(s(2)). Hence s3)=s(Z). From fact 2.7.1 it follows that s is
periodic. O

Let Ran (s°) denote the set {s7 (%)| % € Z¢1.

Theorem 2.8. Let s be a skewing scheme defined on Z%. s is a diamond scheme with a
underlying lattice L iff

(1) s is a multi-periodic skewing scheme with underlying lattice L, and

() for all @, B € Z2%, with @ #; b’ is valid that Ran (s,?) N Ran (sLy) =, or, there exists a
yeZ? such that for all ¥ Z¢ sA(®) = P G+y).

Proof:
(=) Let 5:27¢ — {0, 1, ..., M~1} be a diamond scheme. Then there exist a d-dimensional
lattice L ¢ 2Z° with basis {X1%5,...,%;} and d commuting permutations

ApAy . . . ,Ag€ Sy, such that Vi e Z¢ Vi<i<d s@+2;) = A (s ().
Consider an arbitrary % € Z?. Then 52 Z'>A3.  Azc {01, .., M-1}, and
sL? @+e;) = X,-(sf(i’)), with {€,,€,, . . . ,2,} the orthonormal basis of Z°. So given ¥ € Z°,
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y arbitrary, we can define Oy = AT 2..AJ%, such that for all ¥ € Z¢ s,?(i’ﬂ?’) = Gy(sl?(f)).
From lemma 2.7 it follows that s,? is a periodic skewing scheme. Consider Ran (st?) and
Ran (si), for a’, b e Z°.
Then Ran (s7) = {A' A2 - - - A¥ 8@)| ivyigyoiy € Z} and
Ran (sf) = (A" Ay - MisB)| ipig.igeZ}

Suppose Ran (sLx) M Ran (sLB) )# @. Then s(b’) € Ran (sL?) and Ran (slf?) = Ran (s,? ). So
there exist i},i},..ijeZ such that sB)=AT.A%. - . A¥s@).  Take
¥ =1, i3, .mij) € Z°. Thenforall @ ¢ Z¢, ¥ = (1% - - . ,x0)},
L@ DNz x)=s (B Gt . x)

=s(5’+xli'l+x2?c'2+...+xd5c'd)

=M% A ()

=lfl+i;)v;z+i;' L X:‘H‘;s(&’)

=5 (@+H(x o R HE i Rk Hrg )R )

=5 () e Hi} xp+i3 g i)

=SL?('?+5,))'

(%=) Lets : Z% > {0, 1, .., M=1} be a multi-periodic skewing scheme, which satisfies
the constraints of the theorem. Consider a ¢ {0, 1, ..., M~1}. From the periodicity of each sL‘—’)
and from the constraints it follows that for all , y’ e s™Wa)and 7 € L: s(P+2) = s (P+2).
Define A,,A,, ... ,A; € Sy, by Ai(a) = s(¥+X;), for some % s 1a@). The soundness of
this definition follows from the previous statement. And furthermore it is obvious that for all
e Z°, 1sisd, s@42) = M(s®). O

Actually the set of permutations {A,'A? - - - A2 1i2 - - . ,iqg € Z} is a subgroup of Sy,.

And, hence, Ran (s) = {llilkziz ce l;‘s @) iyiy, ... ,iy € Z} forms an orbit of the set
{0,1,...,M~-1}, for arbitrary ¢ € Z?. From elementary group theory it is known that the set of
orbits form a partition of the set {0,1,...,M-1}.

Corollary 2.9. If s is a periodic skewing scheme, then s is a diamond scheme.
Proof:

From proposition 2.5 it follows that s is multi-periodic and s obviously satisfies the condi-
tions of theorem 2.8. [



In the remainder of this section we shall examine the definition of the multi-periodic
skewing schemes more thoroughly. We could for instance, extend these skewing schemes as

well, by requiring that the s;’s are not strictly periodic, but e.g. multi-periodic themselves.
Call these schemes multi-multi-periodic.

Definition 2.10. A skewing scheme s : Z% — {0,1,...M~1} is called multi-multi-periodic if
there exists a lattice L ¢ 2¢ (the underlying lattice of s) such that for all 2 e z sL? is
periodic, or, for all 2 ¢ Z¢ sL? is multi-multi-periodic and all the sL?’s have the same underly-
ing lattice.

Although it is not immediately obvious, we do not achieve anything with this extension. Every
multi-multi-periodic scheme is Jjust mult-periodic.

Lemma 2.11. Let s: 2% - {0,1,...M~1} be a skewing scheme. Then s is multi-multi-
periodic iff s is multi-periodic.
Proof:

Lets : Z* — {0,1,..,.M~1} be multi-multi-periodic (write % for s). Then 3 £0, such that
for arbitrary 3 € ¢ s, osL? (write ls), lsL? (write %s5),..., ‘s (write 1) are multi-multi-
periodic but not periodic, and **s7 is periodic. Let LoLy, ... ,L, be lattices < Z% such that
L; is the underlying lattice of ‘s, and let for each i {#{9, i’z(i), vy 59} be a basis of L;.
Define the dxd-matrices ApAy ... A by

Ag= @1y - - %y)
and for all 1<i<¢
Ai = A ZP) A_ZP 4 2P)

Define the lattice L, with basis {,,%,, . . . ,%,}, by X; = A", then from definition 2.10 fol-
lows that for all 2 € Z¢ s,? is periodic, which ends the proof. [

Lemma 2.11 will be of use in the next section, where we shall study the L-validity of multi-
periodic skewing schemes.

3. Multi-periodic skewing with a minimum number of memory banks.

In this section we show that the multi-periodic skewing schemes lend themselves quite
well for the L-valid skewing of one ore more templates T. We first need some notions.
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Definition 3.1. Given a collection of templates C={T|,T, . . . ,T,} and a lattice L < 2Z¢, let
Hz (C) (respectively up(C), KP(C)) be the minimum number M, such that there exists an arbi-
trary (resp. periodic, multi-periodic) skewing scheme s: Z¢ —{0,1,...,M-1} which is L-valid
for each T;eC.

AP(C) is the minimum number 8, such that there exists a multi-periodic skewing scheme
s Z”—){O,l,...,u{,"”(C)}, that is L-valid for C and has an underlying lattice L” such that
A(L")=8.

Note that for a periodic skewing scheme s: Z“—){O,l,...,M—l} the determinant of the underly-
ing lattice L is equal to M [5].

The reason why we are interested in the number AL?(C) is that this number is a measure for
the representation-costs, as we shall see in section 4. An important means for determining the
number uf, (C) is the fundamental domain of a lattice [5].

Definition 3.2. Given a lattice L ¢ Z¢. A fundamental domain F of L is any (viz. con-
nected) set < Z% such that

1) no two points of F are equivalent mod L, and
2) every point X € Z? is equivalent mod L to a point of F.

(Thus, F has exactly one point from every equivalent class mod L, F forms an embedding of
Z°/L, and [F|=A(L).) The following two facts are of interest.

Fact 3.3. [5]. Given a template T and a periodic skewing scheme s with underlying lattice L.
Let F be a fundamental domain of L. Then s is valid for T iff for every % € F there exists at
most one element ¥ € T such that ¥ = y.

Fact 3.4. [5]. Hz4(C), C arbitrary, can be computed in time polynomial in N and k, with
N=max {|X], X e T; € C}.

First we show that the multi-periodic skewing schemes are stronger than the periodic schemes

in the sense that one may be able to skew collections of templates in fewer memory banks
with the former.

Lemma 3.5. For all d>0 there exists a collection C of templates such that Wz (C) > W728(C).
Proof:

Let C consist of one template T, defined by T={(0,0.,...,0), (2,0,...,0)}. Then nhs (C)=3
and p22 (C)= 2. O

For the one-dimensional case this lemma can even be strengthened.
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Theorem 3.6. Given C={T,,T,, . .. Ty}, with all T; ¢ ZZ.
Then puz? (C) = pz (C).
Proof:
Lets:Z — {0, 1, ..., pz(C)-1} be an arbitrary skewing scheme valid for C, and let
a= ma; [k-1l. Consider the a-tuples £o,ty,t5,... with ;=(s(i),s (i+1),..., s(i+a—1)). By the

k,le i
pidgeon-hole principle there must exist p and g such that ¢, = t;. Define the skewing scheme
$"Z — {0, 1, ..., px(C)>1} by s°(i) = s(p+i(mod g—p)). Then s is valid for C also.
Furthermore s * is multi-periodic with an underlying lattice defined by the basis {(g-p)}. O

So for the one-dimensional case the minimum number of memory banks Wz(C) may be
achieved by a multi-periodic skewing scheme, although the determinant of the underlying lat-
tice of s is exponential in pz(C). The question , whether this holds for higher dimensions also,
seems to be more complicated and is left open. The following theorem gives a bound on the
number of memory banks needed for L-validly skewing a collection of templates.

Theorem 3.7. Given a collection of templates C={T,,..,T,},T; ¢ Z% (I<i<t), a d-
dimensional lattice L ¢ Z; and a partition B={B,B,, . ..,B,} of a fundamental domain of
L.Let By={@}a%, - @ ,’:} for all 1<k<r. Then there exists a multi-periodic skewing scheme
s, with underlying lattice L, such that s is L-valid for C and s uses M* memory banks.
Where

. . » b 2t
M*= ¥ mi R ({XT ) 42, AT 5" 42,00 T, 42} =Cp),
1Sk<r ?132,"' i ] ]
..S’wk'EZd
with 7 = nZ(T;~@+L)).
Proof:
Let for each B,, 1<k<r, %, %, ,., X\p,1 € Z° be arbitrary and

s Z° > {0, 1, ..., My—1} be a periodic skewing scheme which is valid for C,. Construct
the skewing scheme s :2Z¢ — {0, 1,.., 3M;—1}, by defining for each k, 1<k<r,
j

SHEHL| @ € B} by sG7) = s@h) (FeL) = s G20+ T M,
1Sj<k

Then for each k,1 (k#l): {@+L | a € By}n{d+L| @ € B;} = @ and

Ran (s/{a+L | @’ € B,}) " Ran (s/{a+L | a’ € B}) = Q.
Thus s is defined sound and between the sets {@+L| @ € B,} and {@+L | @’ € B;} "no
conflicts" can occur. This means that there is no instance Tj(i’) of some template T; such that
3pe{d+l| d@ eB,},§ e {@+L| a € B} with p’, ¢’ € T;(¥’) and s(p’) = s(¢’). That
"no conflicts" can occur on each set {a+L | @’ e B, } itself, follows from the fact that 5 is
valid for C;,. O
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Theorem 3.8. The number M* can be computed in time polynomial in b, N and ¢, with

— . - Nz 1
N =max |T|, b = max( " ). 18,

Proof:
From fact 3.3 follows, that we do not have to consider for each By all possible choices of
the points ¥,,%,,...,% B, 1> but only those which belong to a fundamental domain of the

underlying lattice of the periodic skewing scheme s, concerned. Together with fact 3.4 this
gives the desired result. [

Thus when we take a partition B={B,B,, . . . »B,} such that for all 1<i<r IB;|<c, for some
constant c, then the number M* can be computed in time polynomial in N and t. Because of
the premisses, that are made in section 1, we may assume that for each template T; and 7 € F,

F a fundamental domain of L, IT; n @ +L)| is small. With respect to this the following
theorem and corollary are interesting.

Theorem 3.9. Given a template T ¢ Z, and a lattice L < Z,, with basis {¥}, ¥y, ....%;}
and a fundamental domain F. If for all @ eF there exists a 5 e Z¢ such that
T n(@+L) c {5, b'+%,, B’+X,.., B'+23}, but T A (@+L) # { B+%;,B-%2;| ie Iz} for
some Iz ¢ {1,2,...,d}, then there exists a multi-periodic skewing scheme s with underlying lat-

tice L, such that s is L -valid for T and s uses |T'| memory banks.
Proof:

Let T satisfy the condition. Without loss of generality we assume that for all 1<i<d
B+ € T N (@+L) or B-X; € T N (@+L). Then we have that for @’ e F, @& arbitrary,
nE(T N (@+L)) {lerca . .. ,cp), (cixlcy, ..o ,ep), (c1,eat1,c3,.0¢4), ..,

(01,02,---,04-1,Cdi D},
for some (c;,cy,...,c4) € 27, and

2d+1if (c1,cp.064) € M (TA(@+L))

a -
IE TA@L)I <), o (€1,€2006a) & NF (TN(@+L)),

From fact 3.3 and theorem 3.7 follows that we only need to prove that for an arbitrary tem-
plate T", with T ¢ {(....,0), (+1,0.,...,0), 0,+1,0,...,0), ..., ©....,0,+ 1)} (=x9),

) 2d+1if (0,...0) e T~
IT"| < 2d-1if (0,..,0) ¢ T,

and with T° d-dimensional, wich means that for all 1<i<d : (0,_...1,0, 1, Oh...,_O) € T or
- —1i
(0,...1,0, -1, Oa...,_O) € T’ there exists a periodic skewing scheme s”: 2Z¢ — {0,1,...,IT"|-1},
i~ ~1i

which is valid for T*. We shall prove a slightly stronger version of this statement.

Claim 3.9.1. For all T c X4, T d-dimensional, is valid that
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if (0,...,0) € T and [T"|<2d+1 or if (©,...,0) ¢ T’ and [T"|=2d-1

then for all s,t € ZZ there exist points Xl P ioeF 1 Z 1riZs € Z2, such that for all 1sj<t
34, € Z% with X-q4;=4 j—¥; and such that there exists a periodic skewing scheme
81 2Z% - {0,1,...,[T+2t+5~1} which is valid for T U Fihsis U Fihsis VU &ihisicos

else for all s € Z there exists points 21,22,...,2, € Z°, such that there exists a periodic skew-
ing scheme s: Z% — {0,1,...,IT"|+s—1} which is valid for T VU {Z; haiss -

Proof:
The proof is done by induction.

For d=1 the templates to consider are:

D,Band E

It can be verified that these templates meet the conditions. Let for d=k the claim be valid and
let T* ¢ x**1 T~ (k+1)-dimensional. Then we have two cases.
Case 1. (0,...,0) € T’ and IT’| = 2(k+1)+1 or
©,...,0) ¢ T" and T’ = 2(k+1)~1.
Case 2. (0,...,0) € T’ and IT] < 2(k+1) or
©.,....0) ¢ T  and [T"| < 2(k+1)-2.
Consider case 1. Let 5,t € Z be arbitrary.
If (0,..,0)e T and T]=2(k+1)+1, then there exists a j, 1<j<k+l, such that
|{(o:_._..l,o, x, (2:.‘_1(1))| X€ Z}NT|=3. Thus there exists a T c Xk, T k-dimensional,

©....,0) € T, and [T*"}=2k+1, such that

T'A®1P 2 Pi-1.0Pi 415 Prsy) | P12 Pio 1PistrPry € T3 U
{(0,...,0,1,0,...,0), ,...,0, -1, 0,...,0)}.
iRl i k-idl

—i+
Then from the induction hypothesis follows that there exists points ¥y,...2, 41, ¥is-Fies
21,...,25 € Z%, such that for all 1sj<t+1 there exists a q; with Xj~q; = gj—¥; (**) and such
that there exists a periodic skewing scheme s : Z¢ — {0,1,...,IT"|+2(t+1)+s-1} which is valid
for T =T U {#; higras U Dihsisan U Zihg (%),
Consider now
T-'={(P1»P2’---»Pi—1’0,Pi+1,---st+1)|(P1.P2,---,Pi-1»Pi+1s---,Pk+1) € T7-{Z1.5 41} 1.
An analogous argument as in the proof of theorem 3.7 together with (*) provides the existence
of a multi-periodic skewing scheme s” : Z**! {0, 1, ..., [T"|+2t+s-1} which is valid for T".
With the use of (**) it turns out that s~ is periodic as well. The case that 0,...,0) ¢ T and
[T“|=2(k+1)-1 can be handled analogously.
Consider case 2. Let s € Z be arbitrary.
If .,..,0)e T" and T’] < 2(k+1), then there exists a I<i<k+l such that
l{(O;:.fO, x, 2:}2(1))| X € Z} < T'| = 2. Thus there exists a T < Xk, T k-dimensional, such

that



-13 -

T = {® 1P 2 Pi1s 0s PistreePis1) | @ 1oees Pic 1:Pis1orsPis) €
0,...,0,1,0,...,0)},
i P i a1 ), or

T } - {(oi’:i’o’— l,g:-‘-:-(l))}.

Now a similar argument as in the above can be used to show the existence of points
21,25 € Z4 and a periodic skewing scheme s : Z; - {0, 1, ..., [T"|+s—1} which is valid for
T’ U {Zi haiss -

The case that (0,...,0) ¢ T and [T’| < 2(k+1)-2 can be handled analogously. [

As a direct consequence we have:

Corollary 3.10. Given a template T ¢ Z* and a lattice L ¢ Z¢, with basis {¥,,%,,...,%,} and
fundamental domain F. Let for all &’ F there exists a 5 e Z%, such that
T N(@+L) c {B, B+, B +7s,.....5'+%4}. If @,dy,...,3, are the points of F such that for
al i, ISiss T N (@;+L) = {B+X;,B-%; | ie I3.}, for some Iz < {1,2, ..d}, and if for
[sise-iy € {1,2, ...,d} we have for all i, 1<i<s, there exists a i; such that ijelz,, then there
exists a multi-periodic skewing scheme s; Z% —{0,1,...,]T|-1}, which is L-valid for T and has
an underlying lattice L' with basis
{x"l,...,f’,-l_1,2?,-1,:?’,-1“,...,32’,-2_,,Zf’,-z,f’,-#l, ...... ,f’,-,_l,Zf',-',f’,-ﬁl,...,f’d}.

Jalby et. al. [2] have given a weaker and slightly different version of theorem 3.9 and corollary
3.10. They have proven that for templates T < Z2, with the property that for all @’ € F there
exists a 5” € Z2, such that T N (@+L) < {F, B+& 1» B+Xy, B+X+X,}, there exists a diamond
scheme which uses [T| memory banks.

Theorem 3.7 does not always yield a multi-periodic skewing scheme which uses the
minimum number of memory banks, p; (C), as is shown in the next lemma.

Lemma 3.11. There exists a collection of templates C, and a lattice L, such that M* > M1z (O).
Proof:

Take the collection C, consisting of only one template

T={(0,0),(1,0),(3,0),(5,0),(0,1),(6,1)} < Z” and let L be the lattice with basis {[(1)], [g]}.

Then M*=8 as can be verified, while p; (C)=6 (see figure 4). 0O
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.123456123456123456123456...
~345612561234345612561234...
123456123456123456123456
345612561234345612561234
123456123456123456123456
345612561234345612561234
123456123456123456123456
~®45612061234345612561234..
.DD3@5®123456123456123456...

Figure 4

Note that the multi-periodic skewing schemes as constructed in theorem 3.7 and theorem
3.9 are all diamond schemes by theorem 2.8. This is not a coincidence, because this subset of
the multi-periodic skewing schemes has more structure than the general multi-periodic
schemes, and for this reason the diamond schemes can be handled more easily in these cases.
However, in general the diamond schemes are not as strong as the multi-periodic skewing
schemes, as shown by the following lemma.

Lemma 3.12. There exists a collection of templates C and a lattice L such that: if s is a dia-
mond scheme that is L-valid for C and uses p/”(C) memory banks, then the determinant of the
underlying lattice of s > 2.A/P(C).
Proof:

Take the same C as in lemma 3.11. Then the skewing scheme as denoted in figure 4 is a
multi-periodic skewing scheme, which uses 6 memory banks and has an underlying lattice with

basis { [3], [(2)] }. The best possible diamond scheme which uses 6 memory banks has an

underlying lattice with basis { [(1)] , [102] }, O

4. A simple representation of multi-periodic skewing schemes.

From classical lattice theory we know that every lattice L < Z? has a fundamental
domain, which is "box-like" in the following sense.
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Lemma 4.1. [6]. Given a d-dimensional lattice L ¢ 22, there exists a basis U = {&y,...,0 4}
of Z% with |det(idy,....8';)|=1 and sy, 5, ,...,5; €Z such that

F* = {(x1,x0,.%)y T | x,€{0,1,...,5;} forall 1<i <d }
is a fundamental domain of L.

Using this lemma the following theorem can be shown.

Theorem 4.2. [6]. Let s: Z%— {0,1,...,.M—1} be a periodic skewing scheme and let L be its
underlying lattice. Then there exists a map .
o:2Z% 5 {(x1, 1) |x; € {0,1,...,5;} forall 1 <i <d } (=B)
and a map
t: B - {0,1,. .M-1},
such that s = toot and o is given by an expression of the type
o) = O iyigsersig) = (L{@) mod 51, Lo@’) mod s,,..., Ly@) mod sp),
with Ly @) = Mg yi+.hy g.ig, My j € Z, for all 1<j<d.

Consider an arbitrary multi-periodic skewing scheme s, and let L be its underlying lattice.

2
Because for each dy € F* §; U is periodic there exists a map 0% and %Y such that

2y, Ay

d
t oY = 5; Y. Thus we can state the following theorem.

Theorem 4.3. Let s be a multi-periodic skewing scheme and L be its underlying lattice. Let
{id1,@5,....i 4} and 5,,5,,...,5; be as in lemma 4.1. Then for all ¥ ¢ Z¢

s(.?) - t(ilmod S psemnsigmod sd)uos(i,mod S 1se-migmod sd)u(il over 51, L id over Sd),
With (i y,ig,.0ig) = (@) #y - - - @) @)
Proof:

Immediate. O

Concluding we can say that a multi-periodic skewing scheme s: Z%—{0,1,..,M—1}, with
underlying lattice L. can be represented in the amount of space of approximatly
[F*|s(d%+M )= A(L )*(d>+M ) memory locations.

(1) ..y - -+ 4.}y denotes a point with respect to U.
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