How to prove the First and Second
Incompleteness Theorem using concatenation

A. Visser, O. de Moor and M.J. Walsteijn

RUU-CS-86-15
September 1986

S5
)
%
&
o o
Zsal ¥

e fAL

Rijksuniversiteit Utrecht

- Vakgroep informatica

Budapestlaan 6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

How to prove the First and Second
Incompleteness Theorem using concatenation

A. Visser, O. de Moor and M.J. Walsteijn

Technical Report RUU-CS-86-15
September 1986

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands

PREFACE.

These lecture notes grew during courses in Metamathematics in 1985 and 1986. Their principle
aim is to prove Godel’s First and Second Incompleteness Theorem for the system of Peano Arithmetic
providing details of the arithmetization to such a degree that they are sufficient for the student to enable
him to see what still needs to be done (in principle) and how it should be done.

The main new twist of these notes is the fact that the use of the Chinese Remainder Theorem is
avoided. Sequences are built using concatenation. The idea to do this is taken from [Boolos & Jeffrey],
who attribute the idea to Kripke. Let me briefly comment on the differences of the treatment here and
that of Boolos and Jeffrey:

(i) A minor point is that, due to an infelicity in the definition, the concatenation operator of Boolos
and Jeffrey fails to be associative. Let a prime p be given, They define:

MN(b) := the smallest power of p that is both greater than b and 1
a*b:=a-nb)+b

Clearly (1 *0) * 1 =p2 + 1, but 1 * (0 * 1) = p + 1. The example also exhibits the sole reason
of the failure: 0 doesn’t function as the empty word, as it should, when used as the right hand
side in a concatenation.

The defect is easily repaired by dropping the "and 1" at the end of the definition of ne). A
consequence of the failure of transitivity in Boolos and Jeffrey’s treatment is that their definition
of "part” doesn’t generally the job they want it to do.

(i) The main point is this: Boolos and Jeffrey restrict their attention to the First Incompleteness
Theorem. Because of this they do not need to prove a Prolongation Lemma (see (61) and (62) on
Pp- 16,17 of this report) in Peano Arithmetic for sequences as they define them. They can build
the sequences outside the system. It turns out that their definition of sequence cannot easily be
used to prove a Prolongation Lemma: To prolong a sequence a la Boolos and Jeffrey it may hap-
pen that one has to change the prime number on which the concatenation is based. To do this one
needs primitive recursion, which is not yet justified!

Clearly the present approach has the advantage that one is able at an early stage to embed con-
catenation into Peano Arithmetic and prove the necessary properties of the representing arithmetical
operation. However, surely one would hope that the approach via concatenation would also be simpler
than the one employing the B-function. As far as I can see this last aim has not been quite achieved,
due to the considerable difficulty to construct sequences from strings.

The present notes need improvement and extension. In subsequent classes I hope to add at least a

description of the formalization of the proof of Z-completeness and a treatment of the theorems of Lob,
Rosser and Church.

I thank Hans Mulder for helpful discussions in an early stage of the genesis of these notes. Oege

de Moor and Michiel Walsteijn did a wonderful job in converting the rough class notes into readable
text.

Albert Visser.
University of Utrecht
Centrale Interfaculteit
Filosofisch Instituut
Heidelberglaan 2
Postbus 80.103

3508 TC Utrecht

1. Peano Arithmetic

1.1. Introduction

To prove the Gtdel Theorems, we shall construct a self-referential statement in number theory.
Such a statement is like the Epiminides paradox:

This statement is false.

No matter how one reasons, it is not possible to determine the falsity or truth of this sentence. The
paradox-like sentence we seek to express has to be something like:

This sentence cannot be proved in number theory.

Of course, we must use the language of arithmetic. This language should have the ability to ventrilo-
quize: It has to talk about its own sentences. Consider a theory of elementary syntax rich enough to
describe the language of arithmetic and to prove its relevant properties. If we can translate the language
of this theory into the language of arithmetic in such a way that the translations of syntactical theorems
are arithmetically provable, our aim will be reached. Such a translation corresponds most naturally with
an embedding of the standard model of our theory of syntax into the structure of the natural numbers.

In this chapter, we start with Peano Arithmetic as the original theory. Whether it meets our
requirements remains to be seen. It should adequately express number theory, and the above-mentioned

technique should be applicable. In the remaining of this notes, we shall refer to Peano Arithmetic as
PA.

1.2. Definitions and conventions

1.2.1. The alphabet of PA

Unary function symbol: S

Binary function symbols: +, -

Constant symbol: 0

And the ordinary symbols in a first-order theory.

Because PA is intended to be a theory of something very familiar (natural number arithmetic) it is
handy to introduce some notations:

+ (x , y) will be written as x+y
* (x ,y) will be written as x-y
S(x) will be written as Sx
whenever convenient.

We should like to refer to other numbers than 0, hence we introduce the abbreviation:
n:i=3S8§ - S0 (n §’s)

Or, more neatly defined:
1:=8©, n+l:=S@)

Note that 'n’ is a meta-variable ranging over the numbers. The underscore could be interpreted as a
function from numbers to terms (i.e. syntactical objects).

1.2.2, Axioms

PA has the following axioms:
1 Sx=0

@ Sx=8)->@&=y)
B) x+0=2x

X+S8Sy=8x+y)
@ x-0=0

X-Sy=x-y+x
(5) (AOAVx(Ax 5 A Sx)) — Vx Ax

This last clause is not really an axiom. It is an axiom schema: for each formula A, an axiom is
generated. The schema is called *The principle of mathematical induction’. One could express it as a
natural-deduction rule.

[Ax]

D
AQ ASx
Ax

With the restriction, that x should not occur free in the open hypotheses. Note that Vx Ax can be con-
cluded.

1.3. Basic properties of PA

In paragraph 1.3 we shall prove some basic properties of PA. Considering the amount of proper-
ties we are going to prove and the frequent use of proof by induction, we’ll introduce a shorthand for it.
This shorthand only shows the crux of the proof, leaving out the cosmetic details, which are left to the
reader. If the reader wishes a full conventional proof by induction, he should be able to convert the
shorthand to the desired shape by himself.

We'll now introduce the shorthand by an example:

Suppose we want to prove that for any

n20,1+2+ -+ +p==

The shorthand looks like this:
- 0=(0*+0)2
- 142+ - +n+(n+l) =
A+2+4+3+ -+ +n)+@n+1)=(.H.)
nt+n
2
n+n+2n42
3 =
n2+2n+l+n+1___
2
(n+1)? + (n+1)
2
The conventional proof would be like this:

Basis Step: Let n = 0. Then the sum on the left is zero, since there is nothing to add. The expression
on the right is (0% + 0)2. Hence, the claim holds for n = 0.

+@n+l) =

Induction Step: The induction hypothesis: We assume that for n = m 2 0 the claim holds.
Then

142+ -+ +m Hm+l) =
* -+ = (By the induction hypothesis)
(m+1)*+(m+1)

2
Therefore the claim holds for » = m + 1. By mathematical induction the claim holds for all n > 0.

Notice that in the shorthand the induction hypothesis is implicit. If we have an induction over more
than one variable, we will simply indent a few blanks when the induction over the next variable begins.

We start with an almost trivial, but important property: Any number is either zero or it is the suc-
cessor of another number.

1)x=gv3yx=Sy
- Sx=0v3y s

Properties of addition

In this section, we shall see that addition in PA satisfies our intuitions: It is commutative and
associative.

To prove that *+’ is commutative, we need the following weaker result:
2) x+Sy = Sx+y
- x+80=8x+0
= 8x
=8 +0
- x+85y =S +3Sy)
=" s@x +y)
= Sx + 8y

Commutativity of addition:

D xty = y+x
- x+0=0+x
- 0+40=0+0
- Sx+0=Sx
=§5x+0
=M 50 +x)
=0+8
- x+8y=S8y+=x:
X+Sy=S8x+y)
=" 5y +x)
=I+Sx
=“Sy +x

Associativity of addition;
4) (x+yHz = xHy+2)
- (+y)+0=x+y

=x+(+0
- (x +y)+Sz=S"S(x +y)+12)

=" S(x +(y +2))
=x+S8Sy +2)
=x+(y+382)

5)y+l= Sy

An exercise for the reader.

Properties of multiplication

Now we examine the behaviour of - . 1 is indeed the multiplicative identity. Distributivity of mul-
tiplication over addition holds, and - is both commutative and associative. We employ the following
common convention: x - y may be abbreviated to xy.

One is the multiplicative identity:
6)1x=1x
- 10=0
- I'Sx=1x+1
=M x4 1
=5Sx

Multiplication is distributive over addition:
T (x+y)z = x-z+y-z
= G +y)0=20+y0
- (x+y)s: =”Sx +y)yz+(x+y)
=" @z+yz)+(x+y)
=M@z +x)+ (yz +y)

=x'52 +ySz
Multiplication is commutative:
8)xy=yx
- x0= 0x:
- 00=00
- 5x0=0
=0+0
=M 0x +0
=0-Sx
- xSy = Sy=x
xSy =xy+x
=Hyx+x
=Syx +1x
=7y +1x
=5Syx
Multiplication is associative:
9) (xyyz = x-(y-z)
- @y)l=x0-0
- (xy)s:z =”gx-y)-z +(x7y)
=" x(yz)+x-y
=" x (yz +y)

= x (y8z)

Addition, multiplication and equality:

In normal life, there are some special facts concerning multiplication, addition and equality. If the
sum of two natural numbers is zero, they are both zero. If the product of two numbers is zero, at least
one of them is equal to zero. The only divisor of one is one.

10)x+y=0 - x=0Ay=0
Suppose x +y = 0.
y=Su->x+Su=90
->8Sx+u)=20

Contradiction. Using result 1, we conclude that y = 0

x=8v 2S5 +y=0
—>v+Sy=0
=S +y)0
Contradiction. Using result 1, we conclude that x = 0

MMx+z=y+z 5> x=y
- x+0=y+0->x=y
- X+82=y+Sz2 9 S(x +2)= Sy +2)
—2>x+z=y+2
- x =y

12)xy=0 5> x=0vy=0
Suppose x-y = 0.
x=Suny=8v > Su-Ssv =0
> Suv+Su=90
> S@Suv+u)=0
Contradiction. Again by 1, we may conclude that x = Ovy=0

If two numbers, each multiplied by the same non-zero number, yield
the same product, they are equal:
B3)xSz=y8 >x=y
- 0Sz=y82-50=ySz
% =0vsz=0
-»y=0
= CASE I :y = (, as above.

CASE I : -~ (y = 0), by 1 there is a w such that

y = Sw. We have:

Sx:Sz = SwSz — 8 §2:8x = Sz-Sw
—>82x+82=8zw + 8z
>N =Srw
—8x85z=wS2
»>Hx=w
8=y

Mxy=1->x=1Ay=1
It is immediately clear that x#0, y#0,
Let x=Su,y = Sv.(By 1)
Su-Sv = Suv +Su=_S8©Suv+u)=1
Hence Suv +u = Q.

We get Su'v = 0Au = 0.By 13, v = 0 0.

Comparison of numbers

Having examined additon and multiplication in some detail, we now turn to the comparison of

numbers in PA. First we define two binary predicate symbols, representing the usual order relations in
.

Define:
x<y: e@3Jzx+Sz=y
x<y: e 3Jzx+z=y

As we might expect, these predicates may be defined in terms of each other:

I5)x<ye—>xSy A-ax=y
— :Letx + Sz = y, then there exists an u, such that
Xx +u =y, hence xsy.Letx = y then Sz + x = x, and
Sz = 0 (by 11)

< :Assumex +z=y,ifz = O then x = y, contrary
to the assumption. Ergo z = Su , in other words: x + Su = Y
which by definition is equivalent to x <y

16)x Sye—x <yvx=y
—:letx+z=y. Ifz=0thenx =yifz = Su thenx <y (1)
«:If x<y thenx <y.Ifx = y thenx + 0=y, and hence x < y

17) < is a weak partial order (wpo), i.e.
x < x (reflexivity)
(*<y A y<x) > x =y (Antisymmetry)
(x <y A y<z2) - x <z (Transitivity)

a)x Sx
x+0=x

b)x <yAy<z ox<z
Assumex +u =y,y +v=z,then(x +u)+v = z, and hence (3,4)
X +(u+v)=z,yielding x <z

CIXSYyAySxHx=y
Assumex +u =y andy +v=x then(x +u) +v = x.
This yields 34) x + (8 +v)=x,hence Q) (x +v) +x = 0+ x, ergo
+v = 0 (11). We conclude (10) that u = Ov =10hencex = y.

18) < is strong partial order (spo):
-~ < x
<y Ay<x)-ox<y
<y Ay<z)-x<x

An exercise for the reader. Hint: Use the previous result.

P x<ye-8Sx<y @
Immediate from 2. x + Su = y——oSx +u =y

)x<y vx=y vy<x
- x<0vx=0v0<x,since: (3)
O+x=x,hence 0<x,ergo(16)x = 0vO0<x
= Assumex<yvx=yvy<x.Ifx <y, then (19)
X +Su=y,s0x+85u=Syhencex <Sy.Ifx=y,
then x + 1= Sx = Sy, and therefore x <Sy.Ify <x, then

Sy <xie. Sy <x vx = Sy.

2)x <Sy > x <y
X+u=yeoSx +u)= Sye—x +Su = Sy

2)x <y > x+z <y+z
X+Su=yea(x+Su)+z=y+z26(x +2)+ Su =y+z

B)x <y e xSz2<ySz

"—’: Assume x + Su = y then (x + Su)Sz = y-Sz, hence: (7)
xSz + SuSz = y-Sz or
xSz + (Su'z + Su)= y-Sz or
x8z + S(Su-z + u) = y-Sz, and we can conclude:
x-Sz <y-Sz

"« ’: Assume —(x < y). Then, by result 20, x = y or
¥ <x. Both cases lead to a contradiction: If x = y,
xSz = ySz. If y < x, then ySz < xSz by the first part.

We focus our attention now on basic principles that are frequently used in proving other results. Among
them are transfinite induction, the minimum principle, the maximum principle and the less well-known
(but equally important) collection principle.
Notation: (if x does not occur free in ¢)
dx<t Ax : & Jx(x <t AAx)
Vx<t Ax : & Vx(x <t — Ax)
24) TRANSFINITE INDUCTION
Vx(Vy <x Ay = Ax) — VxAx
(Exercise: Show that TI is weaker than ordinary induction.)
Assume Vx(Vy < xAy — Ax). We use induction on z in Vx <z Ax.
- Vx<0QAx
— Vx <S8z AxeoVx(x <zvx = z) - Ax
oVx(x <z > Ax) AVx(x = 2 — Ax)
(——)(Zx <zAx) AAz
——HAS T
We get: Vz(Vx < zAx). For a particular x;:
Vx <Sonx, xo<sxo,el'30AXo.
Hence VxAx

Define:
3 ux Bx: 3x(BxAVy < x —By)

25) MINIMUM PRINCIPLE
3x Bx — 3Jux Bx
An exercise for the reader.
(Hint; Take Ax = —Bx in 24 and use contraposition.)

Define:
M <yAx :3x <y (Ax A Vz<y (Az o z<x)
26) MAXIMUM PRINCIPLE
dx<yAr - Jhx <y Ax
Assume Jx <y Ax.
Take Cx:=Vz <y(z >x — —Az).3x <y Cx, because 3x x < y,
hence y = Su. We show: Cu.If u <z <ythenu+Sv=2z,z+8Sw=y,
yielding(u+Sv)+Sw=u+(Sv+Sw)=u+SS(v+w)=u+SQ.Weﬁnd
S§8(v + w)= S0, and this leads to a contradiction:S (v +w)=0.

It follows that 3ux Cx, say x,. Clearly xo <y Claim: Ax,.
Suppose that —Ax,. We distinguish to cases (cf. 1.);
Case 1: xo= Sup. Take az withz <y and z > u,,
Z > Uge—z 2 Suge——z > Sug vz = Sug.
If z > Sug= x4 then —Az. But ug < x,.
Contradiction.
If z = Sug then —Az too. Contradiction.
Case 2: xo = 0. Assume —Ax, then
Vz <y(0<z - -4z AQ= z - —Az), in other words:
(Vz <y 0 <z — —Az). It follows that; Vz <y —Az.
Contradiction.
(end proof of claim)

This concludes the proof of the maximum principle.

27) PA - Induction + TI + Vx (x = 0 v 3y (x = Sy)) Induction
Assume Axioms 1-6, T, Vx (x = 0 v Iy (x = Sy)). In addition,
asume that: AQ A Vx(Ax — ASx). It is sufficient to prove:
Vy((Vx < yAx) — Ay). Let Vx < yAx.Ify = 0 AQ.
Ify = Su, u <y, it follows that Au hence ASu, i.e. Ay.

28)((Bx A Vy <x —By) A (Bz A Vy<z-By) > x=1z
An exercise for the reader.
(Hint; use fact 19).

29) COLLECTION PRINCIPLE
Vx<y3Jz Axz «—>Ju Vx <y 3z <u Axz
« : trivial.
—» : induction on y.
- 0 trivial
- Vx <S8y 3JzAxz , then
Vx <y JzAxz and 3zAyz, so
JuVx <y3z <u Axz and 3z Ayz,,
Take such u,zy, and v:=max (u,z9 + 1).
then Vx <y 3z <v Axz,3z¢ < v Ayzg.
Vx <Sy 3z <v Axz.
Properties of division
DEFINITION:

alb: >3 xax=0»>

p is prime: SpPp=0Ayp=1AVx(x|p - x=1vx=p)
30) 115

Simply because 1'b = b
MalQ
aQ=0
The following three results prove that | is a weak partial order.

32)ala
al=a

33)@|b Abic) - a]c

ax=b,by=c— (ax)y =a(xy)=c

34)(@ib Abja) > a=1b ,
ax = bby=a »axy)=a=a-l
Now, distinguish two cases:

35)aldb - calch
ax = b — cax = cb

36) (—-c = OAcralcb) - alb
cax=cb nc 20 sax=0b

MN@lba—=b=0 — agh
ax = b. Suppose that x = 0. Then b = 0,
contrary to the assumption. Hence x # 0. But then:
1<x, because if x = Sy then 1 +y = Sy.
Hence a-1 < a xib.

B)@#0ra=zxl) - dp (p isprime A p |a)
Suppose a # 0a # 1. Then:
gla 53x x#0Ax #1ax]a
= 3Jux x #0Ax # lax|a

Call this smallest divisor x of a: p.

Claim: p is prime. Suppose y |p, then y |a (by result 33).

P #0 hence ysp,and yja and y # 0. We show: y = p
ory=11Ify = p, we are ready, if y #p, it follows that y<p,
and hence:y = Ovy = 1v—(y|a),ergoy = 1.

Mplqg+r)y > pir
P |p°q +r, 30 by definition px = pg +r.
It follows that ¢ < x (result 23).
Letg +z = x, thenp(q +2)= pq +r, and
by result 6 & 12 (commutativity of - and the
distributive property) we find pg + pz = pq +r.
Applying result 6, we get pz = r, which is equivalent
to the desired proposition.

40) Vx 3p 2 x p is prime.
The statement will follow from:
Vx3y #0Vz<xz#0-1z|y
We will prove this by induction on x

~ x = 0. Trivial,
- x= Su
Induction Hypothesis:

Jv#0withVz <uz20-z|v

Now, take y:=v-u,if u #0, 1ifu = Q.

y satisfies the requirement:

Take z < Su. Distinguish two cases:

2= u: z|v-u. Trivial,

z <u: z|v-u, by the induction hypothesis.

10

Consider x and y (y # 0) such that for all z < x:

z#0- z|y.y exists for an arbitrary x by the

proposition above. Let p be a prime factor of (y + 1).

Such a factor exists, while from our assumptions, we may deduce
thaty +1#0,andy +1#1.

Assume that p |y. Then, by the previous result p | 1. This

is contradictory to the assumption that p is prime. Hence p

does not divide y. We conclude thatp > x.

Define:

(E!xl,.. Xy Axy, - ‘)l &

Jx;3xz -3 (A, " -) AVy Yy, - - Wy,
AQL ") = K=y 1A A = y)

41) EUCLIDES’ ALGORITHM
VaVb(a# QAb#0) - 3lnr(@=nb+rar<b)

First, we prove existence of » and r. Uniqueness will be dealt
with thereafter.

Existence:

Since 0b = 0<a,weknow that Ix <a +1 xb <a
By the maximum principle,

IAx <a+1(xb<a)

Call this largest x n. By definition of <, we have
nb+r=aforsomer

Assume thatr 2 b,ie.7 = b + 7. Then
nb+r=nb+b+r=m+Db+r =a

n + 12 n, contrary to the fact that n is the
largest x such that x-b < a.

We conclude that r<b.

Uniqueness:

Assume thata = nb +r,a=nb +7, r,” <b.
Ifn <n’, thenn’ = n + Sz. Substitution yields:
nb+r=(n+82)b+r =nb +8zb +r

This leads us to the fact that

r=82b+r =>b+(bz+7r)andr 2b.

This is contradictory to the assumption that b < r,
hence n’ < n. By symmetry, we conclude that

n < n’ t00. But then n = n’, and since

nb +r = n'b + 7, we may conclude that r = 7.
This completes the proof of the algorithm.

42)(p isprime Aplab) - (pla vp|b)
An exercise for the reader.

Above, we saw that | defines a weak partial order. This together with the next two results, yields
the fact that <|PA |, | > is a lattice. A lattice is a weakly partially ordered set in which every two ele-
ments have a greatest lower bound and a least upperbound and which has a bottom and a top.

DEFINITION:
LCM@,b)=c : = alc Abjca
Vd ((ald Ab|ld) — c|d)

11

43) LCM defines a function
UNIQUENESS
LCM(@a,b)= ¢ ALCM(@,b)=¢c’ = ¢ = ¢’
EXISTENCE
3¢ LCM@,b)= ¢

Uniqueness:

Suppose ¢ = LCM(a,b) and ¢’ = LCM (a,b). 1t follows that
c|c’ and ¢’ |c. By result 34, ¢ = ¢’.

Existence:

The proof is by TI on a:

We distinguish the following cases:

CASEIL

a = 0. Take ¢ :=0. Clearly, this c satisfies our requirements.

CASE I1:

a =1 Takec:=b.

CASE It

a #0,a # 1. Then a has a prime factor q.
Case Illa: ¢ | b
q |b, in other words: b = gb’. ¢ is a prime factor of a:
a=gqa.
Take c:=q-LCM (a’,b’) = qc’. Note that ¢’ exists by the
induction hypothesis.
a |c’, hence g’ |gc’ !

b’ |c’, hence gb’ |qc’ 2

Suppose that a |d and b |d. Then ¢a’ |d, qb’ |d. 1t follows that
d=1xgqd andd = y-qb’.

xq-d = yqb,since g #0:

xd = y-b'. Call this number &'. d = qd’,

aid andb’ld’. ¢’ = LCM(a',b’), so ¢’ |d’ . We conclude
that gc’ |qd” °.

Combining ?, 2, %, we conclude that c satisfies
the requirements.

Case IIIb: - q1b
Take ¢ := ¢q-LCM (a',b) = q-c’,where a = qa’
a’|c’, hence qd | gc’ !

b|c’, hence b |gc’ 2

Suppose that a |d and b |d. Again:

d=1xqd —d=yqb Taked = xa’ = yb'(q #0)
a\d.bjqd = d, hence bz = qd for some z.

By the previous result (42), we get:

q|borgqiz.

We assumed that —q |b, 50 ¢ | z. Substituting

this in bz=gqd’, one finds: bg?’ = ¢qd’, hence

b =d,andb|d.

Now, we apply the fact that ¢’ = LCM (a’,b) to find
that ¢’ |4, and hence gc¢’ | g4’ . In other words:

12

cl|d 3.

Combining !, 2, 3, we conclude that ¢ satisfies
the requirements.

44) The case of GCD is left to the industrious reader.

DEFINITION:
Let p be a prime, define
disapowerofp:e>d#0 A Vx (x|d 5x= 1 v pix)

Show that the definition doesn’t work if p is not a prime.

45)(p isprime A disapowerofp A d’ is a power of p) — d-d’ is a power of p

Proof:
d-d’#0. Suppose x |d'd’ and x #1
Suppose g is the smallest prime such that ¢ |x. From 44 follows
qld vq|d’. Because ¢ 1, p |q follows, hence p = q.
Conclude p |x.

46) (p is prime A d isapowerofp A d’is apowerof p) = (d|d’ «—d <d’)

Proof:
- : is already done.
« :Supposed <d’. 1|d, 1|d’, so a power of
p exists, which divides both. Such powers are <d.Letd,
be the largest. If dy = d then we are finished.
Elsed = dye, where e # 1, hence p |e.
Therefore d = dgp-e’. Also d’ = dyf,
where f # 1, hence d’ = dgpf’.
It follows that dyp |d and dyp |d’ and
dop > dpl = d,. Contradiction.

47) Vx 3 d>x d is a power of p

Proof:
With induction:
- 0 is trivial.
- Induction hypothesis: d > n.
Thenpd22d=d+d2d+1>n +1.
DEFINITION:

NG&):=pud (disapowerofp A d>x)
@) x#0>5(d=nMNx)e>d isapowerofp A d>x A d<p=x
Proof: An exercise for the reader.

13

2. Concatenation

To prove Godel’s Incompleteness Theorems, we will have to code elementary syntax in arith-
metic.Inthissectionwewillcarryoutaﬁrstmpofthistask:wedeﬁneanari&nwticalopmﬁmwim
all the properties of concatenation. Our concatenation operation is a minor modification of the one

found in Boolos & Jeffrey.

DEFINITION:
a*b:=anb)+b

49) n(a * b) = n@a)n(d)

Proof:
1. n(a)n(b) is a power of p
2.n(@)n(d) 2 (a +)N(b) = and) + () >
and)+b>b.
3. pr@n(b) + b) 2 p-an(d) 2n@)n(b) (cf.48)
The case a b = 0 is trivial.

50)@*b)y*c=a*@®*c)

Proof:
@n(®)+b)n(c) + ¢ =
an®d)ne)+bn(c)+c =
and *c)+(b*c)=
a*@®*c)

Sa*c=b*c—oa=5»
Proof: An exercise for the reader.

DEFINITION:
bCca:=3c3c’@=c*b*cH
bgia:=3c’@=b*c)
bg,a=3ca=c*bh)

52)bc,a Acg,a)obg,c veg, b)

Proof:
a=d*b=e¢*c,s0dnb)+b= en(c)+ec.
Suppose b <c,say b +x = ¢,
then dn) = en(c) + x.
N(b) < n(c), hence N(b)|N(c), hence N(b)|x (cf. 46).
Therefore ¢ = x"0(b) +b = x’ * b.

S3)a*b=a*co3b=¢

Proof:
Letbc, c,ie.c = b’ * b,
Thena * b = a * b’ * b, hence
a=a*b'=anbd)+b’
Therefore b’ = 0,

14

SMybgancga)sbgec v cg b)

Proof:
a=b*b'=c*c,nowb'g,a,c’'c, a.
It follows that b’ ¢, ¢’ ve' g, b’
Letb'c, c’thenc’= b” * b’,
Hence b * b'= ¢ * b” * b’. With 51 it
follows that b = ¢ * b”,
Therefore ¢ ¢; b. The case ¢’ <, b’ is similar.

SSlagc*bas(@gcec vach v de’g,cIAb’' g ba=c’*bY)

Proof:
Another way to formulate this is:
agc*bosaccvachbv(c=c"*c”,
b=b'*b"Aa=c"*b)
Suppose
c*b=x*ag*y,

Case 1.
CCix,80c*b=c*x"*a*y, hence
b=x"*a*yieach

Case 2.
XCic,80x*c’*b=1x*q*y, hence
c’*b=a*y

Case 2.1
ac,c:Thenc = x * a * ¢”, hence
acec.

Case 2.2
c'c;a:Thenc’* b=c"*q’* y, hence
b=a’'*y

Thereforec = x * ¢c’,b=a’*yanda=c’* a’

DEFINITION:
eisap-atom: e #0 A ViVgle=f*g>Ff=0vg=0)

56)(eisap-atom A eca*b)s(eca v e cb)
Proof: Left to the reader.
57)(d isapowerof p A a #0) - nd-a)=dna)

Proof:
1.dn(a) is a power of p.
2dn(a)>d-a.
3dm@)<d-(p-a)= p(da).

58) q is a p-atom «-— Im 3Id (disapowerofp A Q<m<p A q=md)

Proof:
«— Suppose g = a *b,q=md,disapower of p and

15

O<m<p.

Then m'd = an(b) + b. Suppose b # 0, then
dlanb)+b and ~n(b)|anbd)+ b, hence

- N(b)|d, hence d |n(b), hence d | b.

It follows that m-d = a-e-d + b'd, ie.

m=ae+b’.

Now b’ #0, e is apowerof p,0<m <p.
Therefore a = Q or e = 1. In the first case the proof is
completed. If e = 1 then n(b) = d. Contradiction.

- Suppose ¢ is a p-atom.

Let dg be the largest power of p, which divides ¢ (and < q).
Then g = mqgdy and —p|m,.

Suppose mg 2 p, hence my > p.

It follows that mo= bp +c , b #0,0<c <p, hence
q=(bp+c)yd=>bpd+c-d Now
N(d)=n(c)d = pd,henceq = b * cd.
Contradiction. Conclude mg < p.

3. Sequences

The most important thing we need in order to obtain the possibility to talk syntax in arithmetic is
a coding of sequences.

Godel in his original paper used the Chinese Remainder Theorem to code sequences, we will do it
using our concatenation operation. The two characteristic properties of sequences are:

i) they have a length.

ii) there is a projection function pr such that: for i < length(s) pr(s,i) is the i-th number in s.
Instead of pr(s,i), we write (s);.

The obvious idea to code a sequence <ng,...,n-1> is t0 pick some number k to code the comma and
take:no* k* «-o * % n_1.

There are two problems with this proposal, one trivial and one difficult.

The trivial one is that there is no obvious way to count to the i-th member of the coded
sequences to obtain (s);. We could do this if we had recursion, but to show that we can define func-
tions by recursion in arithmetic we will precisely need sequences. The solution to the trivial problem is
to put <i,n;> or better : a code of <i ;> into the coded sequences rather then »; itself,

The difficult problem has to do with the comma: what if eg. no=m* k * m’. How can we
distinguish <ng,ny,..> from <m,m’;ny,..>? One idea is to use for each sequence a different comma:
then to give a sequence is both to give its code and the code of the comma. This would indeed solve
the problem, but it would create a new problem: we will have to prolong sequences i.e. to go from
<R Qyeeesy— 1> 1O <R ..., 1,m> for arbitrary m. If the code of the comma coming with the code of the
original sequence is k¥ and k < m, then we will have to change the comma in the whole original
Sequence to a new one, not part of m. The only way we can see to do that is by recursion...

A second idea is to code our numbers nq, . . . »my—y first into Ay, ... ,A;_;, in such a way that
our chosen comma k does not occur in A, . . . +#1—1. The problem is now to find an appropriate func-
tion (*) that can be defined with the apparatus at hand (We couldn’t find one).

The idea we will use here is the following: we will make codes of sequences with growing com-

mas: the commas will always be so big that they can be distinguished from the numbers in the
sequence.

16

CONVENTIONS

- We use d, " always for powers of p without mentioning this explicitly.
- We write e.g. xdw insteadof x * d * w
DEFINITION:
wer:e Jx 3d(disapowerofp A
r=x*d*wa
d>xnand>w)

v
dx 3y 3d 3Ad’ (disapowerofp A
d’ is a power of p A
r=x*d*wr*d *y A
d>x nd>w Ad >xdw)

It is intended that w is a number occurring in r, where the d, &’ function as commas,

59)rdaw = Ydw Ad>w Ad >F —
(r=rAd=d Aw=w)v
(r = 7Ydx Aw = x'dw))
We distinguish two cases:

a)r'd c;r thenr = ¥d'x and rd'Xdw = rd'w’ hence w = xX'dw
b)rc Fd’,butr #7d then ru = ¥d’, u # 0. It follows
that & <, u. Hence: r’d’ = r'd’. Now rdw = ri'd'w’
CASE bl)u' = Qthend=d'r=rw=w
CASE b2) ' # 0 then &’ = du” and hence
¥ =rd = rdu’,sod’>d. Also,w = u"d'w yieldsd >d'
Contradiction.

60)d>r Ad>w)— Werdw «— (Wer vw = w))
Assume that (d >r Ad > w). In addition, assume that w’ & rdw
Again, we can distinguish two cases:
a) Ydw’ = rdw theneither (¥ = r,d’ = d, w = w)or (r = rd’x’ and
w' = x’dw), hence d > d’, &’ > d. Contradiction. We conclude that w = w.
b) rdw = rdw'd”r”. By 59 (substitute d” for d’) it follows that either
r=rdw and hence wer,orr = rdwd’x and wer t0o. w = w

DEFINITION
a)aob =a * ymax(a, b)) * b
b) Seq(r): =>((k ower Akower) 5w = w)
A

(kower Al <k) > 3w lower)
C) length(ry=2k <r +1

k=0v 3Kk =SK Ak ower))
d(r)i=pw <r +1 i ower

61) (Seq(r) A length(r) = k) — Seq(r o (k ow))
Assume: k' ow'er o(k ow)
K ow’ero(k ow)
i) Kow =FKow =kowthenk =k, w = w”’ = w.
ii) K ow'er,thenk <r +1ergok < Length(r). It follows
that ¥’ ow’er. (Otherwise: ¥ ow’ = k ow, hence k = k. Contradiction.)
Seq(r) hence w’ = w”.

17

iii)
¥ ow”er. Analogous to the previous case.
Assume X’ ow’er o (k ow).
If¥ ow'er, we are ready for ! < k’.
Ifl oW =kow then X’ = Length(r), so for
I <k there exists an w” with | o w”er.

62) (Seq(r) Alength(r) = k —

) ifi <k
rok ow)); = iw ifi=%
(r o(k ow)) + 1 otherwise
An exercise for the reader

EXAMPLE

Let p:=2. We use (61) to obtain a code for <0,0,0>.

0c0=0*1*0=1

lo0=1*2*Q0=¢6

200=2%4*0=20
00(000)=001=0*2%1=35§
50(100)=506=5%*8* 6= 710

7100(200) = 710020 = 710 * 1024 * 20 = 46563348

EXAMPLE
Let p:=3.

Which sequence is coded by 3929120837 We first rewrite the number as a
concatenation of atoms. This is best done by first finding the last atom, then
the last atom of the string before it, etc. The last atom of a number is the
rest of division by the smallest 3-power not dividing it.

393912083 = 130970694-3 + 1 = 130970694 * 1
130970694 = 14552299-9 + 3 = 14552299 * 3
14552299 = 4850766'3 + 1 = 4850766 * 1
4850766 = 739-3% + 37 = 739 * 37

739= 2463+ 1= 246* 1

246= 273 +3= 27+ 3

27 = 3*

Hence
392912083 = 3 * 3% 1% 37 % 1 % 3)
Finally it is easy to see that this codes: <1,1>.

4. Extensions of theories

It is time to reflect on what we are doing. The sentence ’All sequences have a code’ can’t be
expressed in PA. But * VrVn (seq(r) — seq(r on)) ’ can be written down in PA, because of the way

18

we have enriched the vocubulary of PA. The latter sentence will turn out to be sufficient for our goals.
Intuitively the process of enriching a language will not introduce new theorems: any theorem proved in
the enriched language can be translated back o the original language and the proof of a theorem can be
translated to a proof of the corresponding translated theorem. This intuition should be sufficient to
inspire trust in what we are doing. But we really need to know more (how complex will the formulas
become when you translate them back to PA ?7) about the translation (for future use). Hence we will
give an analysis of the process of extending the language,

4.1. Definition

T « U : <> U is a definitional extension of T

: <> Ly extends Ly with relation symbols Ry, ... ,R,_; and function symbols Fo, ... ,F,_; and
U=T+V®R® > B;®)+ Ry (F;®) = y «— A;®y))
where B;A; € Ly and T |- V¥3ly A;(2y)

4.2, Definition
Suppose Ly extends Ly , we say that U is conservative over T if VA € Lr UFA=TEA)

4.3. Theorem

If T « U then U is conservative over T.

Proof:

The proof is trivial, but tedious and rather long. Consider T,U with T < U. To simplify a bit, suppose
Ly has only one relation symbol = and binary functionsymbol G and suppose the only new symbol in

Ly is an unary functionsymbol F, where U |- Vx,y (Fx)=y «—A(x,y)and T |- Vx3ly A(x,y).
We define a translation from Ly to Ly as follows:

M) =x)=(=x)
@forx#y: (y=x):=(@=1x)
(iii) for x € FV(G(t1,t2)):
(GUrt) = x)" 1= 3212, (11 = 21)" A (12= 2)" AG(z129) = 1)
Here 24,2, ¢ FV(!I) (& FV(’;_) v {x}
W) F@)=x)" =3z ((t = 2)' AA(zx))
Herex ¢ FV(t),z ¢ FV(t) U {x}
WME=6Y =32 (t=2)A@=2))
] Herez ¢ FV(t) U FV(t'), t’ ¢ VARFV(t)
(vi) ()" commutes with the logical connectives.

Note that for A € Ly: A® € Ly

43.1. Lemma

QU B e—>B"

@ Cely =3T-C e
Proof: Induction on B,C.

43.2. Lemma T VZ3ly (@)= y)'

(Where ¢ is in Ly and the free variables of ¢ are among X andy ¢ FV(t))
Proof: Induction on ¢.

19

4.3.3. Lemma

Suppose ¢ is substitutable for x in B, where ¢,B are in Ly, then (given a fresh variable u):
Tk BUx]) «—3u (¢t = u) A@uix]))
Proof:

If ¢ is a variable this is easy. Suppose t ¢ VAR.We induct on the relevant forms of B .
(ic =y,y #x is trivial.
(ii)z=y,z #£x,y #x is also trivial.
(lii)x =y,y #x: use 4.32
TH(¢=y) >
Ju(t=u) A(w=y) >
u@=u) Au=y
(V) G (t(x)tx(x)) = y
Herey ¢ FV(t,(t)) U FV(t,(t)) U {x}
Proof:

TH (GEt)) =)’ >
24,23 (1) = z0)" A (1200) = 22" AG(z12) = y «— (IH)

2122 @v1 (€ = v)" AED = 20" N A@V3 (= v))' A2 = 2") AG (e 29) = y o

323,23 (= V)" A(OV) = 200" A (B0) = 29" AGG12) = y >
v (¢ = v)' A(GH(MM)) = y)
VFE&)=y @ eFVE@)uixh
vi) t1(x) = 15(x)]
TE (110) = (1)) .
3z (1) = 2)° A1) = 2)") >

3; gw @ =v)" AOD=2") ATy ((F = v2)° A(svD) = 2)°) e (@31,

v 3z (¢t = v)' A(t,v) = z) At (v) = 2)) e
v (11(v) = tx(v))
vii) — B (x) An exercise for the reader.

434. Lemma T'l-y A =T, A*

Proof: Induction on proof length.

44. Theorem <« is a partial order. (W = W’ if they prove the same theorems)

Proof: the only not trivial case is transitivity. Suppose T « U < V and let ()" be the translation of
Ly to Ly.

Define V’ = T + Uaxioms + V2 R, () «— (B, (®))' + W2,y Fir@) =y > @A @y)")
Then
V=V’
- Ly.= Ly is trivial.
- Uk B/ (®) <> B/ @)
Uk A/ ®y) - (4, @y)*

We want to have more grip on definitional extensions: we especially want to know what kind of formu-
las we get when we translate back. First we introduce the classes of formulas we are interested in. Why
one should be interested in these formulas will become apparent later.

20

4.5. Definition
Let Ly extend Lp, and suppose T extends PA.
a) Ag(Lz) is the smallest class of formulas of Ly s.t.
(i) atomic formulas are in Ay(Ly).
(ii) Ao(Ly) is closed under the propositional connectives.
(iii) Ag(Lr) is closed under Vx<t, 3x<t where
x & FV{).
b) Li(lr) := (32 B | B € AolLr)}
©) Ii(Ly) := {V?B | B € Ay(Lr)}
d) A(L7,T) := {B € Ly | there are C,D respectively
inZ(Ly)and Iy(Ly)st. T B «— C andT | B «—> D}

4.6.
Theorem

(i) Zy(Ly), II(Ly) are closed modulo provable equivalence
under A, v,Ix<t,Vx<t,

() AolLr) € AlLy,T)

(iii) A(L7,T) is closed under the propositional
connectives and bounded quantification.

Proof:

ad (i): with the collection principle.

ad (ii): trivial.

ad (iii):
suppose B € A(Ly,T) then
ThHB ¢—A,TH-B - ~A"AA'e
THVx<t B o Vx<t A

THVx<tB e« Vx<t A" ¢— — Jx<t A’
etc.

4.7. Definition For PA C T,U ;Lp, cLlrLy _
T«,U: TeU and the defining formulas B; are in A(Ly,T) and the defining A; are in Z,(Ly).

4.7.1. Fact
If the A; are ,(Ly) they are automatically A(Ly,T)
Proof:

T V®3ly A;®@yy), so

T SA®@y)e—3z (z 4y AA;R2))

48. Lemma
Suppose T <, U (Lpa < LT), such that ()* be the translation defined above, then:
A € AlLy,U) > A" € AUL;,T).
Proof:
i) ¢ = x is trivial.
ii) y = x is also trivial.
iii) Gt =x: .
Gtpt) = x) >

21

JuFuy (1= uy)" A(tz= u)" AGULEy) = x) > (a)
ViVuy (01 = u))" At = 42)") - Guguy) = x) (b)
(a) is in %;(Ly) according to LH. and
- (b) is in Z;(Ly) according to LH.
ivy F@t)=x) o
Ju (¢ = u)' AA@x)) «—
Yu ((t = u)’ - A@ux))
V) (1= 1) o
Ju (1= u) A(ty= u)') «—
Vu ((t; = 4) < (1;= u)")
vi) The propositional connectives and "3" are trivial.
vii) (Vx<t A(x)) >
Vx (x <t) 2 AE)) e
(Vx (Qu (t = u)’ Ax <u) > (AR))')) «—
Ve ((t = u)' o (Va<u AE)) <> (2
Ju (¢t = u)" AVx<u (Ax)") (b)
Here — (a) € Xy(Ly) and (b) € L(Ly).

49. Theorem
<, is a partial order.

4.10. Corollary
Suppose PA <, T and A € Xi(Ly) then A" is provably equivalent in PA with a Z,(Lps) sentence.

Note that Ay(L7) grows as we go to bigger and bigger A-extensions of PA, but A(L7,T) remains
invariant modulo translating back, i.e. ALy, T) is A(Lps,PA) (modulo provable equivalence). Also
AoLr) < A(L7,T). In fact there is an infinite A-extension of PA where Ag(Lt) catches up with A(Ly,T),
i.e. each A(Ly,T)-formula is provably equivalent in T with a Ay(Ly)-formula.

We leave it to the reader to verify that the extensions of PA we defined up till now are indeed
A-extensions. Sometimes slight adaptations are necessary, e.g.
bgca:ea3c<Sadc’'<Saa=c*b*¢

§. Z, - completeness

For propositional calculus, one can effectively decide whether a given formula is derivable or not.
When we consider predicate logic (as in PA) this is much more difficult. Just think of a Z;(Lp,)-
sentence Jx Bx, where Bx is in Ay(Lp,). For each r we can check in a finite time whether Br is true
or not. But the only procedure one can think of in general to find out if 3x Bx is true, is to check
B By, By, - - - If it is false we may never know. Now think of a PA substituted for us in the above
consideration. Wouldn’t it be surprising if PA could prove of every false X,(Lp,)-sentence that it was
false? Note that we cannot immediately exclude that it can; after all, PA proves of many X,(L,,)-
sentences that they are false, e.g. using induction instead of our naive procedure.

22

§.1. Definition
i) T is complete : <> For all A € Ly: A is true =TkLA

if) Tis A(Lr)-complete: < A c T and
ForallA e A:Aistrue =2 T A

In section 8, we will build the Godel Sentence G. This sentence has the following property:

Accepting no options besides truth and falsity, it follows that PA is incomplete. Worse, we shall
see that G is actually true and that G € II; thus yielding that PA is IT;(Lp,)-incomplete. It may seem
queer at first sight, that PA does not even have the desirable property of completeness. But most of us
are fairly familiar with at least the thought of its incompleteness. Who has not heard of Fermat’s Last
Conjecture? (And secretly tried to solve it) For all non-zero natural numbers @, b and c:
a® + b* #c*, if n>2.

Now we have a surprise. It turns out that PA is Zy(Lpy) - complete! Hence, to be incomplete, a subset
of PA should be sufficiently rich. (In terms of the hierarchy defined in the previous paragraph.) Before
we turn to the proof of this theorem, consider the following important consequence:

52. Corollary LetPA «, T. Then T is %, (Ly)-complete.
Proof:

Consider A e€Ly: A is true = A" is true, = B is true, with B € Zi(Lps) and
PAR A' <> B. (B exists by corollary 4.10) By the Z,(Lps)-completeness, we find: PA|- B and
PA |- (A" «—> B). But then: PA|- A*, which yields the desired T |- A.

53. Theorem PA is X;(Lp,)-complete.
Proof:

First we prove the theorem for Ay-formulas.

In proving the theorem for Ay-formulas, two logical connectives — and — will be bothering us. For-
tunately, we can eliminate them as follows: We write —bo v ¢, instead of ¢9 — ¢;, and — is pushed

inside to the level of atomic formulas. The latter operation is defined by the following functions;
Define ()*, Lpy — Lp,,

075 Lpa = Lp,.

i) =tf=(¢6=1),(L)y= 1, =ty = —(s=1),(L)= -1

i) (AvB)Y:=@A*'vVBY; 4 AB)Y = (A* AB"Y),
(AVB) = (A" AB”); (A AB)Y = (A~ vB~T)

(—-A):=A",(-A) = A*

(A > B) = (A" vBY, (A > B) == (A*AB")
iii) (VxA)h= Vx A*, (Vx A) = 3x A~

(3x A)h= 3x A%, (Ix A) = Vx A~
Trivially,

PAl A5 A
PAF- A” > —A.

23

We will prove our theorem for the range of ()* on Ao(Lps)
Step 1)

m=n=PAl-m=n

Trivial: m = n
Step 2)

m#n = PAl-m#n

A double Induction.

Step 3)
m+n=k=>PAlm+n=t%k
Induction on n:
- m+0=k=>m=k =2PA}lm-=
- m+P+)=k=>m+p=ys an
> PAlFm+p
2DPAlm+ Sp=3Ss

k
Step 4)
m-n=k=PAl-mn=¢%k
An exercise for the reader.
Step 5)

t=k=>PALt=k
We treat the case t = ¢, + £, as an example,
t=k = forsomem,n t;=m,t,=n,m+n=¢%
= PA -t = m,
= PA |—12= n,
=>PAlm+n=k
=2PALti+1,=k%k
Step 6)
ti=t; = PA| t1= 1ty
L=t == kaﬂd’2=k = PA}- t1 = EandPAl— ‘2=£
Steps 7 through 12 are exercises for the reader.

Step 7)
t1#t, = PA t1# ¢y
Step 8)
1, -1
Step 9,10)
vV, A
Step 11)
m<n=PA}Lm<n
Step 12)

(Vx <t Bx) >PA} Vx <t Bx
It is sufficient to prove:
Vx <p Bx =PA | Vx<p Bx
This is proved by induction on p:
— p = 0: trivial,
(We already proved: — 3x(x < ()
- P=q+1:Vx<q+1Bx =>9Vx < q Bx) and Bq
=M pA | Vx < g Bx and
PA |~ Bg
= PA |- Vx <q Bx ABg
= PA |- Vx <q+1Bx

24

This completes the proof for Ay formulas. It is easy to extend
the result to Z,(Lp,):

3xAx=>A:,forsomep
=" PA |- 4p
= PA | 3x Ax

6. Primitive recursion

We give a procedure to construct A-extensions of PA in which we have symbols for a finite
number of desired primitive recursive functions and in which we can prove the defining equations for
these functions.

6.1. Definition
The way of defining the beginfunctions is as follows:
0AXo ... x01y) = (5 =y) (Prf

A(Xp ... Xpo1y) = (Sx; = y) Scf

Ao ... Xp-1y) = (m=y) (Csh)

The composition function Cmp (G o ..., Fy_1)can be defined as:
1) Suppose Fy, . . . ,F,._;,G are already introduced:
A(rJ) = G(Fo(r),...,p,.'_ I(Y)) =)y

The recursion functional Rec**'(F,G) is defined as :
2) Suppose F,G are already defined:
A(xo, s ey ”_1,y) =
3r (seq(r) A length(r) > xo A (o= F(xy....%_) A
Vidlength(r) = 1 ((r)is1 = G((r)i Xy, . . . X)) ANy = y)

What we have done is that we showed given a A-extension of PA, say T where F and G are defined,
how to make another A-extension, say T’ where Rec is defined (Rec FG)zX)=y «— A(z,2Y)).

Exercise: Check that the definition of Rec is a Z,;-formula,

6.2. Claim 1
T Vxgdy A(xp2.y)
Proof: Induction over x,.
- r=000QoF(xy,...,x,_9)
It is obvious that seq(r) A (r)o= F(xy, . .. Xn-1) A length(r) = 1.
- Suppose A (z,¥,y’) for a certain y’. Let 7’ be a sequence as promised by A (z,¥,y").
If length(r*) > z+1 then choose r := r’.
Elser :== r' o (5z 0 G(y',2,?)).
It is easy to see that this works (y = G(y’,z,%)).

63. Claim 2

T AEeZY) AARXGRY) >y =y’
Proof(in T):

25

Suppose A(xo,¥,y) and A(xo®,y’) and suppose that r,r’ are sequences as promised by these
respective formulas, so (")xg= ¥, (r)sy=y’. One shows by an easy induction on i:

Vi<xgtl (r); = (r');.

64. Claim 3

THAOXy)e> F@)=y

THA@+LRy) «—> 3u (A@2,Pu) AGW,z,P) = ¥)

Proof:Wedomesecondhalfoftheclaim,meothermeisleftasanexemiseforthereader.

& If Ju (A(z,@u) AG(u,2,@)= y) then the desired sequence is easy to produce from the one
promised by A (z,,u) and y.

— Suppose A (z+1,%,y). Consider a sequence r as promised by this formula. Take u := (r),. Then
r is also a witness for A (z,®,u) such thaty = ()41 = G(u,2,¥)

7. Coding Syntax

In this section, we shall code syntactic objects into numbers. The elementary operations to do this
can be expressed by primitive recursion. The process is called Godel numbering. It will be denoted by
[s01, where so is a syntactic object.

We want to introduce arithmetical operations that mimick on the codes the effect of the syntacti-
cal operations on the syntactical objects. For example we construct a primitive recursive ’substitution
ion’ suby that corresponds to the real substitution functions as depicted below:

Term Variable Formula

t X ¢ —(subst) ¢[x]
[t] Mx1 [o] —(sub0) [¢[ux]]

Since concatenation is already defined, we only need to devise an encoding for the characters
from PA’s alphabet. Apart from the variables, we have finitely many symbols. Although another
approach is not expected to lead to disaster, we are going to code variables by writing: x, ‘x, “x, -
and giving both symbols a code.

’

The symbols are coded by:
Symbol () 0 x ! S + "
Number 1 2 3 4 5 6 7 8 9
Symbot 1 —~ A vV = -5 Vv 3
Number 10 11 12 13 14 15 16 17

For concatenation, we have to choose a base-number (p). Throughout the rest of this section, it
will be 17,

In talking about encoded syntactic entities, it would be nice to have a way of identifying the kind
of thing a code codes: Is it representing a variable, a term or a formula? In the subsequent definition,
predicates characterising these properties are given.

7.1. Definition

a.
Var(x): &3y <x x = var(y),
where var is defined to be :
var (0):=4
var(n + 1):=5 * var(n)
b.
Term(x): ¢<>3r Seq(r)
(Vi < length(r)
Var({(r);) v (variable)
r=3v (zero)
3j <il(r)i=6* (r);1v (Successor)
Jj,k<i((r);=1* r)y*7*(h*2v (term; + term,)
3, k<i((r)i=1*(1);*8* n*2) (termytermy)
YAX = (P Dangih(r)-1
c.

Form(x): <3r Seq(r) A
(Vi < length(r)
ry=10v (falsum)
Au,v <r Termu) ATerm(V)A([); = 1* u*9* vy * 2y (equality)
Jj<i@lr=1%11* () *2v (negation)
Jj,k<iJz10<z<16
rri=1*(@)*z* @) *2v (binary connectives)
Jj<idy<rIz15<z<18
Var(p)a(r)i=1* 2% y» (r)*2 (quantifiers)
)/\(’)M(,-)_Fx

Animpatantpropertyofﬂ:esedeﬁnitionsisthatallformulasarer. This is the reason that we did not
define:

Var(x): & 3y x = var(y).
As the reader will have recognized, this is a Z;-formula,

Now that we know the predicates to recognize a variable, term or formula it is easy to define suby, our
coding function. Since we want it to be primitively recursive, it has to be total. We therefore use a
"don’t care” value (zero). In the definition, x is a term, y the variable to be substituted, and z the for-
mula or term in which the substitution should take place.

7.2. Definition

Oif ~Term(x) v -~ Var(y)v — (Term(z) v Form(z))

z if Term(x) A Var(y) A (z = 3 v (Var(z)andz #y))
subg(x,y,z)= {x if Term(x) AVar(y) Az = y

[s] = subg(x,y,v) if (Term(x) AVar(y) ATerm(z) Az = 6* v

e, - -

The following result is one of may possible results to the effect that our encoding is not ambiguous.

27

7.3. Theorem: Unique Reading

Define C: <>Term(u) A Term(v) A Term(z) A Term(y)
a PARCo[d*u*+l *v*D1=Td*z* [Iy* N
b. PAI—CA(M*u*M*v*_[ﬂ_:_ﬂ_*z*Lrl*y*_ﬂau:z/\v=y

The phenomenon of Unique Reading may be formulated in many additional results, and the reader is
advised to do so for himself. To prove the theorem, a lemma is needed:

73.1. Lemma
tciunTerm(tyATerm(u) >t = u
Proof: induction on t.

proof of unique reading from the lemma

a. trivial.
b. Assume C and ([(d *u* [+] *v* D)1= T[0*z* [+]1*y* [)]. By result 53,
we may cancel the left brackets. We get. u * [+]1 *v* DT =2* [4T *y* [)], and

henceu c;z* [+] * y* M.UsingCandﬁ;—M:u C iz or z ¢ ;u. applying the lemma:
u = z. Again from 53 (and associativity) we getv * [)] =y * [)].Hence by 51: v = y.

Recall that we seek to express a self-referential statement. Most ingredients have been prepared
by now. We will need to talk about the code of the numeral of a given number. We would naively
compute this as follows: given n we first form the numeral of n: S § - - - S0 (nS’s), and then com-
pute the code of this numeral [S] * [S_ 7 * --- [T * [0]. Of course we cannot make the inter-
mediate step when working in PA. Happily a direct definition is possible:

num(Q) == 3
num(n+1) = [S] * num(n)

Note that this is only a sketch; the definition is not in the formal language either. However, a formula-
tion using primitive recursion is easily found.

To facilitate our reasoning, define another substitution function:

sub(x,y) = suby(num(x),4,y)

All free occurrences of x in y are replaced by the syntactic entity num(x),
Example;

sub(10, [(x +x)=x1)= [10+10= "x]

7.4. Fixed point theorem

(Godel)

Let A(x,y) be a formula. There is a formula B (), such that: PA A ([B1.9) «— B

proof:
Define C:=A (sub(x, x))

B=A@ub([c].Ic1y

PA |sub([C],[C])= @/
sub([C1,[A(sub(x, x))]) = @efaub)

A (c],[c)] = @®[p]

Ergo, PA FA(suwb([C1,Icl) «—»A(B])

8. Predicates for Proof-codes

Now that we have encoded all syntactic objects, we wish to represent the notion of provability in

PA-predicates. Since it seems to be quite difficult to code natural deduction-trees, we shall use sequents.
To simplify a bit, we use a restricted language without 3 and v . This does not restrict our results!
Both can be expressed in the remaining connectives.

8.1. Definition

Sequents are of the form I' |- ¢, where I" is a finite set of Lp, -formulas, and ¢ is a Lp, -formula. The
set of sequents is the smallest set such that:

i)
a)
b)

ii)
a)
b)
c)
d)
e)
H

g
h)

I' v {¢} - ¢ is a sequent
@ |- ¢, with ¢ an axiom of PA is a sequent

LetT'y - ¢, I'; - y be sequents, then Ty U T, - ¢ AV is a sequent.

LetI'- ¢ Ay be a sequent. Then '+ ¢ and I' |- are sequents.

LetT" U {6} - v be sequent, then T'|- ¢ — v is a sequent.

LetTy b ¢ and Iz |- ¢ — w be sequents, then T; U T |- y is a sequent.

Let ' - L be a sequent, then I' |- ¢ is a sequent.

LetT" U {—¢} - L be a sequent, then I" |- ¢ is a sequent.

LetT' Vx ¢(x) be a sequent. Then I' - ¢(¢) is a sequent, provided that t is free for x in ¢.
Let "}~ ¢(x), x not occuring free in any y € T, be a sequent, then ' Vx¢(x) is a sequent.

This provides a good starting point to introduce predicates for notions related to proofs like

Sequent, Axiom and Rule. These predicates are in the language of PA. They take numerals as argu-
ments and return true if the corresponding numbers code the desired notion.

8.2, Definition
Sequent (x): <>Seq(x) A Length(x) = 2 A

Vi < Length((x)o)(Form((x)o);) A
Form((x);)

Axiom(x): &> Sequent(x) A

29

(i < Length((x)oX(xo)); = (x);) v
(PA —axiom ((x)y)))

Rule (x,y,z). & Sequent (x) A Sequent (y) A Sequent(z)
(alxy.z) v
AE@xyz)v
2I@y.2)v
- E(x,y,z2) v
Lx,y,2) v
RAA (x,y,2) v
Vi(x,y,z)v
VE(x,y,2))

As an example, we give the definition of A I(x,y,z). The reader
should try some others form himself,

Alxyzy e@y=[A*an* Tal*on* DA
(Vi < Length((x)) 3j < Length((z)oX(x)ok = ((z)o);)
(Vi <Length((y)o) 3 < Length(()oX0)o) = (DoY)

0 is representing the empty set of assumptions. The definition is tailored to be of A, formulas
forms. Now we come to defining predicates for proof and provability.

8.3. Definition
i)
Proof o(r,z): &>Seq(r) A
(Vi < Length(r)
Axiom((r);) v
3jk <i Rule((r);,(r),r))
TLength(ry21 = 2)
(°r is a proof of 2", r an encoded set of sequents, z an encoded sequent)
ii)
Proof (rx): & 3z <r Proof o(r,z) A
(z)o=0n

(Zh=x
("risaproofofx",rmencodedsetofsequents,xanenco@dformula)

iid.)

Prov(x): & 3y Proof (y x)
("x is provable in PA", x an encoded predicate in the language of PA)

The first and second clause in this definition still yield Ap-formulas. The third is a X; formula.
To streamline our notation still further, we introduce the following abbreviation:
0¢: e Prov(rﬂ)

We can talk about provability in PA in PA itself! The fruits are ready to be picked:

30

8.4. Corollary

There is a sentence G such that:

PA | G - -0OG

(This sentence is the famous Godel Sentence)
Proof:

Apply the Fixed Point Lemma to — Prov(x). We get: There is
aG withPA - G «— -0GC

Note that G is (provably equivalent to) a IT;-sentence.

8.5. Theorem (L&5b)
i) PAL¢= PA|0¢

i) PAFD¢-0O0¢

iii) PA 00 - v) - O¢ > 0Oy)

Proof:

i) Assume PA |- ¢, then (¢ is tue, We know that O¢ is Z;. Hence, by X; completeness: PA
FOé

ii) By a formalisation of the proof of X;-completeness. For 4 € I PA - A 5 0OA. We will not
carry out the details here,

iii) Trivial.

Now, after so many pages, so much dreary encoding, we have reached the end of our journey. We are
ready to prove the incompleteness theorems.

8.6. First Incompleteness Theorem
PA -G = PA -1

PA |-G = PA 01

Proof;

PA - OG (Th. 85)
PAF G =lps 1 noG(Cor. 84)| ZPAF L

PA - OG(Cor.84)
PA |- -G = PA |- O—G (Th.8.5) =PA |- 0L (Th. 8.5)

8.7.

Second Incompleteness Theorem
PAl —OL=PA L

Proof:

We show that: PA |- G «— -~ 0L

PA | OL -»0G

PAF LG

PA - O — GXTh. 85 i)
PA - @L > 0OG)Th. 8.5 .iii))

Hence, PA |- G - -0G —» -0l.

Now, we show that: PA - 0G - 01

0oG
PA - 0OG - {D_’ DG}—-)DJ.

(PA I G —» —~0OG(Cor. 84)
PAl-O(G - --0OGXTh. 85.i)
PAF QG -»0O-0OGXTh. 8.5.ii))

Ergo: PAF-0OL—>5-0G -G

31

ot
K
oy

Fpay

g

i

%
b

5
£

L2151

1

