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Abstract

In this paper we show a number of classes of graphs to be subclasses
of the graphs with tree-width, bounded by some constant integer k,
(also called the partial k-trees). These classes include all trees, forests,
almost trees with.parameter k&, (k1 a constant), graphs with bandwidth
or cutwidth bounded by some constant, outerplanar graphs, series-
parallel graphs, Halin graphs, k;-outerplanar graphs (k2 a constant),
ks-bounded tree-partite graphs (k3 a constant), chordal graphs with
maximum clique size k4 (k4 a constant) and circular arc graphs with
maximum clique size ks (ks a constant). Some of these results were
well-known, others are new. Also some other relations between the
considered classes of graphs are shown. For many of the classes, it
has been shown that many N P-complete problems can be solved in
polynomial time, when restricted to graphs in the specific class. The
results in this paper illustrate why this similarity occurs.

1 Introduction

NP-complete problems are generally believed not to be solvable in poly-
nomial time. Hence there is much effort spent on finding subproblems of
NP-complete problems for which polynomial time algorithms can be de-
signed. For a number of classes of graphs, it has been shown that many
NP-complete graph problems become solvable in polynomial time, when
restricted to graphs in the specific class. An overview of some important

*This work was supported by the Foundation for Computer Science (S.I.O.N.) of the
Netherlands Organisation for the Advancement of Pure Research (Z.W.0.).



NP-complete graph problems, and their (known) complexity when restricted
to a number of important classes of graphs is given in (10].

In this paper we show that many of the classes, that yield polyno-
mial time solutions for many problems that are NP-complete for general
graphs, are contained in the class of graphs with tree-width bounded by
some constant integer k, also called the partial k-graphs. Arnborg and
Proskurowski [2] show that for many NP-complete graph problems linear
time algorithms can be obtained when one restricts the jnstances to graphs
with tree-width bounded by some constant k. These results illustrate the
similarity in the complexity results that are known for the various discussed
classes of graphs. ’

We consider the following classes of graphs, and show them to have tree-
width < &, for some constant k:

o Trees and forests

e Almost trees with parameter k,

e Graphs with bandwidth at most k2

e Graphs with cutwidth at most k3

e Outerplanar graphs

o Series-parallel graphs

e Halin graphs

® ky-outerplanar graphs

e Chordal graphs with maximum cliquesize ks

¢ Undirected path graphs with maximum clique size kg
o Directed path graphs with maximum clique size ky
o Interval graphs with maximum cliquesize kg

e Proper interval graphs with maximum cliquesize kg
e Circular arc graphs with maximum cliquesize k1

e Proper circular arc graphs with maximum cliquesize &,

k12-bounded tree-partite graphs



where ky, ko, --

-y k12 are fixed constants. Some of the inclusion-relations

are already well known, but are included in this paper for completeness sake.
A schematic overview of the results is given in fig. 1 and fig. 2.

Throughout this paper we will assume all graphs to be undirected and
free from self-loops and parallel edges, unless mentioned otherwise.

Class of graphs Upperbound | Reference
for Maximum

| Tree-width

r'ITees, forests . 1
Almost trees with parameter k k+1
Graphs with bandwidth < k k
Graphs with cyclic bandwidth <k 2k
Graphs with cutwidth < k& k
Series-parallel graphs 2 (17]
Outerplanar graphs 2 [17]
Halin graphs 5
k-outerplanar graphs 3k -1
Chordal graphs with max. cliquesize k k-1 [7,13]
Undirected pathgraphs with max. cliquesize k k-1 (13])
Directed pathgraphs with max. cliquesize k k-1 [13]
Interval graphs with max. cliquesize k k-1 (13]
Proper interval graphs with max. cliquesize k k-1 [13]
Circular arc graphs with max. cliquesize k 2k -1
Proper circular arc graphs with max. cliquesize k 2k -2
k-bounded tree-partite graphs 2k—1 [15]

Figure 1: Classes of graphs and upperbounds for the maximum tree-width

of graphs in the classes.

2 Partial k-trees and the tree-width of a graph

Let Cj. be the complete graph on k vertices. The. (partial) k-trees are defined

as follows:

Definition.

e Cy is a k-tree.
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Figure 2. Schematic overview of containment relations between discussed classes of graphs.
Note that the constants k in different boxes may denote different constants. E.g. not every
graph with bandwidth < k has cutwidth <k, but for every k, there is an m, such that every
graph with bandwidth < k has cutwidth < m,



o If G=(V,E)is a k-tree, and V' < V is a set of k vertices, inducing a
complete subgraph in G, then G’ = (V U {v}, EU {(w,v) | w € V'}),
with v a new vertex, i.e. v ¢ V, is a k-tree.

Le. a new k-tree G’ can be obtained by taking a k-tree G and adding a new
vertex v with edges to each vertex in a clique with k vertices in G.
Definition.

H is a partial k-tree, if H is a subgraph of a k-tree G.

Lemma 2.1

Let G be a partial k-tree. Then G does not contain a clique with k + 2
vertices.

Proof.

It is sufficient to prove the lemma for G a k-tree. Use induction. If a
k-tree G = (V,E) does not contain a clique with k¥ 4+ 2 vertices, then
G =WVU{rL,EU{(w,0)|weV}),withV CV,|V|<Ekv¢gV,
will also not contain a clique with k 4+ 2 vertices. o

Another way of characterizing partial k-trees is with help of the notion
of tree-width, introduced by Robertson and Seymour [13].
Definition.
Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({X; | i € I},
T = (I, F)), with {X; | i € I} a family of subsets of V, and T a tree, with
the following properties:
e UXi=vVv
i€l
e For every edge e = (v, w) € E, there is a subset X, ¢ € I with v € X
and w € X;.

e Foralli, j, k € I,if j lies on the path in T from ¢ to k, then X;N X} C
X;.
The tree-width of a tree-decomposition ({X; | i € I},T) is max | Xi| — 1.

The tree-width of G, denoted by tree-width(G) is the minimum tree-width
of a tree-decomposition of G, taken over all possible tree-decomposition of

G.

Theorem 2.2 [1,13]
G is a partial k-tree. if and only if G has tree-width & or less.



Independently, Arnborg, Corneil and Proskurowski [1], and Robertson
and Seymour [13] have shown that there exist polynomial algorithms to
test whether a graph has tree-width < k, for any given, fixed k. Arnborg,
Corneil and Proskurowski [1] have also shown that the problem to determine
the tree-width of a graph is NP-complete. Arnborg and Proskurowski (2]
have shown that several NP-complete graphs problems are solvable in linear
time when restricted to graphs with tree-width bounded by some fixed k (or
equivalently, to partial k-graphs, for fixed k). Similar results can be found
in [5]. The following lemma’s will be used in section 3.

Lemma 2.3

Let G = (V, E) be a graph and let k € N*. Then treewidth(G) < k, if and

only if for each biconnected component G; = (V;, E;) of G, treewidth(G;) <
k.

Proof.
= Trivial.
<+ Suppose we have tree-decompositions ({X} | i € I'}, T), -+, ({Xf | i €
Ic}, T.) of the biconnected components G1y...,G. of G with tree-width
< k each. Now one can obtain tree-decompositions of connected sub-
graphs of G, consisting of more and more biconnected components, each
tree-decomposition having tree-width k or less, in the following manner.
Suppose we have connected subgraphs G, = (Va, Ea), G = (V, Ep), each
consisting of one or more biconnected components of G. Let ({X? | i € I,
To = (I, F*)), ({X:6 | i € IP}, Ts = (I8, FP)), be tree-decompositions
of G, and Gjg, respectively, with tree-width < k each. Further suppose
{v} = VanVp. (Le. G, and Gy share exactly one vertex v). There are
io € I%,iy € I with v € XZ, v € XJ. Now let T, = (I*UI®, F*UFPU{(io,
i1)}). T, is a tree. Now it is easy to check that ({X? | i € I*}u{X? |i € I?},
T.,) is a tree-decomposition of G = (V,UVp, EoU Ep) with tree-width < k.
We can repeat this construction, obtaining tree-decompositions of con-
nected subgraphs of G, containing more and more biconnected components,
each with tree-width < k. (If G is not connected, then a similar, but still
easier construction can be used). Finally one obtains a tree-decomposition
of G with width < k. m]

Lemma 2.4
Let G be a subgraph of H. Then treewidth(G) < treewidth (H).

Proof.
Trivial. o



3 Classes of graphs with bounded tree-width

In this section we will discuss a number of classes of graphs with the property

that the maximum tree-width of all graphs in the class is bounded by some
fixed number.

3.1 Trees and forests.

The following well-known propositions follow directly from the definitions
of “k-tree” and “ partial k-tree ”.

Proposition 3.1
G = (V,E) is a tree, if and only if G is a 1-tree.

Proposition 3.2
G = (V,E) is a forest, if and only if treewidth(G) < 1.

3.2 Almost trees with parameter k.

Definition.
G = (V, E) is an almost tree with parameter < k iff for some spanning tree

T of G, in each biconnected component of G there are at most k edges of G
that are not in T'.

With other words, G = (V, E) is an almost tree with parameter < k if
and only if for each biconnected component G; = (V;, E;) of G one has
|Ei| = Vil +1 L &.

Theorem 3.3
Let G = (V, E) be an almost tree with parameter k. Then treewidth(G) <
k+1.

Proof.

From lemma 2.3 it follows that is sufficient to prove the theorem for bicon-
nected graphs G = (V,E). Let G = (V, E) be a biconnected almost tree
with parameter k. Let To = (V, F) be a spanning tree of G. Note that
|E - F| < k. Now let ({X; | i € I}, T) be a tree-decomposition of Tp with
tree-width 1, i.e. for all i € I : |X;| < 2. We now write E — F = {(v, wy),
(1)2, ‘ll)z), sy (vls wl)} (l < k)'



We can now obtain a tree-decomposition of G with tree-width < k + 1,
by adding the vertices vy, ..., v. to each set X;, i.e. we have the tree-
decomposition ({X;U{v1, ..., v} | i € I'}, T. One easily verifies that this is
a correct tree-decomposition. For instance, for every edge (vj, w;) € E—F,
there is a i € I, with w; € X;. Hence w; € X; U {v1, ..., v}, and by
definition v; € X; U {v1, ..., v¢}. The tree-width of this tree-decomposition
isx{}gIX,-U{vl,...,v,}I—-l_<_2+l—1$k+1. o

Coppersmith and Viskin [6] and Gurevich, Stockmeyer and Viskin [9] have
shown that a number of important NP-complete graph problems can be
solved in linear time for graphs, that are almost trees with parameter k,
for fixed k. The time, needed for these algorithms is exponential in k.

Theorem 3.4 shows the relation of these results with the results of Arnborg
and Proskurowski [2)].

3.3 Graphs with bounded bandwidth or cutwidth.

In this section we consider graphs with bandwidth or cutwidth bounded
by some fixed number. These graphs can be recognized in polynomial time
(see [14],[8]), (but the time is exponential in the bandwidth or cutwidth of
the graph). In [11] it is shown that several NP-complete problems can be
solved in polynomial time for graphs G = (V, E) with bandwidth bounded
by ¢ - log(|V|) for some constant ¢. In [5] similar results are obtained for
the larger class of graphs with treewidth, bounded by clog(|V]) for some
constant ¢. (One must assume that the graphs are given together with the
corresponding linear orderings or tree-decompositions.)

Definition.
Let G = (V, E) be a graph, with n = |V].

e A linear ordering of G is a bijective mapping f: V — {1,..., n}.
e A linear ordering f of G is said to have bandwidth & ifk = (m?.é:E
u,v
|f(u) = f(v)I-

e The bandwidth of G, denoted by bandwidth(G), is the minimum band-
width of a linear ordering f, over all possible linear orderings of G.

e A linear ordering f of G is said to have cutwidth k if kK = max

1<i<n
{(u,v) € E | f(u) < i< f(v)}-

- 8



o the cutwidth of G, denoted by cutwidth(G), is the minimum cutwidth
of a linear ordering f over all possible linear orderings of G.

The following variant of the notion of bandwidth, called “cyclic bandwidth”
was introduced in [11].

Definition.
Let G = (V, E) be a graph, with n = |V].

e A linear ordering f of G is said to have cyclic bandwidth k ifk =

( gggE(min(lf (u)— f(0)], n—|f(u)— f(v)])) (= the maximum distance

of f(x) and f(v) in a ring with n vertices R, = ({1, ..., n}, {(1,2),
(2,3), ..., (n — 1,n), (n,1)}), taken over all (u,v) € E).

e The cyclic bandwidth of G, denoted by cyclic bandwidth(G), is the
minimum cyclic bandwidth of a linear ordering f over all possible
linear orderings of G.

Lemma 3.4

Let G = (V, E) be a graph, with bandwidth(G) = k. Then cutwidth (G) <
k!k+l[.

2
Proof.

Consider a linear ordering f of G with bandwidth k. Let n = |V|. For
alli, 1 <i<n, |{(u,v) € E| f(u) <i< f()} £ {(da) € {1, ...,
n}x{l, ...,n} | s1 i <iAlh-jal <K< k(k + 1)/2. Hence
cutwidth(G) < k(k + 1)/2. 0

Showing that every graph with bandwidth < k is a partial k-tree, i.e. has
tree-width < k, is, in particular, very simple.

Definition.

The maximal graph on n vertices with bandwidth k is the graph Gin = (Va,
Epn), with V, = {1, 2, ..., n} and Eyn = {G,))| i,j € VaAli—]I < k}.
The following observation was made by Saxe [14].

Lemma 3.5 [14]
Let G = (V, E) with |V| = n. Then bandwidth(G) < k, if and only if G is
isomorphic to a subgraph of G- '



Lemma 3.6

1. Forall k,n,n > k > 1, G, is a k-tree.
2. For all k, n > 1, Gy, is a partial k-tree.

Proof.
1. Use induction to n.

2. Use (1) and the fact that every graph on n < k vertices is a partial
k-tree.

o

Corollary 3.7
For every graph G = (V, E), bandwidth(G) > treewidth(G).

Lemma 3.8
For every graph G = (V, E):
cyclic bandwidth(G) < bandwidth(G) < 2: cyclic bandwidth(G).

Proof. First we remark that cyclic bandwidth(G)< bandwidth(G) follows
directly from the definitions.

Now let [V| =n. Let f: V — {1, ..., n} be a linear ordering of G with
cyclic bandwidth(f) < k. We suppose n is even. If n is odd, then a similar
construction can be made. Let g: V — {1, ..., n} be defined by

_J 2-f(v), if f(v) < n/2
9(v) = { A 2. f(v) it f(v) > 2/2

It is easy to verify that f is a linear ordering of G with bandwidth(f) < 2k.
Hence bandwidth(G)< 2: cyclic bandwidth(G). ' o

Corollary 3.9
For every graph G = (V, E), cyclic bandwidth(G) > }- tree-width(G).

Theorem 3.10
For every graph G = (V, E), cutwidth(G) > treewidth (G).

10



Proof.

Suppose we have a linear ordering f of G = (V, E) with cutwidth k. Let
n=|V]. Wenowlet I = {1,2,...,n},foralli € I; X; = {w| f(w) >
iAdv e V: (v,w) € EA f(v) < i}U {f~(i)}, and P is the pathgraph on
n vertices, i.e. P = (I, {(i,i+ 1) | 1 £ i £ n—1}). Now we claim that
({X; | i € I}, P) is a tree-decomposition of G with tree-width < k.

First note that for all v € V, v € Xy-1(y).

Secondly consider an edge (v,w) € E. Either f(v) < f(w) or f(w) <
f(v). Without loss of generality assume the former. Then v € Xy-1(v), and
w € Xg-1(y), by definition.

_ Next suppose i < j < k and w € X; N X;. From w € X it follows
that f(w) > kV f(w) = k, hence f(w) > k > j > i. Thus there must be a
v € V, with (v,w) € E A f(v) < i. So we have f(w) >jAIvEV: (v,w) €
E A f(v) € j. Hence w € Xj. It follows that X; N X C X;.

Finally note that for all i, 1 i < n, | Xi| S {(v,w)€ E | f(v) S i<
f(w)}| +1 € k+ 1. So the tree-width of the tree-decomposition is at most
k. o

3.4 Classes of planar graphs.

In this section we consider a number of classes of planar graphs. Arbitrary
planar graphs can have arbitrary large tree-width. For instance, an n* n
- grid network has tree-width n [13]. For a number of classes it was already
known that the tree-width of graphs in the class is bounded by some fixed
number, e.g. the series-parallel graphs and the outerplanar graphs. We will
. review some of these results and will also show that every Halin graph has
tree-width < 5 and every k-outerplanar graph has tree-width < 3k 1.

First we consider series-parallel graphs. A series-parallel graph can have
parallel edges, i.e. it is a multigraph. One can define a series-parallel graph
recursively as follows:

o The graph with 2 vertices and one edge is a series-parallel graph:

v w

0—O

11



o Let G = (V, E) be a series parallel graph. One obtains a new series
parallel graph G’, by replacing any edge (v,w) € E in one of the
following 3 manners:

*

v w

-O0—0

where v* g V', i.e. v* is a new vertex.

From this definition and the definition of the tree-width of a graph, one
easily can proof, with induction, that every series-parallel graph has tree-
width < 2. To be precise, the class of graphs with tree-width < 2 equals the
class of series-parallel graphs [17].

Next we consider the outerplanar graphs. A graph G is outerplanar, if
it is planar and it can be drawn in such a way in the plane that all vertices
lie on the exterior face. It can be shown that every outerplanar. graph is a
series-parallel graph [10]. Thus outerplanar graplis have’ tree-width 2. This
can also shown in the following way.

For every outerplanar graph G = (V, E), there must be a vertex v with
degree(v) = 1V degree(v) = 2. Suppose degree(v) = 2. Let (v,w) € E,
(v,2) € E, w # z. Now G’ = (V - {v}, (E - {(v,w), (v,2)}) U {(w,2)})
is an outerplanar graph, and we may assume, with induction, that we have
a tree-decomposition ({X; | i € I}, T = (I, F)) of G with tree-width < 2.
There must be an i € I, with w € X;Az € X;. Nowlet i* ¢ I, I* =
Iu{i*}, X;« = {v,w,z} and T* = (I*, F U {(¢,i*)}). One easily verifies
that ({X; | ¢ € I*}, T*) is a tree-decomposition of G with tree-width at
most 2.

A generalization of the outerplanar graphs are the k-outerplanar graphs.

12



Definition.
o A graph G = (V, E) is 1-outerplanar if and only if it is outerplanar.

e For k > 2, a graph G = (V, E) is k-outerplanar if and only if it is
planar and it has a planar embedding such that if all vertices on the
exterior face ( and all adjacent edges ) are deleted, then the connected
components of the remaining graph are all (k — 1)-outerplanar.

The notion of k-outerplanar graphs was introduced by Baker [3], who also
showed that several NP-complete graph problems can be solved in polyno-
mial time, when restricted to k-outerplanar graphs.

Theorem 3.11
Let G = (V, E) be a k-outerplanar graph. Then treewidth(G) < 3% - 1.

Proof.
We use induction to k. For k = 1, the theorem holds because every outer-
planar graph has tree-width < 2, as discussed above.

Now let £ > 2 and assume that the theorem holds for all &’ <k-1
and let G = (V, E) be a k-outerplanar graph, embedded in the plane, such
that if all vertices on the exterior face are removed, then each connected
component of the remaining plane is k — 1-outerplaner. We first prove the
following lemma.

Lemma 3.11.1
There is a k-outerplanar graph H = (V, F), with E C F (i.e. G is a subgraph
of H), and there is an embedding of H in the plane such that

e if we remove all vertices on the exterior face, then each of the remaining
connected components is (k — 1)-outerplanar.

e every interior face which contains at least one vertex on the exterior
face of H has exactly 3 sides.

Proof.

For every interior face of G, containing at least one vertex v on the exterior
face, we add edges from v to every other vertex in the face (if not already
present). The resulting graph H fulfills the stated conditions. o

Let H = (V, F) be given, as indicated by the previous lemma. From lemma
2.4 it follows that it is sufficient to prove that treewidth(H) < 3* — 1. By
lemma 2.3 we may suppose that H is biconnected.

13



Now we define V, = {v e V | v is on the exterior face of H } i Vin =
V = Veg; He, is the subgraph of H , induced by V., and H;, is the subgraph
of H induced by V,. It follows that H;, is (k — 1)-outerplanar, and thus
treewidth(H;,) < 352 — 1.

Lemma 8.11.2
Suppose H., is a cycle. Then H,, is connected.

Proof.

Suppose not. Then there must be vertices v, w € V; with v and w adjacent
to vertices in different components of H;,. We can choose v and w such
that (v,w) € F. Consider the vertices in Vin adjacent to v. We can order
these zq, ..., z,, such that Vi < r: (%, Zi41) € F. (Use the property that
each face containing v has exactly 3 sides.) Likewise, let yy, ..., y, be the
vertices in V;y,, adjacent to w, with Vi < 8y (¥i»¥i+1) € F. (See fig. 3.) Now,

Figure 3:

because of the property that each face containing v and/or w, must have 3
sides, either {v, w, 31} and {v, y1, z,} are faces of H, or {v, w, z,} and {w,
Y1, z,} are faces of H. In both cases (%Trsy1) € F and z4, 2y, ..., z,, y1,
..+ Ys are in the same connected component in H;,. Contradiction. 0

Now suppose H;, is connected. Let Vinez denote the set of vertices on
the exterior face of H;,. It follows that each vertex v € Ve only is adjacent
to vertices in Ve, U Vjypep.

14



Lemma 3.11.3

Suppose H.; is a cycle and suppose H;y is biconnected. Then treewidth(H)
<3 -1,

Proof.
Note that the vertices in Vi, form a cycle. For all € Vi, there are one
and more consecutive vertices zi, ..., Tr(z) € Ver that are adjacent to z.

(If not, then one can find a face with 4 sides, containing at least one vertex
v € Vez). See fig. 4. H;y is (k — 1)-outerplanar so we have, with induction,

ex

X
X r(x)
2 xr(x)-1
Figure 4

that there is a tree-decomposition ({X; | i € I}, T = (I, D)) of Hin with
tree-width at most 351 — 1.
‘ Foralli € I,let X! = X;U{z1 | 2 € XiNVinez }U{Z:(z) | z € XiNVinez}-
Recall that z, and z,(;) are the first and last vertex in V.., adjacent to z.
(If r(z) = 1 then 23 = Z,(z))-
Further, for all z € Vipez With r(z) > 2 we choose an i(z) € I, with
2 €Xiz) Let ' =TU {iz; | 2 € Vinez AT(z) >2A1 <7 < r(z) - 2},
where all i, ; ¢ I, i.e. are new elements. Let X . = {z, Zj, Zj+1, Zr(z)}-
Let T' = (I', D'), with D' = DU {(i(z),iz,1) | = € Vinez AT(z) > 2}V {iz.js
iz,j+1) | T E ‘/inez A r(x) >2A1 S ] S r(z) - 2}.
In other words, to each X; of the old decomposition we add for each
Z € Viper the first and last of the neighbors of z, that are in V. For
2 € Viner that are adjacent to more than 2 vertices, we choose a vertex i € I

15



and add an extra branch with r(z) — 2 vertices to i in the tree, in order to
represent 2z, ..., Z,(s)-1, as illustrated in fig. 5.

X,X

and other
vertices

1" % rx)

Figure 5

We now claim that ({X] | i € I'}, T' = (I', F')) is a tree-decomposition
of H with tree-width < 3% — 1.

It is easy to see that for all v € V, thereisa i € I' with v € X!. Next
we claim that (v,w) € F = 3i € I' with v € X] A w € X!. We consider the
following cases.

Case 1. v € Vi Aw € V. Then 3i € I with v € X; A w € X;. Hence also

“ve X! 2 X;and we X!

Case 2. v € Vjub Aw € V,;. Then v € Vipe, and we can write w = vj
with 1 < j < r(v). If j =1 or j = r(v), then for all i € I with v € X;
one has v € X{Aw =v; € X/. 1< j < r(v), then v € X, ,,, and
w=v; € X;, ;-

Case 3. v € V. A w € V;,,. Similar to case 2.

Case 4. v € Voo Aw € V.. Now there is a z € Vip.s, with (v,2z) €
F A (w,z) € F, else we have a face in H, containing v and w and at least
4 sides. Hence, we can write (v = z; Aw = zj41, 1 £ j < r(z) - 1)
or (v =2zjuAw=2j 1< j < r(z)—1). Without loss of generality,
suppose the former. We have: if r(z) < 2 then for all i € I with z € X;:

16



v=12 € X[Aw =23 € X/, and if r(z) > 2, then, if j < r(z) — 1 then
v=2z;€X;,,Aw==z; € Xi,;»and if j = r(z) — 1 then v = To(z)-1 €
‘,i,',-(,)_g Aw= zr(z) € Xiz,r(.r)-—2'

So we have that in all cases i € I’ : v € X! Aw € XL.

Now we show that if j € I’ is on the path in 7" from i € I’ to k € I’ then
X! 2 X! N X}. First consider the case that i, k € I. It follows that jelI
and if z € X/ N X{, then either z € V;,, and hence z € X; N X C X; C X!
or z € Vg, and hence 2 can be written z = z, or z = Zy(z) for € Viper and
now z € X; N Xy C Xj, and 2z € {z, Ty(z)} € X;i. So X} 2 X!N Xj. Next
consider the case that i € I’ —~ I, k € I. It follows that there is an z € Vinex
with X! N X; C {z, z,, Tr(z)}. Now note that j must also be on the path
in T’ between i(z) and k, and also {z, z,, T,(z)} € Xi(z)- It follows that
XInX/nX}c Xiz) N XL C X/. The other cases are similar or easy.

Finally note that i € I = |X/| < 3-|X;| < 3%, andie I'-I = | X} =
4 < 3*. Hence the tree-width of the decomposition is at most 3* -1, O

One may observe that for every interior face of H , that contains at least
one vertex of V., ( and hence has exactly 3 sides), there must be at least one
i € I', with X/ containing each of the (three) vertices on this face. (There
are basically 2 cases: one has a face with vertices {z, zj, j41}, or a face
{z,y, 2, = Yr()}> With 2, y € Vinez, 1 < j < r(z) — 1. For the former case,
the observation is straightforward. In the latter case, observe that we have
dieI:z € X; and y € X;, by definition. Now {z,y,2, = Y@} € X!). So
we have the following, slightly stronger result.

Lemma 3.11.4

Suppose H.. is a cycle and suppose H;, is biconnected. Then there exists a
tree-decomposition ({X; | i € I}, T) of H with tree-width at most 3% — 1,
and for each interior face of H that contains at least one vertex of Vez, there

must be at least one ¢ € I with X; containing each of the vertices on this
face.

With induction to m we now prove the following lemma:

Lemma 3.11.5

Suppose H., is a cycle and H;, consists of m biconnected components.
Then there exists a tree-decomposition ({X; | i € I}, T) of H with tree-
width < 3% — 1, and for each interior face of H that contains at least one
vertex of V.z, there must be at least one i € I with X; containing each of
the vertices on this face.
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Proof.
Use induction to m. For m = 1, the lemma follows from lemma 3.11.4.

Let m > 1, and let the lemma be true for all m’ < m. There must be
at least one biconnected component of H;,, that shares exactly one vertex
v with one or more of the other biconnected components. So we can write
Vin = VIUV2, V1N V2 = {v} and the subgraph of H, induced by V?,
denoted by G!, is biconnected , and the subgraph of H, induced by V2 has
m — 1 biconnected components and is connected.

Let W! C V., be the set of vertices in V.., that are adjacent to vertices
in V1, and W? C V.. be the set of vertices in V., that are adjacent to
vertices in V2. Note that W! U W? = V.. W! and W2 both induce
connected subgraphs of the cycle H,, (see fig. 6.) (If not, then one derives
a contradiction with the fact that H is biconnected.) Now, the “left most”
vertex of W1 equals the “right most” vertex of W2, and vice versa. Let
these two vertices be z and y.

Figure 6

, Now consider the graphs H; = (VIUW?!, Fj) and H, = (VZUW?2, F?),
with F; = {(w1,w3) € F | w1, wy € VIU W'} U {(z,y)}. (See fig. 7.).

Observe that F} U F; = F U {(z,y)}. If we define (H1)in, and (Hz)in
similar to H;n, then (H1)in = G; and (H2)in = G2. Now (H))in has one
biconnected component and (H,);, has m — 1 biconnected components. By
using the induction hypothesis, one can obtain now tree-decompositions
({X,‘ | i€ Il}, T = (Il, El)) of H; and ({X, I 1€ Iz}, T, = (Ig,Eg)) of Hj,
with the following properties:
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Figure 7

eielh = |X.| S'3k.

o i€ =|X;| <3k

e Jiy € I : {v, z, y} € X;,. (Use that z, y are on the exterior face of
Hy.)

o Ji; € I : {v, z, y} € X;;. (Use that z, y are on the exterior face of
H,.) ' :

We now claim that ({X; |i€ [ UL}, To = (I UL, E; U E; U {(i1,12)}) is
a tree-decomposition of H, with tree-width at most 3¥ — 1. (See fig. 8.)

It easily follows that Uerup, Xi = V. If (v,w) € F then (v,w) €
RAV(v,w)€ F,thus (3ie 1 : v € X;Aw € X;)V(3i € I : v € X;Aw € X)).

Next let ¢, j, k € I} U I, and suppose j is on the path from ¢ to k in
T. i k€ lori k € I, then it directly follows that X; C X; N Xj.
Now suppose i € I1, j € I, k € I,. (The other cases are similar.) Then
XinXe € (VIUWH)N(VZUW?) = {v, z, y}. Note that j is on the path
in T from 1 to ¢y, and {v, z, y} C X;,. Hence X; N X} C X;N X;, C Xj.

Further it follows directly that i € L U I, = | X,| < 3k,

Finally notice that every interior face of H, containing at least one vertex
of Ve, either is an interior face of H;, containing at least one vertex of W1,
or is an interior face of H,, containing at least one vertex of W2. Hence, for

19



Tree-decomposition Tree-decomposition
of H.1 of H2

e |

Figure &

such a face, there will be a i € I; U, with X; containing all vertices on the
face. This completes the induction argument of lemma 3.11.5. a

We will finally come to the proof of our main theorem 3.11. First we
remark that H.; always is an outerplanar graph. Because we supposed that
H is biconnected, we may suppose that H has at least one face. (If not,
then H is a graph with at most 2 vertices, and trivially treewidth(H) < 1.)

Consider the dual graph (Hez)" of Hez. The vertices of a dual graph of
a planar graph correspond to interior faces of the graph and there is an edge
between v and w in the dual graph if the corresponding faces share an edge.
It is well known (see e.g. [16]), that the dual graph of an outerplanar graph
G is a tree. Now consider a face of H.z, corresponding to a leaf in (Hez)"
This face must share exactly one edge (v,w) with another face of Hez. Let
(Vez)! be the set of vertices on this face, and let (H.,)! be the subgraph of
H.., induced by (Vez)!. Note that (H:)! is a cycle.

Now let (V,-,,)1 be the set of vertices in V;,, that are embedded in the
area in the plane that is enclosed by HL,. Let V! = (Vin)' U (Vez)!. Let Hy
be the subgraph of H, induced by V. Let V2= (V-V1)U {v, w}. Let H;
be the subgraph of H, induced by V2. For an example see fig. 9.
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A d

a) A 2-outerplanar graph H

b) The su\t;graph Heox

¢) The subgraph (H

B 4%

d) The subgraphs H' and H 2

Figure 9
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Now H' and H? are also k-outerplanar graphs, but have a smaller size
than H. By using induction we can obtain tree-decompositions ({X; | i €
Il}, Tl = (Il, El)) of Hl, and ({X, I 1€ Iz}, T2 = (Iz,Eg)) of Hg, both with
tree-width at most 3* — 1. There must be i € I withv e X;, Aw € X,,,
and i; € I; with v € X;; Aw € X;,. Now {Xilie huL}, T =
(h U Iz, E1 U E; U {(41,42)}) is a tree-decomposition of H with tree-width
at most 3F — 1. The proof of this fact is similar to the argument in lemma
3.11.5. This completes the proof of theorem 3.11. a

The last class of graphs that is considered in this section on classes of planar
graphs is the class of the Halin graphs.

Definition.

A graph G = (V,E) is a Halin graph if it can be obtained by embedding
a tree without vertices with degree 2 in the plane and connecting its leaves
by a cycle that crosses none of its edges.

It directly follows that the Halin graphs are contained in the 2-outer-
planar graphs, and thus, by theorem 3.11 have treewidth 8 or less. However,
by closer inspection one can obtain the following result.

Theorem 3.12
Let G = (V, E) be a Halin graph. Then treewidth(G) < 5.

Proof.
The proof is similar to the proof of theorem 3.11. One uses that treewidth
(Hin) = 1. o

3.5 Intersection graphs.

In this section we consider classes of intersection graphs. Each vertex in an
intersection graph has associated with it an object in some space; there is an
edge between two vertices if the corresponding objects intersect. For each of
the considered classes of intersection graphs, we need on additional bound
on the maximum cliquesizes of the graphs, to let the classes be subclasses of
the graphs with bounded tree-width. We remark that each of the considered
classes of graphs is a subclass of the class of the perfect graphs, i.e. for each
of these graphs, its chromatic number equals the size of the largest clique
that it contains.
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Definition.
G = (V, E)is a chordal graph if and only if every cycle with length exceeding
three has an edge joining two non-consecutive vertices in the cycle.

Theorem 3.13 [7]

Let a graph G = (V, E) be given. Then G is a chordal graph if and only
if there is a tree T = (W, F) such that one can associate with each vertex
v € V a subtree T, = (W,, F,) of T, such that (v,w) € E if and only if
W, NW, #0.

The following result was already noted by Robertson and Seymour [13].

Theorem 3.14 [13]

For every graph G = (V, E) and integer k € N*, treewidth(G) < k — 1 if
and only if G is subgraph of a chordal graph H that has maximum cliquesize
at most k.

Proof.

Use the characterization of chordal graphs of theorem 3.13.

(<) Use the tree-decomposition ({X; | i € W}, T) with X; = {ve V | i€
W,}. Note that i € W, Ai € W,, = (v,w) € E, hence X; forms a clique in
H, hence | X;| < k. (=) Let a tree-decomposition ({X; | i € I}, T = (I, F))
of G be given. From the definition of tree-decomposition it follows that for
all v, the subgraph of T, induced by I, = {i € I | v € X;} is connected, i.e.
is a subtree T, of v. Now let H be the intersection graph given by these
subtrees T,, i.e. H = (V,E') with (v,w) € E' & I, N1, # 0. One can
argue that for all vy, ..., v, € V, iffor all i, j < r: I, N I,; # 0, then
Ui<icr Iv; # 0. (Use that T is a tree, i.e. is cyclefree.) Hence if we have a
clique with r vertices in H, then there must be an i € I with |X:|=>r. O

It follows that the treewidth of a chordal graph is its maximum cliquesize
-1. Similar results can be obtained for subclasses of the chordal graphs.

Definition.

e The undirected path graphs are graphs with vertices corresponding to
paths in a tree, and edges between vertices, if the corresponding paths
have a vertex in common.

o The directed path graphs are graphs with vertices corresponding to
paths in a tree with one vertex in the tree marked as root, and each
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path is a subpath of a path from the root to a leaf, and there is an

edge between two vertices if the corresponding paths have a vertex in
common,

The interval graphs are graphs with vertices, corresponding to con-
nected subgraphs of a path (that is: a tree with each vertex degree

< 2), and edges between vertices, if the corresponding subgraphs have
a vertex in common.

The proper interval graphs are graphs with vertices, corresponding
to connected subgraphs of a path, such that no subgraph is entirely
contained in another, and edges between vertices, if the corresponding
subgraphs have a vertex in common.

It follows that each interval graph is a directed path graph, each directed
path graph is an undirected path graph, and each undirected path graph
is a chordal graph. Similar as for the chordal graphs one can obtain the
following results without difficulty.

Theorem 3.15

® (G =V,E) has a tree-decomposition {(X; | i € I}, T = (I, F)) with
tree-width < k — 1, and for each v € V, {i € I | v € X;} induces a
path in T') & G is a subgraph of a undirected pathgraph H = (V, E)
with maximum cliquesize < k.

(G = (V, E) has a tree-decomposition ({X; | i € I}, T = (I, F)) with
tree-width < k — 1, and we can choose a root-vertex r € I, such that
for each v € V, {i € I | v € X;} induces a subgraph of a path from r
to aleaf in T') <+ G is a subgraph of a directed pathgraph H = (V, E')
with maximum cliquesize < k.

(G = (V, E) has a tree-decomposition ({X; | i € I}, T = (I, F)), with
tree-width < k—1, and T is a path) < G is isomorphic to a subgraph
of an interval graph H with maximum cliquesize < k.

The tree-width of graphs with the additional restriction that T is a path,
(called path-width) was studied by Robertson and Seymour in [12]. We now
consider the circular are graphs and the proper circular arc graphs.

Definition.

e G = (V, E)is a circular arc graph, if we can associate with each v € V
a path on a cycle, and (v, w) € F < the paths associated with v and
w intersect.
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e G = (V, E)is a proper circular arc graph, if we can associate with each
v € V a path on a cycle, and no path is entirely contained in another
one, and (v,w) € E & the paths associated with v and w intersect.

Lemma 3.16

Let G = (Vg,Eg) be an intersection graph, each vertex v € Vg corre-
sponding to a connected subgraph of a graph H = (Vy, Ey), and (v, w) €
Eg, if and only if the corresponding subgraphs have a vertex in common.

Let k be the maximum cliquesize in G. Then treewidth(G) < (treewidth
(H)+1)*k-1.

Proof.

Let ({X; | i€ I), T = (I,F)) be a tree-decomposition of H = (Vy, Ex)
with tree-width ¢ — 1. Associate with each vertex v € Vy a set I, C Vg
with I, = {w € Vg | v is a vertex in the subgraph associated with w}. By
noting that wy € I, A wy € I, = (w),w2) € Eg one sees that |I,| < k
for all v € Vy. Now let for all ¢ € I, Y; = U,ex; Iv- One can verify that
({Yi| i€ I}, T = (I, F)) is a tree-decomposition of G, and the tree-width
of this decomposition is at most ¢- k — 1. a

Corollary 3.17
Let G = (V, E) be a circular arc graph (or a proper circular arc graph), with
maximum clique size k. Then treewidth(G) < 2k — 1.

Proof.
Use the definitions, lemma 3.16, and the fact that the tree-width of a cycle
is 2. m]

Also we have the following properties of the proper interval graphs and the
proper circular graphs.

Theorem 3.18

Let G = (V, E) be a proper interval graph with maximum cliquesize k.
Then: bandwidth(G) < k — 1.

Proof.

Suppose we have associated with each v € V a set of vertices S, = {l,, l,+1,
eyt —1,7,}C{1,2,..., N}, such that (v,w) € E & S, NSy # 0; and
Sy C Sp=2>v=w.
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Let |V| = n. We pose a total ordering < on V, such that v < w & I, <
l,. Note that v # w implies that I, # I, else S, C S, or S, € Sy. One
can now obtain a unique linear ordering f of G, with f(v) < f(w) & v < w,
ie. f(v) < f(w) & I, <l,. We claim that bandwidth(f) < k- 1.

Consider an edge (v,w) € E and without loss of generality suppose
Y v)+i,foralli,0 < i<l (Thus v = v,, w = v;). We have that
(v,w)e E=> S,NS, #0, thus I, < ry,ie. I, €S,. Foralli,1<i<l-1,
we have ~(S,; € S,) and I, < I, < l,, < 7y, thus r,, > [, hence [, € S,,.
So 1y, € No<i<i Sv;- So the vertices vp, vy, vq, ...v-1, v; form a clique in G
with I + 1 vertices. It follows that f(w) — f(v) =1 < k — 1. We now have :
V(v,w)€ E :|f(v) - f(w)] < k- 1, hence bandwidth(f) < k- 1. o
Theorem 3.19
Let G = (V, E) be a proper circular arc graph with maximum cliquesize k.
Then: cyclic bandwidth(G) < k- 1.

Proof.
Similar to the proof of theorem 3.18. O

Corollary 3.20
For all proper circular arc graphs G = (V, E): treewidth(G) < 2k — 2.

Proof.
Use corollary 3.9 and theorem 3.19. o

3.6 Tree-partite graphs.

Seese [15] introduced the notion of (n—bounded) tree-partite graphs, and
showed that a number of important graph-problems can be solved in polyno-
mial time for graphs, represented as n—bounded tree-partite graphs, with n
bounded by some fixed constant, and the degree of the graph also bounded
by some fixed constant.

Definition. [15]
Let n > 1. A graph G = (V, E) is said to n—bounded tree-partite, if there
is a tree T = (I, F) and a collection {A; | t € I}, such that

o V= UAt'
tel

e AsNAy =0, forallt,t’' eV t#¢.
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e Forall e = (v,w) € E, either there is a t € I such that v € AAw € A
or there are ¢, € I with t,t’ adjacent in the tree T,and ve A;AwE
Ay,

o Forallt eI, |A: < n.

Theorem 3.21 [15]
If G is k~bounded tree-partite, then treewidth (G)<2k-1.

We have also a connection of this notion with the notion of emulation ([4D.

Definition.

o Let G = (Vg,Eg),H = (Vh, Eg) be graphs. A mapping f : Vg —
Vi is called an emulation, if for all (v,w) € Eg : f(v) = f(w)v
(f(v), f(w)) € Eg.

® The cost of an emulation f; Vg — Vy is cost (f) = max,evy | f~2(v))-
One easily obtains the following relation between the two notions.

Theorem 3.22

Let G = (V,E) be a graph. G is k—bounded tree-partite, if and only if
there is a tree T = (W, F) and an emulation f : V — W of G on T with
cost(f) < k.

One can show the following relation between the cost of emulations of G on
a path and the bandwidth of G, very similar to a result in [4].

Theorem 3.23

Let G = (V, E) be a graph, k € N*+. Then: bandwidth (G) < k =
= There is an emulation f of G on a path P with cost(f) <k

= bandwidth(G) < 2% — 1.

Corollary 3.24

For all graphs G = (V, E), if bandwidth(G) < k, then G is a k—bounded
tree-partite graph.
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4 Conclusions

This paper shows some inclusion relations between the class of the graphs
with treewidth bounded by some fixed number, and a number of subclasses.
This also resolves some open problems of [10]. For instance, it follows that
the problems to determine, whether an almost tree with parameter k (k
fixed), or a graph with bandwidth k (k fixed) has a Hamiltonian circuit; and
the Chromatic Number problem, restricted to almost trees with parameter
k (k fixed), all can be solved in polynomial time.
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CLASSES OF GRAPHS
WITH BOUNDED TREE-WIDTH*

H.L. Bodlaender
December 1986

Abstract

In this paper we show a number of classes of graphs to be subclasses
of the graphs with tree-width, bounded by some constant integer k,
(also called the partial k-trees). These classes include all trees, forests,
almost trees with parameter k, (k; a constant), graphs with bandwidth
or cutwidth bounded by some constant, outerplanar graphs, series-
parallel graphs, Halin graphs, ks-outerplanar graphs (k; a constant),
k3-bounded tree-partite graphs (k3 a constant), chordal graphs with
maximum clique size k4 (k4 a constant) and circular arc graphs with
maximum clique size ks (ks a constant). Some of these results were
well-known, others are new. Also some other relations between the
considered classes of graphs are shown. For many of the classes, it
has been shown that many NP-complete problems can be solved in
polynomial time, when restricted to graphs in the specific class. The
results in this paper illustrate why this similarity occurs.

1 Introduction

NP-complete problems are generally believed not to be solvable in poly-
nomial time. Hence there is much effort spent on finding subproblems of
NP-complete problems for which polynomial time algorithms can be de-
signed. For a number of classes of graphs, it has been shown that many
NP-complete graph problems become solvable in polynomial time, when
restricted to graphs in the specific class. An overview of some important

*This work was supported by the Foundation for Computer Science (S.1.0.N.) of the
Netherlands Organisation for the Advancement of Pure Research (Z2.W.0.).



NP-complete graph problems, and their (known) complexity when restricted
to a number of important classes of graphs is given in [10].

In this paper we show that many of the classes, that yield polyno-
mial time solutions for many problems that are NP-complete for general
graphs, are contained in the class of graphs with tree-width bounded by
some constant integer k, also called the partial k-graphs. Arnborg and
Proskurowski [2] show that for many NP-complete graph problems linear
time algorithms can be obtained when one restricts the instances to graphs
with tree-width bounded by some constant k. These results illustrate the
similarity in the complexity results that are known for the various discussed
classes of graphs.

We consider the following classes of graphs, and show them to have tree-
width < k, for some constant k:

e Trees and forests

o Almost trees with parameter k;

o Graphs with bandwidth at most k;

e Graphs with cutwidth at most k3

e Outerplanar graphs

o Series-parallel graphs

o Halin graphs

e k4-outerplanar graphs

o Chordal graphs with maximum cliquesize ks

o Undirected path graphs with maximum clique size kg
e Directed path graphs with maximum clique size kv

o Interval graphs with maximum cliquesize kg

e Proper interval graphs with maximum cliquesize kg

o Circular arc graphs with maximum cliquesize k¢

o Proper circular arc graphs with maximum cliquesize k;;

e kj2-bounded tree-partite graphs



where ky, kg, -+, k12 are fixed constants. Some of the inclusion-relations
are already well known, but are included in this paper for completeness sake.
A schematic overview of the results is given in fig. 1 and fig. 2.

Throughout this paper we will assume all graphs to be undirected and
free from self-loops and parallel edges, unless mentioned otherwise.

Class of graphs Upperbound | Reference

for Maximum
Tree-width

Trees, forests 1

Almost trees with parameter k k+1

Graphs with bandwidth < k k

Graphs with cyclic bandwidth < & 2k

Graphs with cutwidth < & k

Series-parallel graphs 2 [17]

Outerplanar graphs 2 [17]

Halin graphs 5

k-outerplanar graphs 3k -1

Chordal graphs with max. cliquesize k k-1 [7,13]

Undirected pathgraphs with max. cliquesize k k-1 [13]

Directed pathgraphs with max. cliquesize k& k-1 [13]

Interval graphs with max. cliquesize k k-1 [13]

Proper interval graphs with max. cliquesize k k-1 [13]

Circular arc graphs with max. cliquesize k 2k -1

Proper circular arc graphs with max. cliquesize k 2k — 2

k-bounded tree-partite graphs 2k -1 [15]

Figure 1: Classes of graphs and upperbounds for the maximum tree-width

of graphs in the classes.

2 Partial k-trees and the tree-width of a graph

Let C be the complete graph on k vertices. The (partial) k-trees are defined

as follows:

Definition.

o Cy is a k-tree.




tree-width < k
or partial k-trees
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Figure 2. Schematic overview of containment relations between discussed classes of graphs.
Note that the constants k in different boxes may denote different constants. E.g. not every
graph with bandwidth < k has cutwidth < k, but for every k, there is an m, such that every
graph with bandwidth < k has cutwidth < m,



o If G =(V,FE)is a k-tree, and V' <V is a set of k vertices, inducing a
complete subgraph in G, then G' = (VU {v}, EU {(w,v) | w € V'}),
with v a new vertex, i.e. v €V, is a k-tree.

Le. a new k-tree G’ can be obtained by taking a k-tree G and adding a new
vertex v with edges to each vertex in a clique with k vertices in G.

Definition.
H is a partial k-tree, if H is a subgraph of a k-tree G.

Lemma 2.1

Let G be a partial k-tree. Then G does not contain a clique with k + 2
vertices.

Proof.

It is sufficient to prove the lemma for G a k-tree. Use induction. If a
k-tree G = (V,E) does not contain a clique with k + 2 vertices, then
G'=(VU{v},EU{(w,v) | w e V'}), with V/ CV, V| < k,v gV,
will also not contain a clique with k + 2 vertices. o

Another way of characterizing partial k-trees is with help of the notion
of tree-width, introduced by Robertson and Seymour [13].
Definition.
Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({X; | i € I},
T = (1, F)), with {X; | i € I} a family of subsets of V, and T a tree, with
the following properties:

e UXi=V
iel

o For every edge e = (v, w) € E, there is a subset X;, i € I with v € X;
and w € X;.

e Foralli, j, k € I,if j lies on the path in T from ¢ to k, then X;N X C
X;.

The tree-width of a tree-decomposition ({X; | i € I}, T) is max |X;) - 1.
]

The tree-width of G, denoted by tree-width(G) is the minimum tree-width

of a tree-decomposition of G, taken over all possible tree-decomposition of
G.

Theorem 2.2 [1,13]
G is a partial k-tree.-if and only if G has tree-width k or less.



Independently, Arnborg, Corneil and Proskurowski [1], and Robertson
and Seymour [13] have shown that there exist polynomial algorithms to
test whether a graph has tree-width < k, for any given, fixed k. Arnborg,
Corneil and Proskurowski [1] have also shown that the problem to determine
the tree-width of a graph is NP-complete. Arnborg and Proskurowski [2]
have shown that several NP-complete graphs problems are solvable in linear
time when restricted to graphs with tree-width bounded by some fixed k (or
equivalently, to partial k-graphs, for fixed k). Similar results can be found
in [5]. The following lemma’s will be used in section 3.

Lemma 2.3
Let G = (V, E) be a graph and let k € N*. Then treewidth(G) < k, if and

only if for each biconnected component G; = (V;, E;) of G, treewidth(G;) <
k.

Proof.
= Trivial.
< Suppose we have tree-decompositions ({X} | i € I'}, Th), .-+, ({Xf | i €
I}, T.) of the biconnected components G, ...,G. of G with tree-width
< k each. Now one can obtain tree-decompositions of connected sub-
graphs of G, consisting of more and more biconnected components, each
tree-decomposition having tree-width k or less, in the following manner.
Suppose we have connected subgraphs G, = (Va, Eq), Gg = (Vg, Eg), each
consisting of one or more biconnected components of G. Let ({X# | i € I®,
To = (I°, F?)), ({X? | i € IP}, Ts = (IP, FP)), be tree-decompositions
of G, and Gg, respectively, with tree-width < k each. Further suppose
{v} = Va n V. (Le. G, and Gg share exactly one vertex v). There are
io € I, iy € I withv € X2, v € X{. Now let T,y = (I*UI®, F*UFA U{(io,
i1)}). T is a tree. Now it is easy to check that ({X§ |i € I“}U{X,-ﬁ |ieIf},
T.,) is a tree-decomposition of G-, = (Vo UVp, E,U Eg) with tree-width < k.
We can repeat this construction, obtaining tree-decompositions of con-
nected subgraphs of G, containing more and more biconnected components,
each with tree-width < k. (If G is not connected, then a similar, but still
easier construction can be used). Finally one obtains a tree-decomposition
of G with width < k. a

Lemma 2.4
Let G be a subgraph of H. Then treewidth(G) < treewidth (H).

Proof.
Trivial. ]



3 Classes of graphs with bounded tree-width

In this section we will discuss a number of classes of graphs with the property
that the maximum tree-width of all graphs in the class is bounded by some
fixed number.

3.1 Trees and forests.

The following well-known propositions follow directly from the definitions
of “k-tree” and “ partial k-tree ”.

Proposition 3.1
G = (V,E) is a tree, if and only if G is a 1-tree.

Proposition 3.2
G = (V,E) is a forest, if and only if treewidth(G) < 1.

3.2 Almost trees with parameter k.

Definition.

G = (V, E)is an almost tree with parameter < k iff for some spanning tree
T of G, in each biconnected component of G there are at most k edges of G
that are not in 7'.

With other words, G = (V, E) is an almost tree with parameter < k if
and only if for each biconnected component G; = (V;, E;) of G one has
|Eil - Vil +1 < k.

Theorem 3.3

Let G = (V, E) be an almost tree with parameter k. Then treewidth(G) <
k+1.

Proof.

From lemma 2.3 it follows that is sufficient to prove the theorem for bicon-
nected graphs G = (V, E). Let G = (V, E) be a biconnected almost tree
with parameter k. Let To = (V, F) be a spanning tree of G. Note that
|E — F| < k. Now let ({X; | i € I}, T) be a tree-decomposition of Tp with
tree-width 1, i.e. for all i € I': |X;| < 2. We now write E — F = {(v;, w;),
(92, a), - -+ (o1, W)} (I < K).



We can now obtain a tree-decomposition of G' with tree-width < k + 1,
by adding the vertices vy, ..., v, to each set X;, i.e. we have the tree-
decomposition ({X;U {vy, ..., v} | i € I'}, T. One easily verifies that this is
a correct tree-decomposition. For instance, for every edge (v;, w;) € E — F,
there is a ¢« € I, with w; € X;. Hence w; € X;U {v1, ..., v}, and by

definition v; € X;U{v1, ..., v.}. The tree-width of this tree-decomposition
isn_lealx|X;U{vl,...,ve}]—lS2+l—1$k+1. m|
%

Coppersmith and Viskin [6] and Gurevich, Stockmeyer and Viskin [9] have
shown that a number of important NP-complete graph problems can be
solved in linear time for graphs, that are almost trees with parameter k,
for fixed k. The time, needed for these algorithms is exponential in k.

Theorem 3.4 shows the relation of these results with the results of Arnborg
and Proskurowski [2].

3.3 Graphs with bounded bandwidth or cutwidth.

In this section we consider graphs with bandwidth or cutwidth bounded
by some fixed number. These graphs can be recognized in polynomial time
(see [14],[8]), (but the time is exponential in the bandwidth or cutwidth of
the graph). In [11] it is shown that several NP-complete problems can be
solved in polynomial time for graphs G = (V, E) with bandwidth bounded
by c - log(|V]) for some constant c¢. In [5] similar results are obtained for
the larger class of graphs with treewidth, bounded by clog(|V]) for some
constant ¢. (One must assume that the graphs are given together with the
corresponding linear orderings or tree-decompositions.)

Definition.
Let G = (V, E) be a graph, with n = |V|.

® A linear ordering of G is a bijective mapping f: V — {1, ..., n}.
o A linear ordering f of G is said to have bandwidth k if k = (m';xécE
uv
|f(w) = f(v)I.

¢ The bandwidth of G, denoted by bandwidth(G), is the minimum band-
width of a linear ordering f, over all possible linear orderings of G.

o A linear ordering f of G is said to have cutwidth k if k = max
H{(w,v) € E | f(u) < i< f(v)} o



e the cutwidth of G, denoted by cutwidth(G), is the minimum cutwidth
of a linear ordering f over all possible linear orderings of G.

The following variant of the notion of bandwidth, called “cyclic bandwidth”
was introduced in [11].

Definition.
Let G = (V, E) be a graph, with n = |V|.

¢ A linear ordering f of G is said to have cyclic bandwidth k if k =

(3?3E(min(|f (w)= f(v)l, n—1f(u) - f(v)])) ( = the maximum distance

of f(u) and f(v) in a ring with n vertices R, = ({1, ..., n}, {(1,2),
(2,3), ..., (n—1,n), (n,1)}), taken over all (u,v) € E).

® The cyclic bandwidth of G, denoted by cyclic bandwidth(G), is the
minimum cyclic bandwidth of a linear ordering f over all possible
linear orderings of G.

Lemma 3.4
Let G = (V, E) be a graph, with bandwidth(G) = k. Then cutwidth (G) <
k(k+1)

e
Proof.
Consider a linear ordering f of G with bandwidth k. Let n = |V|. For
alli,1<i <, [{(»,v) € E| f(u) <i< f} < HGd2) € {1, ...,
n}*x{l, ...,n} | j1 i< A lj1—ja| < Kk} < k(k +1)/2. Hence
cutwidth(G) < k(k + 1)/2. (m}

Showing that every graph with bandwidth < k is a partial k-tree, i.e. has
tree-width < k, is, in particular, very simple.

Definition.

The maximal graph on n vertices with bandwidth & is the graph Gipn = (Va,
Ein), with V. = {1, 2, ..., n} and Exn = {(4,5) | i,5 € Va A |i — | < k}.
The following observation was made by Saxe [14].

Lemma 3.5 [14]
Let G = (V, E) with |V| = n. Then bandwidth(G) < &, if and only if G is
isomorphic to a subgraph of G ».



Lemma 3.6

1. Forallk,n,n > k > 1, Ggn is a k-tree.
2. For all k, n > 1, Gk, is a partial k-tree.

Proof.
1. Use induction to n.

2. Use (1) and the fact that every graph on n < k vertices is a partial
k-tree.

]

Corollary 3.7
For every graph G = (V, E), bandwidth(G) > treewidth(G).

Lemma 3.8
For every graph G = (V, E):
cyclic bandwidth(G) < bandwidth(G) < 2: cyclic bandwidth(G).

Proof. First we remark that cyclic bandwidth(G)< bandwidth(G) follows
directly from the definitions.

Now let |[V| = n. Let f:V — {1,..., n} be a linear ordering of G with
cyclic bandwidth(f) < k. We suppose n is even. If n is odd, then a similar
construction can be made. Let g: V — {1, ..., n} be defined by

(,v)= 2‘f(”)’ iff(”)Sn/2
9 2m+1-2-f(v) if f(v) > n/2

It is easy to verify that f is a linear ordering of G w1th bandwidth(f) < 2k.
Hence bandwidth(G)< 2- cyclic bandwidth(G). o

Corollary 3.9
For every graph G = (V, E), cyclic bandwidth(G) > 1. tree-width(G).

Theorem 3.10
For every graph G = (V, E), cutwidth(G) > treewidth (G).
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Proof.

Suppose we have a linear ordering f of G = (V, E) with cutwidth k. Let
n=|V]. Wenowlet I = {1,2,...,n},foraliel; X; = {w]| f(w) >
iANTveV: (v,w) € EA f(v) <i}U{f1(i)}, and P is the pathgraph on
n vertices, i.e. P = (I, {(i,i+1)|1 < i < n-1}). Now we claim that
({X: | i € I}, P) is a tree-decomposition of G with tree-width < k.

First note that for all v € V, v € Xy-1(y).

Secondly consider an edge (v, w) € E. Either f(v) < f(w) or f(w) <
f(v). Without loss of generality assume the former. Then v € X¢-1(,), and
w € Xj-1(y), by definition.

Next suppose i < j < k and w € X; N X};. From w € X it follows
that f(w) > kV f(w) = k, hence f(w) > k > j > i. Thus there must be a
v €V, with (v,w) € EA f(v) < i. So we have f(w) > jATveV:(v,w)E
E A f(v) £ j. Hence w € Xj. It follows that X; N X; C X;.

Finally note that forall i, 1 < i< n, |Xi] < |{(v,w)€e E| f(v) Li<
f(w)} +1 < k+ 1. So the tree-width of the tree-decomposition is at most
k. o

3.4 Classes of planar graphs.

In this section we consider a number of classes of planar graphs. Arbitrary
planar graphs can have arbitrary large tree-width. For instance, an n*n
- grid network has tree-width n [13]. For a number of classes it was already
known that the tree-width of graphs in the class is bounded by some fixed
number, e.g. the series-parallel graphs and the outerplanar graphs. We will
review some of these results and will also show that every Halin graph has
tree-width < 5 and every k-outerplanar graph has tree-width < 3% — 1.

First we consider series-parallel graphs. A series-parallel graph can have
parallel edges, i.e. it is a multigraph. One can define a series-parallel graph
recursively as follows:

o The graph with 2 vertices and one edge is a series-parallel graph:

v w

O—O

11



o Let G = (V, E) be a series parallel graph. One obtains a new series

parallel graph G’, by replacing any edge (v,w) € E in one of the
following 3 manners:

v v* w

O—OC—=0

. vﬁ v*
v
‘ w
W v

where v* € V, i.e. v* is a new vertex.

From this definition and the definition of the tree-width of a graph, one
easily can proof, with induction, that every series-parallel graph has tree-
width < 2. To be precise, the class of graphs with tree-width < 2 equals the
class of series-parallel graphs [17].

Next we consider the outerplanar graphs. A graph G is outerplanar, if
it is planar and. it can be drawn in such a way in the plane that all vertices
lie on the exterior face. It can be shown that every outerplanar. graph is a
series-parallel graph [10]. Thus outerplanar graphs have tree-width 2. This
can also shown in the following way. ’

For every outerplanar graph G = (V, E), there must be a vertex v with
degree(v) = 1V degree(v) = 2. Suppose degree(v) = 2. Let (v,w) € E,
(0,2) € E, w # 3. Now G' = (V = {v}, (E — {(v, w), (v,2)}) U {(w,2)})
is an outerplanar graph, and we may assume, with induction, that we have
a tree-decomposition ({X; | i € I}, T = (I, F)) of G with tree-width < 2.
There must be an ¢ € I, with w € X;Az € X;. Nowlet i* ¢ I, I* =
ITu{i*}, X;» = {v,w,z} and T* = (I*, F U {(¢,i*)}). One easily verifies
that ({X; | ¢ € I*}, T*) is a tree-decomposition of G with tree-width at
most 2.

A generalization of the outerplanar graphs are the k-outerplanar graphs.

12



Definition.
e A graph G = (V, E) is 1-outerplanar if and only if it is outerplanar.

e For k > 2, a graph G = (V, E) is k-outerplanar if and only if it is
planar and it has a planar embedding such that if all vertices on the
exterior face ( and all adjacent edges ) are deleted, then the connected
components of the remaining graph are all (k — 1)-outerplanar.

The notion of k-outerplanar graphs was introduced by Baker [3], who also
showed that several NP-complete graph problems can be solved in polyno-
mial time, when restricted to k-outerplanar graphs.

Theorem 3.11
Let G = (V, E) be a k-outerplanar graph. Then treewidth(G) < 3% — 1.

Proof.
We use induction to k. For k = 1, the theorem holds because every outer-
planar graph has tree-width < 2, as discussed above.

Now let £ > 2 and assume that the theorem holds for all ¥’ < k — 1
and let G = (V, E) be a k-outerplanar graph, embedded in the plane, such
that if all vertices on the exterior face are removed, then each connected

component of the remaining plane is k — 1-outerplaner. We first prove the
following lemma.

Lemma 3.11.1
There is a k-outerplanar graph H = (V, F), with E C F (i.e. G is a subgraph
of H), and there is an embedding of H in the plane such that

e if we remove all vertices on the exterior face, then each of the remaining
connected components is (k — 1)-outerplanar.

e every interior face which contains at least one vertex on the exterior
face of H has exactly 3 sides.

Proof.

For every interior face of G, containing at least one vertex v on the exterior
face, we add edges from v to every other vertex in the face (if not already
present). The resulting graph H fulfills the stated conditions. o

Let H = (V, F) be given, as indicated by the previous lemma. From lemma
2.4 it follows that it is sufficient to prove that treewidth(H) < 3* — 1. By
lemma 2.3 we may suppose that H is biconnected.
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Now we define V,, = {v € V | v is on the exterior face of H } i Vin =
V — Ves; H., is the subgraph of H , induced by V,, and H,, is the subgraph
of H induced by V;,. It follows that H;y is (k — 1)-outerplanar, and thus
treewidth(H;,) < 352 — 1,

Lemma 8.11.2
Suppose H,, is a cycle. Then H,, is connected.

Proof.

Suppose not. Then there must be vertices v, W € Ve, with v and w adjacent
to vertices in different components of H;,. We can choose v and w such
that (v,w) € F. Consider the vertices in Vin adjacent to v. We can order
these 2y, ..., ,, such that Vi < r: (%is iy1) € F. (Use the property that
each face containing v has exactly 3 sides.) Likewise, let Vi, - -y Yo be the
vertices in V;,,, adjacent to w, with Vi < 8, (¥i,¥is+1) € F. (See fig. 3.) Now,

Figure 3:

because of the property that each face containing v and/or w, must have 3
sides, either {v, w, y,} and {v, 11, =, } are faces of H,or {v, w, z,} and {w,
Y1, .} are faces of H. In both cases (r,11) € F and z,, z,, ceey Ty Y1,
.+ Ys are in the same connected component in H;,. Contradiction. O

Now suppose H;, is connected. Let Vinez denote the set of vertices on

the exterior face of H;,. It follows that each vertex v € V,, only is adjacent
to vertices in Ve, U V...

14



Lemma 3.11.3

Suppose H. is a cycle and suppose H;y, is biconnected. Then treewidth(H)
<3 -1

Proof.

Note that the vertices in V;,., form a cycle. For all € V;,., there are one
and more consecutive vertices Iy, ..., Tr(z) € Ver that are adjacent to z.
(If not, then one can find a face with 4 sides, containing at least one vertex
v € Vez). See fig. 4. H;, is (k — 1)-outerplanar so we have, with induction,

Figure 4

that there is a tree-decomposition ({X; | i € I}, T = (I, D)) of H;, with
tree-width at most 351 — 1.
' Foralli € I,let X! = X;U{z1 | 2 € XiNVinez }U{Zr(z) | 2 € XiNVipez }.
Recall that z; and z,(;) are the first and last vertex in V., adjacent to z.
(If r(z) = 1 then z; = z,(y))-
Further, for all z € Vjy., with r(z) > 2 we choose an i(z) € I, with
T € Xiz). Let I' = TU {iz; | 2 € Vipez Ar(z) >2A1 < j < 7(2) -2},
where all i; € I, i.e. are new elements. Let X/ = = {z, zj, Tj+1, Zr(5)}-
Let T’ = (I', D), with D’ = DU {(i(2),iz,1) | £ € Vinez A () > 2} U {iz;,
izj+1) | £ € Vipez AT(2) >2A1< j < 7(2) - 2}
In other words, to each X; of the old decomposition we add for each
z € Viper the first and last of the neighbors of z, that are in V. For
2 € Viner that are adjacent to more than 2 vertices, we choose a vertex i € I

15



X,X

and other
vertices

and add an extra branch with r(z) — 2 vertices to i in the tree, in order to
represent , ..., Ty(z)-1, as illustrated in fig. 5.

1’ Xr(x)

Figure 5

We now claim that ({X! | i€ I'}, T' = (I', F')) is a tree-decomposition
of H with tree-width < 3F — 1.

It is easy to see that for all v € V, there is a ¢ € I' with v € X/. Next
we claim that (v,w) € F = 3i € I’ with v € X! A w € X!. We consider the
following cases.

Case 1. v€ Vi, Aw € V;,. Then 3i € I with v € X; A w € X;. Hence also

“v€eX!/2X;and we X!

Case 2. v € Viu, Aw € Ver. Then v € Vipes, and we can write w = v;
with1 < j < r(v). fj=1o0rj=r(v),then for all i € I with v € X;
one has v € X{Aw =v; € X|. f 1 < j < r(v), then v € Xj, ,, and
w=1v; € Xj,,,-

Case 3. v € V; A w € V. Similar to case 2.

Case 4. v € V; Aw € V.. Now there is a £ € Viper, with (v,z) €
F A(w,z) € F, else we have a face in H, containing v and w and at least
4 sides. Hence, we can write (v = 2; Aw = 241, 1 € j < r(z) - 1)
or (v==zjp1Aw=12j,1 <j < r(z)—1). Without loss of generality,
suppose the former. We have: if r(z) < 2 then for all i € I with z € X;:

- 16



v=2; € X]ANw =z € X, and if r(z) > 2, then, if j < r(z) — 1 then
v=2; € Xi,; A\w=uz; €X;,,;,and if j = r(z) — 1 then v = Ty(z)-1 €
‘,il'y"(-‘l)—2 Aw= -'D,-(z) € Xi::,r(z)—z'

So we have that in all cases Ji€ I’ : v € X! Aw € X!.

Now we show that if j € I is on the path in 7" from i € I’ to k € I’ then
X} 2 X! N Xj. First consider the case that i, k € I. It follows that j € I
and if z € X/ N X}, then either z € V};,, and hence 2z € X; N X} C X;c X}
or z € V., and hence z can be written z =z, or 2z = Ty(z) fOr T € Viper and
now z € X; N X} C X, and 2z € {=,, Toz)} C X;. So X; 2 X! N Xj. Next
consider the case that i € I' — I, k € I. It follows that there is an z € Vinex
with X/ N X} C {=, z1, Z,()}. Now note that j must also be on the path
in T’ between i(z) and k, and also {z, z,, T,(z)} € X{(I). It follows that
X/nX/nX}c X{(z) NnXgc XJ'-. The other cases are similar or easy.

Finally note that i € I = |X]| <3-|X;| < 8%, and i€ I'~ I = |X]| =
4 < 3%, Hence the tree-width of the decomposition is at most 3* —~1. O

One may observe that for every interior face of H, that contains at least
one vertex of Ve, ( and hence has exactly 3 sides), there must be at least one
i € I, with X/ containing each of the (three) vertices on this face. (There
are basically 2 cases: one has a face with vertices {z, zj, 41}, or a face
{z, 9, 21 = y;(3)}, With 2, y € Viner, 1 < j < 7(z) — 1. For the former case,
the observation is straightforward. In the latter case, observe that we have
i€ I:z € X; and y € X;, by definition. Now {z, y, 2, = Yrw)} € X)). So
we have the following, slightly stronger result.

Lemma 3.11.4

Suppose H.; is a cycle and suppose H;, is biconnected. Then there exists a
tree-decomposition ({X; | ¢ € I}, T) of H with tree-width at most 3% — 1,
and for each interior face of H that contains at least one vertex of V., there

must be at least one ¢ € I with X; containing each of the vertices on this
face.

With induction to m we now prove the following lemma:

Lemma 3.11.5

Suppose He; is a cycle and H;, consists of m biconnected components.
Then there exists a tree-decomposition ({X; | ¢ € I}, T) of H with tree-
width < 3% — 1, and for each interior face of H that contains at least one

vertex of V.., there must be at least one ¢ € I with X; containing each of
the vertices on this face.
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Proof.
Use induction to m. For m = 1, the lemma follows from lemma 3.11.4.

Let m > 1, and let the lemma be true for all m’ < m. There must be
at least one biconnected component of H;,, that shares exactly one vertex
v with one or more of the other biconnected components. So we can write
Vin = VIUV2 V1N V2 = {v} and the subgraph of H, induced by V!,
denoted by G, is biconnected , and the subgraph of H, induced by V? has
m — 1 biconnected components and is connected.

Let W! C V., be the set of vertices in V., that are adjacent to vertices
in V1, and W2 C V., be the set of vertices in V., that are adjacent to
vertices in V2. Note that W' U W? = V,,. W! and W? both induce
connected subgraphs of the cycle H., (see fig. 6.) (If not, then one derives
a contradiction with the fact that H is biconnected.) Now, the “left most”
vertex of W! equals the “right most” vertex of W2, and vice versa. Let
these two vertices be z and y.

Figure 6

, Now consider the graphs Hy = (VIUW?!, F}) and H; = (VZUW?, F?),
with F; = {(w1,ws) € F | w1, wp € ViU W} U {(z,y)}. (See fig. 7.).

Observe that Fy U F; = F U {(z,y)}. If we define (Hj)in, and (H2)in
similar to H;,, then (H1)in = G; and (Hz2)in = G2. Now (H;)in has one
biconnected component and (H;);, has m — 1 biconnected components. By
using the induction hypothesis, one can obtain now tree-decompositions
({X( l it € Il}, = (Il,El)) of Hy and ({X, | t € Iz}, T = (Ig,EQ)) of H,,
with the following properties:
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Figure 7

e ich = |X;| <3k
e il = |X;| <3k

o 3iy € I : {v, z, y} € X;,. (Use that z, y are on the exterior face of
H,.)

o Ji; € I : {v, z, y} € X;,. (Use that z, y are on the exterior face of
Hg.) )

We now claim that ({X; | i€ [ UL}, T2 = (1 Uz, Ey U E2U {(41,42)}) is
a tree-decomposition of H, with tree-width at most 3¥ — 1. (See fig. 8.)

It easily follows that Uicpur, Xi = V. If (v,w) € F then (v,w) €
FVv(v,w) € Fp,thus (3i€ I; : v € X;Aw € X;)V(Ti € [ : v € X;Aw € X;).

Next let i, j, K € I U I3, and suppose j is on the path from ¢ to k in
T. If i, k € I or i, k € I, then it directly follows that X; C X; N Xk.
Now suppose i € I, j € I, k € I;. (The other cases are similar.) Then
XinXy C(VIUWH)N(VZUW?) = {v, z, y}. Note that j is on the path
in T from i to iy, and {v, z, y} C X;,. Hence X; N X C X; N X;, C Xj.

Further it follows directly that i € I U I, = |X;| < 3.

Finally notice that every interior face of H, containing at least one vertex
of V., either is an interior face of Hy, containing at least one vertex of whi,
or is an interior face of Ho, containing at least one vertex of W2. Hence, for
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Tree-decomposition Tree-decomposition
of H.1 of H2

1

Figure §

such a face, there will be a i € I; U I, with X; containing all vertices on the
face. This completes the induction argument of lemma 3.11.5. o

We will finally come to the proof of our main theorem 3.11. First we
remark that H., always is an outerplanar graph. Because we supposed that
H is biconnected, we may suppose that H has at least one face. (If not,
then H is a graph with at most 2 vertices, and trivially treewidth(H) < 1.)

Consider the dual graph (He;)* of H.;. The vertices of a dual graph of
a planar graph correspond to interior faces of the graph and there is an edge
between » and w in the dual graph if the corresponding faces share an edge.
It is well known (see e.g. [16]), that the dual graph of an outerplanar graph
G is a tree. Now consider a face of H.;, corresponding to a leaf in (H.z)*.
This face must share exactly one edge (v, w) with another face of H.,. Let
(Vez)! be the set of vertices on this face, and let (H.;)! be the subgraph of
H.., induced by (V.:)'. Note that (H.z)! is a cycle.

Now let (V;n)! be the set of vertices in V;,, that are embedded in the
area in the plane that is enclosed by HL.. Let V1 = (V;,) U (V). Let Hy
be the subgraph of H, induced by V1. Let V2 = (V — V1)U {v, w}. Let H;
be the subgraph of H; induced by V2. For an example see fig. 9.
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A \ W

a) A 2-outerplanar graph H

b) The su\l;graph Hex

¢) The subgraph (H

W ~Ex

d) The subgraphs H' and H 2

Figure 9
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Now H! and H? are also k-outerplanar graphs, but have a smaller size
than H. By using induction we can obtain tree-decompositions ({X; | 7 €
I]}, T = (Il, El)) of Hy, and ({X, I 1€ Iz}, T = (Iz,Eg)) of Hg, both with
tree-width at most 3* — 1. There must be i € I; with v € X ANw € X,
and i; € I; with v € X;; Awe X;,. Now ({X;|i€ UL}, T =
(I U I, By U E U {(i1,42)}) is a tree-decomposition of H with tree-width
at most 3¥ — 1. The proof of this fact is similar to the argument in lemma
3.11.5. This completes the proof of theorem 3.11. (m]

The last class of graphs that is considered in this section on classes of planar
graphs is the class of the Halin graphs.

Definition.

A graph G = (V, E) is a Halin graph if it can be obtained by embedding
a tree without vertices with degree 2 in the plane and connecting its leaves
by a cycle that crosses none of its edges.

It directly follows that the Halin graphs are contained in the 2-outer-
planar graphs, and thus, by theorem 3.11 have treewidth 8 or less. However,
by closer inspection one can obtain the following result.

Theorem 3.12
Let G = (V, E) be a Halin graph. Then treewidth(G) < 5.

Proof.
The proof is similar to the proof of theorem 3.11. One uses that treewidth
(Hin) = 1. 0

3.5 Intersection graphs.

In this section we consider classes of intersection graphs. Each vertex in an
intersection graph has associated with it an object in some space; there is an
edge between two vertices if the corresponding objects intersect. For each of
the considered classes of intersection graphs, we need on additional bound
on the maximum cliquesizes of the graphs, to let the classes be subclasses of
the graphs with bounded tree-width. We remark that each of the considered
classes of graphs is a subclass of the class of the perfect graphs, i.e. for each

of these graphs, its chromatic number equals the size of the largest clique
that it contains.
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Definition.

G = (V, E)is a chordal graph if and only if every cycle with length exceeding
three has an edge joining two non-consecutive vertices in the cycle.

Theorem 3.13 [7)

Let a graph G = (V, E) be given. Then G is a chordal graph if and only
if there is a tree T = (W, F) such that one can associate with each vertex
v € V a subtree T, = (W,, F,) of T, such that (v,w) € E if and only if
W,NnW, #0.

The following result was already noted by Robertson and Seymour [13].

Theorem 3.14 [13]

For every graph G = (V, E) and integer k € N+, treewidth(G) < k-1 if
and only if G is subgraph of a chordal graph H that has maximum cliquesize
at most k.

Proof.

Use the characterization of chordal graphs of theorem 3.13.

(<) Use the tree-decomposition ({X; | i € W}, T) with X; = {veV | i€
W,}. Note that i € W, Ai € W, = (v,w) € E, hence X; forms a clique in
H, hence |X;| < k. (=) Let a tree-decomposition ({X; | ¢ € I}, T = (I, F))
of G be given. From the definition of tree-decomposition it follows that for
all v, the subgraph of T, induced by I, = {i € I | v € X;} is connected, i.e.
is a subtree T, of v. Now let H be the intersection graph given by these
subtrees Ty, i.e. H = (V,E’) with (v,w) € E' & I, NI, # 0. One can
argue that for all vy, ..., v, € V,ifforall ¢, j < r: I, NI,; # @, then
Uicicr Ini # 0. (Use that T is a tree, i.e. is cyclefree.) Hence if we have a
clique with r vertices in H, then there must be an i € I with |X;|>r. O

It follows that the treewidth of a chordal graph is its maximum cliquesize
-1. Similar results can be obtained for subclasses of the chordal graphs.

Definition.

e The undirected path graphs are graphs with vertices corresponding to
paths in a tree, and edges between vertices, if the corresponding paths
have a vertex in common.

o The directed path graphs are graphs with vertices corresponding to
paths in a tree with one vertex in the tree marked as root, and each
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path is a subpath of a path from the root to a leaf, and there is an

edge between two vertices if the corresponding paths have a vertex in
common.

The interval graphs are graphs with vertices, corresponding to con-
nected subgraphs of a path (that is: a tree with each vertex degree
< 2), and edges between vertices, if the corresponding subgraphs have
a vertex in common.

The proper interval graphs are graphs with vertices, corresponding
to connected subgraphs of a path, such that no subgraph is entirely
contained in another, and edges between vertices, if the corresponding
subgraphs have a vertex in common.

It follows that each interval graph is a directed path graph, each directed
path graph is an undirected path graph, and each undirected path graph
is a chordal graph. Similar as for the chordal graphs one can obtain the
following results without difficulty.

Theorem 3.15

® (G =V, E) has a tree-decomposition {(X; | i € I}, T = (I, F)) with
tree-width < k — 1, and for each v € V, {i € I | v € X;} induces a
path in T') & G is a subgraph of a undirected pathgraph H = (V, E’)
with maximum cliquesize < k.

(G = (V, E) has a tree-decomposition ({X; | i € I}, T = (I, F)) with
tree-width < k — 1, and we can choose a root-vertex r € I, such that
for each v € V, {i € I | v € X;} induces a subgraph of a path from r
to aleafin T') & G is a subgraph of a directed pathgraph H = (V, E')
with maximum cliquesize < k.

(G = (V, E) has a tree-decomposition ({X; | i € I}, T = (I, F)), with
tree-width < k£ — 1, and T is a path) & G is isomorphic to a subgraph
of an interval graph H with maximum cliquesize < k.

The tree-width of graphs with the additional restriction that T is a path,
(called path-width) was studied by Robertson and Seymour in [12]. We now
consider the circular are graphs and the proper circular arc graphs.

Definition.

o G = (V,E)is a circular arc graph, if we can associate with each v € V
a path on a cycle, and (v,w) € E & the paths associated with v and
w intersect.
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e G = (V, E)is a proper circular arc graph, if we can associate with each
v € V a path on a cycle, and no path is entirely contained in another
one, and (v, w) € E & the paths associated with v and w intersect.

Lemma 3.16

Let G = (Vg,Eg) be an intersection graph, each vertex v € Vg corre-
sponding to a connected subgraph of a graph H = (Vy, Eg), and (v,w) €
Eg, if and only if the corresponding subgraphs have a vertex in common.
Let k be the maximum cliquesize in G. Then treewidth(G) < (treewidth
(H)+1)*xk-1.

Proof.

Let ({X; | i € I), T = (I, F)) be a tree-decomposition of H = (Vy, Eg)
with tree-width ¢ — 1. Associate with each vertex v € Vi a set I, C Vg
with I, = {w € Vg | v is a vertex in the subgraph associated with w}. By
noting that wy; € I, Awy € I, = (w,,w;) € Eg one sees that |I,| < k
for all v € Vy. Now let for all i € I, ¥; = U,ex, Iv. One can verify that
({Yi | ¢ € I}, T = (I, F)) is a tree-decomposition of G, and the tree-width
of this decomposition is at most ¢+ k — 1. a

Corollary 3.17

Let G = (V, E) be a circular arc graph (or a proper circular arc graph), with
maximum clique size k. Then treewidth(G) < 2k — 1.

Proof.
Use the definitions, lemma 3.16, and the fact that the tree-width of a cycle
is 2. o

Also we have the following properties of the proper interval graphs and the
proper circular graphs.

Theorem 3.18

Let G = (V,E) be a proper interval graph with maximum cliquesize k.
Then: bandwidth(G) < k — 1.

Proof.

Suppose we have associated with each v € V a set of vertices §, = {l,, [, +1,
ety —=1,7,} C{1,2,..., N}, such that (v,w) € E & S, NS, # 0; and
Sy C Sy =>v=w.
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Let |V| = n. We pose a total ordering < on V, such that v < w & [, <
ly. Note that v # w implies that [, # I, else §, C S, or S, C Sy. One
can now obtain a unique linear ordering f of G, with f(v) < f(w) & v < w,
ie. f(v) < f(w) & 1, <ly,. We claim that bandwidth(f) < k — 1.

Consider an edge (v,w) € E and without loss of generality suppose
f'(v)+i4,foralli,0 < i<l (Thus v = v,, w = v;). We have that
(v,w)e E=> SyNSy # 0, thus iy, < r,,ie. l, €95, Foralli, 1 <i<I-1,
we have —(S,; C S,) and I, < l,; < l, < 1y, thus r,, > [, hence I, € S,,.
So 1y, € MNo<i<i Sv;- So the vertices vg, vy, v2, ...v-1, v; form a clique in G
with [ + 1 vertices. It follows that f(w) — f(v) =1 < k — 1. We now have :

V(v,w)€ E:|f(v) — f(w)] £ k-1, hence bandwidth(f) < k — 1. D

Theorem 3.19
Let G = (V, E) be a proper circular arc graph with maximum cliquesize k.
Then: cyclic bandwidth(G) < k — 1.

Proof.
Similar to the proof of theorem 3.18. (]

Corollary 3.20
For all proper circular arc graphs G = (V, E): treewidth(G) < 2k — 2.

Proof.
Use corollary 3.9 and theorem 3.19. o

3.6 Tree-partite graphs.

Seese [15] introduced the notion of (n—bounded) tree-partite graphs, and
showed that a number of important graph-problems can be solved in polyno-
mial time for graphs, represented as n—bounded tree-partite graphs, with n
bounded by some fixed constant, and the degree of the graph also bounded
by some fixed constant.

Definition. [15]
Let n > 1. A graph G = (V, E) is said to n—bounded tree-partite, if there
is a tree T = (I, F') and a collection {A; | t € I}, such that

[ ] V = UA:
tel

e A;NAy =0,forallt,t eV,t#t.
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o For all e = (v,w) € E, either thereis a t € I such that v € A;Aw € A,

or there are ¢, € I with ¢,t' adjacent in the tree T, and v € A, Aw €
Ay
¢

e Forallt € I, |A; < n.

Theorem 3.21 [15]
If G is k—bounded tree-partite, then treewidth (G) < 2k — 1.

We have also a connection of this notion with the notion of emulation ([4]).

Definition.

o Let G = (Vg,Eg),H = (Vy,Eg) be graphs. A mapping f : Vg —
Vy is called an emulation, if for all (v,w) € Eg : f(v) = f(w)v
(f(v), f(w)) € Ep.

o The cost of an emulation f; Vg — Vj is cost (f) = max,ev, |f71(v).
One easily obtains the following relation between the two notions.

Theorem 3.22

Let G = (V,E) be a graph. G is k—bounded tree-partite, if and only if
there is a tree T = (W, F) and an emulation f : V — W of G on T with
cost(f) < k.

One can show the following relation between the cost of emulations of G on
a path and the bandwidth of G, very similar to a result in [4].

Theorem 3.23

Let G = (V, E) be a graph, k € Nt. Then: bandwidth (G) < k =
=> There is an emulation f of G on a path P with cost(f) < k

= bandwidth(G) < 2F — 1.

Corollary 3.24

For all graphs G = (V, E), if bandwidth(G) < k, then G is a k—bounded
tree-partite graph.
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4

Conclusions

This paper shows some inclusion relations between the class of the graphs
with treewidth bounded by some fixed number, and a number of subclasses.
This also resolves some open problems of [10]. For instance, it follows that
the problems to determine, whether an almost tree with parameter k (k
fixed), or a graph with bandwidth k (k fixed) has a Hamiltonian circuit; and
the Chromatic Number problem, restricted to almost trees with parameter
k (k fixed), all can be solved in polynomial time.
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