Distributed Infimum

Approximation

G. Tel

RUU-CS-86-12
August 1986
Revised August 1987

At 5o Rijksuniversiteit Utrecht

TN e howreue Ay

DN <
AN Wroeppntgrmatign

Distributed Infimum Approximation
Gerard Tel

Department of Computer Science, University of Utrecht,
P.O. Box 80.012, 3508 TA Utrecht, The Netherlands.

Abstract: A "distributed infimum" is the infimum of a set of values that are distri-
buted over the sites and channels in a distributed system. The values in the set are as-
sumed to change over time only according to certain rules. Distributed Infimum Ap-
proximation (DIA) is defined as an abstraction of several interesting problems in the
field of distributed computing. Global Virtual Time approximation as well as Distri-
buted Termination Detection are special cases of DIA, as will be argued. Solutions to
the DIA problem are given for different communication models (synchronous, bidirec-
tional, FIFO, bounded delay) that can be implemented elegantly on various subtopolo-
gies (ring, tree, star).

Keywords and phrases: Distributed algorithms, wave algorithms, Distributed Termination,
Global Virtual Time.

1 Introduction

A property P of the states of a distributed system is called stable if P(S,) = P(S,) for all sys-
tem states Sy, S, with §; —5* S, The detection problem for P asks for a distributed algo-
rithm to determine whether P holds in the "current state" of the system [CM85]. Examples of
stable properties are termination of the system [Fr80], deadlock [BT841, loss of tokens in a
token ring. A stable property can be characterized as a monotonic boolean Junction of the sys-
tem state. The function is boolean because the property either holds or does not hold, and
monotonic because once it holds, it holds forever. Attention has concentrated on properties
that are locally indicative, which means that the (global) property is the conjunction of Iocal
properties x, for each process p. (Strictly spoken this is not the case for deadlock.) A great
number of algorithms for termination detection is known, see [BMR85]. The problem of ter-
mination detection is "generic" for detection of locally indicative stable properties.

This work was supported by the Foundation for Computer Science (SION) of the Netherlands Organization
for Pure Research (ZWO). Author’s UUCP address: mcvax!runinfvax!gerard.

2.

In this paper we will generalize the notion of a stable property to more general monotonic
Junctions of the system state. The value of a monotonic function is an element of a partially
ordered set X. A function F is monotonic if for any system state S, reachable from S; we
have F(S,) 2 F(S;). The notion of being locally indicative is generalized to the assumption
that F is defined as the infimum of values, local to processes. The values over which the
infimum is taken may change in time. However, such a change must always result in increas-
ing the value, except after communication with another process. A more precise formulation
can be found in the next section. This limitation of the possible changes results in F being
monotone, as will also be argued in the next section. The approximation problem asks for an
algorithm to compute the value of F of the "current state" of the system. The DIA algorithms

can be applied to several, seemingly unrelated problems that are well known from the litera-
ture.

(1) Termination Detection: When one takes X = {active, passive}, ordered such that
active < passive, then the infimum F of all local values equals passive iff all local values
are passive. Hence distributed termination detection according to [Fr80] is equivalent to
computing the infimum of current X -values in the system. The reader may verify that the
behavior of processes, as sketched in [Fr80] or [TL86] is in essence the same as
described in this paper.

(2> Global Virtual Time determination: Jefferson [Je85] describes a method to simulate
synchronous systems (i.e., systems in which the processes can be assumed to have access
to a global clock) on asynchronous systems. Each process maintains a local clock, and
"global time" is defined as the infimum of the local clock values and "time stamps" of
messages in transit. This problem is known also as the Global Cutoff problem [SL87].

(3) Garbage Collection: Hughes (Hu85] presents a garbage collecting system in which DIA

plays an essential role. Hughes gives a DIA algorithm based on the termination detection
algorithm by Rana [Ra83].

The rest of this paper is organized as follows. In section 2 we will recall some theory
about partially ordered sets and give a formal description of the behavior of the distributed Sys-
tems we consider. Further we introduce the DIA problem formally. In section 3 we introduce
an important "building block" for our DIA algorithms, namely wave algorithms. In the subse-
quent sections (4 to 8) we point out how wave algorithms can be used to build DIA algorithms
under several assumptions about the basic interprocess communication. In section 4 we do this
for synchronous communication, in section 5 we assume that channels are bidirectional and use
acknowledgements, and in section 6 we assume that channels work in a FIFO fashion. In sec-
tion 7 we assume that message delay is bounded by a constant, and finally in section 8 we will
consider the case in which no assumption is made about the communication channels at all
(except the usual one that the network is strongly connected). The algorithm in section 8 will
be the most straight-forward application of the definition of a distributed infimum, but also will

-3.

be the least elegant to implement. Section 9 contains some final remarks and conclusions.

2 Preliminaries

First we recall some elementary notions from lattice theory. We say that a structure (X, <) is
a poset (partially ordered set) if it satisfies the following axioms:

Al: xSyandy <z =x Sz (transitivity)
A2: xsyandy <sx =x=y (antisymmetry)
A3: x<x (reflexivity)
We will assume that X contains a greatest (top, T) and a least (bottom, |) element:
Ad: XST, x2]

The assumption imposes no real restrictions, as any poset not containing a greatest and a least
element, can be extended with two new elements T and | which satisfy A4 by definition. The
only reason to introduce T and | is to simplify the algorithms. Next we postulate the
existence of a binary operator infimum (denoted A) on X, satisfying

AS: XAYSX, xAy<Yy
A6: Vz (z<x and z5y) =z < XAy

It is easy to verify the following facts:
A7: XAY=YAX (commutativity)
AS8: xAy)AzZ=x A(A2) (associativity)
A9; XAX=x (idempotency)
Al0: IAl= 1L, xAT=x (absorption)

The infimum operator is extended to finite subsets of X as follows: for

A = {a,,a;,..4;} € X, let inf(4) = a17an...A%. The operator satisfies the following pro-
perties:

All: VaeA infA)<a

Al2: (VaeA z<a) =z< inf(A)
A13: A; C A, =inf(Ay) < inf(4,)
Al4: inf(A;UA) = inf(A}) A inf(4,)

We will assume that the nodes of a distributed system all maintain some value from a
poset (X, <) according to certain rules that we will specify.

A distributed system consists of a set of processes and a set of directed communication
channels. Each channel is directed from one process to another. Processes send messages
over outgoing channels and receive messages over incoming channels. By an event we denote
the sending of a message, the receipt of a message or an internal computation in a process.
The event of sending a message will eventually be followed by the receipt of that message.
The following assumptions on communication in a distributed system can be made:

-4 -

(1) We say communication is synchronous if the send and the corresponding receive events

always happen at the same time. In this case the two events are regarded as one "com-
munication” event.

(2) We say the communication is FIFO (First-In-First-Out) if, whenever a process sends two

messages over the same channel, the messages will be received (and processed) in the
same order at the other end.

(3) We say the communication is bidirectional (in contrast to unidirectional) if, for every
channel from process p to process g, there is also a channel from q to p.

(4) We say that the communication has A—bounded delay if whenever a message is sent, the

corresponding receive event will take place within time A after the send event, measured
on some global clock.

At any time each process is in one of a set of process states and each channel is in some
channel state; the state of a non-FIFO channel is the set of messages in transit over this chan-
nel, the state of a FIFO channel is the sequence of messages in transit. In the initial state of
the system all channels are empty. Let S'1, §2 be system states. We say S, is reachable from

state S; (notation S, —* §,) if there is a sequence of legal state transitions (events) leading
from S to §,.

We will now define a function F on system states. Suppose each process p owns a regis-
ter x,, of type X. That is, the value of X, is a member of the poset (X, <). Further every mes-
sage that is exchanged also carries a value from this poset, its X —stamp. As a result of send,
receive or internal events the value of X, -registers and X -stamps can be set as follows:

send: p sends a message «M ,x,» t0 ¢. (No change of %)

receive: p receives «M x». p sets X, t0 a value ¥, where X’ 2 x, Ax.

internal: p sets x, to a value X’ 2 X, .
For each system state S, consider the multiset of x-values that are in the system in state S (by
expression®) we mean the value of expression in system state S):

Definition 2.1:

Val(S) := {x): p is a process} U {x: «M x» is in transit in S}
F(S) = inf (Val (S)).

We now have the following theorem:

Theorem 2.1: (Monotonicity) For system states S, S, we have §; =* § 2 =>F () S F(Sy).
Proof: By induction on the sequence of steps leading from S, to S,. Verify, that F can only
grow as a result of any event. [

The problem of distributed infimum approximation can now be defined as follows. Given a
distributed system and a monotonic function F as defined, suppose the system goes through a
sequence of system states Sg, Sy, S,, ... We call this sequence the basic computation, and

-5.

the messages belonging to this basic computation will be referred to as the basic messages.

We wish to superimpose an algorithm on the basic computation to update in each process p a

local approximation f p Of F. The approximation fp must satisfy the following two condi-

tions:

(1) Safety: At any time fp SF(S) for all p (i.e., the approximation must be a lower bound
for F).

(2) Progress: If at some time F(S) 2 k (for some k£ € X), then within finite time f p 2k for
all p.

Remark: Whenever we use words as "time", "later" etc, we refer to the actual sequence of
system states. A "point in time" is just a system state, by "later" we mean a later state, etc.

For states ¢, and t,, by ¢, <t, we mean that t is a later state then ¢,. Note this implies
ty >* t; and hence F(t;) < F(t,).

3 Wave algorithms

An important paradigm for our DIA algorithms will be the concept of a wave. Suppose all
processes have some local constant value r, and we want to compute the infimum of these
values. It is then necessary to "collect" all values r. A wave algorithm is a distributed algo-
rithm that collects the local values and ensures that all local values (reports) are concentrated
in one process. This process knows that it has received all reports. Next it computes the
infimum and broadcasts the result to all other processes. The receipt of this broadcast may
trigger the start of a next wave, when repeated evaluation of an infimum is wanted. Note, that
this mechanism ensures, that waves are time disjoint. a new wave can start only after the previ-

ous one has completed. When p reports its rp to the wave, we say that p passes the wave or
the wave visits p.

From now on we will use wave algorithms for the following three purposes:
(1) Knowledge acquisition: the reported values are concentrated in one process.
(2) Broadcasting: a result from the previous wave can be made public.
(3) "Synchronization": a process may take some actions the moment it is visited by the wave.

We give a simple wave algorithm, suitable for networks that contain a Hamiltonian cir-

cuit (ring), and a more complex one that is suitable for networks that contain a spanning tree
of bidirectional channels.

First, assume that the network contains a Hamiltonian circuit as a subtopology. That is,
each process p knows of a process Suc (p) (the successor of p), such that a path, starting at a
process p and stepping from successor to successor, passes through every process exactly once

-6 -

and returns to p. We add a new process leader to the ring, which does not take part in the

basic computation. Its only task is to coordinate the wave algorithm. For this system a wave
algorithm can be given as follows:

leader:
send «REPORT, @» to Suc (leader);
wait until «<REPORT, A » arrives;
result = inf (A) ;
send «BROADCAST, result» to Suc (leader);
wait until <BROADCAST, result» arrives.

D # leader:
wait until «<REPORT, A» arrives ;
send «REPORT, A U {r,}» to Suc(p);
wait until <BROADCAST, result» arrives ;
res, = result ;
send «BROADCAST, result» to Suc(p).

Let N be the number of basic processes. Obviously a wave takes 2N+2 messages and O (N)
time. When it is necessary to repeat the wave algorithm many times it is elegant and efficient
to combine the broadcast phase of one wave with the report phase of the next wave. Only
N+1 messages are used per wave.

leader:
send «TOKEN, @, nil» to Suc (leader);
repeat
wait until «TOKEN, A, x» arrives :
send «TOKEN, @, inf (A)» to Suc (leader)
until ... (* some termination condition *).

D # leader:
repeat
wait until «<TOKEN, A, x» arrives ;
res, = x ;

send «TOKEN, A U {rp}, x» to Suc(p)
until ... (* some termination condition *).

Of course it is also possible to select one of the basic processes and make this process the
leader. This process then runs a program that is a combination of the two programs above.

-7 .

The message complexity is then 2N (or N') because no extra process is added.

Next assume the network contains a spanning tree T of bidirectional communication
channels. Each process p knows which of its channels are T-edges. The algorithm goes as
follows: suppose p has degree d in T, i.., d of p’s channels are T-edges. When p has
received reports «<REPORT, A;», «<REPORT, Aj», ... «REPORT, Aj_1» overd—1 of its T-
edges, it sends «REPORT, AV.UA- U, I» over the d™ edge. Note that if p is a leaf, it
sends «<REPORT, {r, }» immediately. It is now easy to see that a report sent from p toits T-
neighbor ¢ contains the values of all processes that belong to the subtree of T under p (as
seen from g). All processes will eventually be in the situation of having received d-1
reports. Two cases may arise:

Case 1 (Single leader case): One process (say p) has received d reports before it has sent a
report itself. Now p computes inf(4 ju...UA, U{r, }) and broadcasts this resuit.

Case 2 (Double leader case): On one edge (say pq) two reports cross each other. This implies
that these two reports together contain all reported values. p and q detect this situa-
tion (they receive a report over an edge, over which they just sent a report) and com-
pute the infimum from the two reports. They broadcast the result over the T -edges
except pq.

Which of the two cases can arise depends on properties of communication and on implementa-

tion details. Note, that the single leader case can always be avoided: a process that has

received d reports before it sent a report itself can ignore the last report for a while, send a
report and finally treat the last report as mentioned under case 2.

For each wave two messages go over each T-edge. So, the number of messages for one

complete wave is 2(N—~1). The time to complete is O (D), where D is the diameter of the
spanning tree.

It is possible for the participating processes to "precompute” the reports: in stead of send-

ing A, they can just send inf(A). Only two wave algorithms are given here, in fact any "total
algorithm" [TT87] can be used.

4 Distributed Infimum Approximation in systems with synchronous
message communication

In this section we will consider distributed systems in which message communication is syn-
chronous. This implies that in no system state are there messages in transit and thus
Val(S)= {x): p is a process}. We use time diagrams, cf. figure 1, to depict the behavior of
the basic computation and our algorithms. Each horizontal line represents one process. Gray
arrows represent (basic) messages. Visits of a wave will be denoted by circles, and visits
belonging to the same wave will be connected by fat black lines. Where necessary numbers in

Wave
Figure 1

the pictures indicate x values.

Suppose the wave algorithm was executed "in a flash", i.e., all processes were visited in
the same system state. Then we could use the following algorithm:

Algorithm A: Send a wave through the system in system state (say) ¢,. Let process

D report xp(") to this wave. The infimum of the reported values is broadcast, and this

broadcast triggers the next wave, which takes place in system state ¢,, etc. This is re-
peated as long as the basic computation goes on.

Theorem 4.1: Algorithm A satisfies safety and progress.

Proof: Let f; be the value, computed as the result of the i® wave. Now f; = inf({xp("): p is
a process}) = inf(Val(#)) = F(t;). Safety follows from the fact that, by the time ¢ at which
fi is broadcast and a process p sets fp 10 f;, we have ¢ 2 ¢; and hence F(t) 2 f;.

Suppose F(t) 2 k (k € X) at some time ¢. Let t; 2t. Then for all p xp(t") 2k. Hence f; 2k

and f, 2 k at all times ¢ > ¢;,, because by time ¢;,, the broadcast of f; is finished. So, within
two waves, f, 2 k. Progress follows. O

Unfortunately, simultaneity cannot be achieved in distributed systems (unless a global clock is
available). In general it can not be avoided that the wave visits different processes during
different system states. This makes algorithm A unsafe, as can be shown by the following
scenario with two processes, see figure 2. Initially x, = 0, %, = 5. The wave visits ¢ and ¢
reports 5. Then p sends a message to ¢, which causes q to set x, to 0. Next, p increases Xp

5 R —

P

Figure 2

-9 .

to 5 and is visited by the wave. So, p also reports 5 and the result of the wave is 5, which is
bigger than the current value of %4 (0). The problem can be solved (as in [CM85]) by observ-

ing each process during a certain period rather than just at a point in time, in such a way that
the periods have a nonempty intersection.

Definition 4.1: For each process,the i® observation period is the time between the visits of the
(i—1)™ and the i wave to this process.
In the next and the following theorems we will assume that the waves are time disjoint, so for

every i the i observation periods of all processes will indeed have a nonempty intersection.
Let r, be the infimum of all the values %, had during p’s i observation period.

Theorem 4.2: inf({r, : p is a process}) is a safe lower bound for F (e), where e is the time
the i'™® wave completes (see figure 3).

Proof: Denote by f; the infimum of the Tp, and by start, and end, the time the (i— 1™ and
i™ wave passes p, respectively. The waves are time disjoint and hence there is a time ¢ such
that start, <t <end, for all p. So r,<x® and hence f; <inf({x®:p is a
process}) = F(t) < F(e). O

Theorem 4.2 suggests the following algorithm:

Algorithm B: Repeatedly send time disjoint waves through the network. A process p
reports to the i wave the infimum of all values x, had during the i™ observation
period. The infimum of these values is broadcast during the i +1™ wave.

Theorem 4.3: Algorithm B satisfies safety and progress.

Proof: The safety follows by theorem 4.2. Again let f; be the infimum, computed after the i
wave. To prove progress, assume that F(¢) 2 k for some time t, some k € X. So for all p
and ¢ 2t we have xYV2 k. Let i be the number of the first wave that starts after ¢, see

p

q

t i e
Figure 3

Wave i

Figure 4

-10 -

figure 4. For all processes p, X, 2 k at any time after the visit of the i™ wave. So p’s report
rp, 1o the (i +1)® wave satisfies r, 2 k. All reports do so, and it follows that f;,; 2 k. This

result is broadcast during the (i+2)™ wave. It follows that within four waves after ¢ all p have
fp2k. 0O

The wave algorithms of section 3 can be used to implement this algorithm. For example, on a
ring the program would look like this:

leader:
send «TOKEN, T, 1» to Suc (leader);
repeat
wait until «TOKEN, g, f» arrives ;
send «TOKEN, T, a» to Suc (leader)
until the basic computation terminates.

p # leader:
Ip =% 3fp=1;
repeat
wait until «<TOKEN, g, f» arrives ;
fo =1
send «TOKEN, a Ar,, f» to Suc(p);
T, =X,

until the basic computation terminates.

A process p # leader can receive a basic message during its waits. Such a message is han-

dled according to the basic program, immediately after which Tp = Ip AX, is executed:

upon receipt of «M, x» do
handle message according to basic program ;
Tp = Tp AXp.

S DIA in distributed systems using communication with ack-
nowledgements

When message communication is not synchronous messages may take some time to reach
their destination. The definition of the function F includes the X -stamps of these messages in
transit. Any DIA algorithm ALG that does not deal with these messages is not correct, as a
simple scenario shows (see figure 5). Suppose initially x, = x, = 0. p sends a message

-11 -

Figure 5

«M,0» to ¢g. Now both processes increase their x to 5. Note that now inf({x, : p is a pro-
cess}) = 5 and hence, by the progress property, within finite time ALG ensures f p=f¢q=35.
(Remember ALG ignores messages in transit and as far as ALG is concemned, the message
could as well not have been sent at all) Next q receives «M,0» and finds out that fq2F,
which is a conflict.

We will present a solution to the DIA problem in which it is ensured that p’s report is a
lower bound for messages, sent by p, that are still in transit. Eventually p will leam which of
its messages are no longer in transit, namely, when it receives acknowledgements for them.
So, p maintains a multiset variable UNACK,,, in which the X -stamp of every message that p
sends is inserted, and an X -stamp is deleted again when an acknowledgement for the message
of this X -stamp is received. The derived algorithm will again use time disjoint waves. Again

by the i® observation interval we mean the time between the i™ and the i+1™ wave. As an
analog to theorem 4.2. we have:

Theorem 8§. 1 Let rp, be the infimum of all the values which X, had or UNACK contained

dunng p’s i observation period. Then inf({r, : p is a process}) < F(e), where ¢ is the time
the i wave completes.

Proof: Let f; = inf({r, : p is a process}). Choose ¢ as in theorem 4.2. Let «M,x» be in
transit at time f, and p be its sender. Then x e UNACK,” and hence r, <x and
fi Sr, <x. Furthermore, for all p we have r, < x and hence f; <x®. So f; <v forall
v € Val(t) and hence f; < F(t) < F(e). O

We can now formulate the following DIA algorithm;

Algorithm C: During normal execution, processes acknowledge basic messages and
maintain a set UNACK as described. Time disjoint waves are sent through the net-
work. To each wave a process reports the infimum of the values its x register had
and its UNACK contained since the previous wave passed. The infimum of the re-
ported values is broadcast as the new approximation of F .

In the following it is assumed that not only basic messages, but also acknowledgements are
received in finite time.

-12 -

Theorem 5.2: Algorithm C satisfies safety and progress.

Proof: Safety follows from theorem 5.1. Assume that F (t) 2 k for some time ¢, some k € X.
So forall ¥ 2¢, all p, x) 2 k and for all messages «M, x» in transit at / we have x > k.
Within finite time after ¢, say at ¢, all acknowledgements for messages sent before ¢ will have
arrived. So from then on all sets UNACK contain only values 2 k. Let i be the number of
the first wave that starts after 7/, For all processes p, X, 2k and UNACK,, contains only
values 2 k at any time after the visit of the i wave. So p’s report r, to the (i+1)® wave
satisfies r, 2 k. All reports do so, and it follows that f i+1 2 k. This result is broadcast dur-
ing the (i+2)™ wave. It follows that within four waves after ¢* all p havef, 2k. O

Many systems, even those where communication channels are unidirectional to the user’s point
of view, use acknowledgements on a lower level to ensure that messages will eventually arrive.
In such systems the acknowledgements needed in this algorithm would not increase the mes-
sage complexity, as the lower levels in the hierarchy could inform the higher level about the
receipt of the acknowledgements.

We sketch a sample implementation on a tree. We use the tree wave algorithm from sec-
tion 3, and assume that only the double leader case arises (remember that it can always be
“simulated"). The basic events are extended with some overhead as follows:

SEND:
p sends «M, X,» 10 q ;
insert (UNACKI,, X).

RECEIVE:
D receives «M, x» from q ;
send «<ACK, x» to q ;
handle message according to basic program ;
Tp =TIy AX,.

INTERNAL.:
X =x ; (* x'2x, *).
A new type of message, «<ACK, x» is introduced. Its receipt by p triggers:

delete (UNACKP, x).

Concurrently the following code is run (d is the degree of p in T):

-13 -

T =% 3 fp= 1
repeat
wait until <REPORT, v;» has been received over d— 1 channels ;
rep = inf({v,,.., v4_1, nh;
send «REPORT, rep » over the d™ channel ;
rp = inf(UNACK,) A x, ;
wait until a message arrives over this last channel ;
(* this is either a «<REPORT, v» or a <BROADCAST, f»*®
if it is «<REPORT, v» then f :=rep A v ;
f p = fs
send «<BROADCAST, f » over the other d— 1 channels
until basic computation ready.

The data structure used to represent UNACK, must support insertions, deletions and inf-
evaluations. One can use for example a balanced tree, in which every internal node contains
the infimum of all the values in the subtree under that node. It is easy to maintain this infor-
mation, even in case of rotations, in O (1) time per node. It follows that insertions and dele-
tions cost O (logn) time, where n is the size of the multiset. Inf-evaluations cost constant
time, because the infimum of the set can be found in the root.

6 DIA in distributed systems with communication over FIFO chan-
nels

We say an event happens before (after) a wave if it happens before (after) this wave visits the
process in which the event takes place. In this section we will prove that algorithm B is safe if
one can ensure that any message, sent before wave i—1, is received (and handled) before wave
i. Or, equivalently, a message sent in observation period i—1 is received at the latest during
observation period i. Further we will see how we can obtain this property of communication
in a FIFO environment. The following is an analogue of theorem 4.2:

Theorem 6.1: Suppose each message sent before wave i—1 is received before wave i. Let T
be the infimum of the values x, had between the (i—1)™ and the i wave and the X -stamps of
messages p received between the (i—1)™ and the i wave. Let f; = inf({r, : p is a pro-
cess}). Then f; < F(e), where e is the time the i™ wave completes.

Proof: Choose ¢ as in the proof of theorem 4.2. Let at time ¢ a message «M, x» be on its
way from p to g. If it was sent after wave i— 1 then Tp < x because x, was equal to x at the
time of the sending of the message, and this time is within p’s i® observation period. If it
was sent before the (i— 1)™ wave it will by assumption be received before the i wave and

-14 -

hence r, < x by definition of ;. In both cases we get f; <x. Also x)<r, < f;. So it fol-
lows f; SF@#)< F(e). O

Theorem 6.2: Suppose each message sent before wave i— 1 is received before wave i. Let "
be the infimum of the values x, had between the (i—1)™ and the i™ wave. Let
fi = inf({r, : p is a process}). Then f; < F(e), where ¢ is the time the i wave completes.
Proof: To make the reader realize that this theorem is more tricky than theorem 6.1 we first
show that not necessarily f; < F(t), see figure 6. Start with X, = X, = 0. p sends «M, O» to
q. Both p and ¢ increase x to 1 by an internal event. Wave i— 1 visits p and g (and yields
0). Now wave i visits p, note that F = 0 because the message is still in transit. Next g
receives «M, O» but does not decrease %, and passes the wave. Here, rp,=Try,=1, s0
fi = 1. Yet, F was 0 at the start of the first wave. We continue to prove F(e) 2 f;.

Call a message bad if its stamp is not 2 f;, and call a process bad if its x -register is not 2 f;.
Note that only bad processes can send bad messages, and only the receipt of a bad message
can make a good process bad. Suppose that not F(e) = f i Then there must be a bad mes-
sage or a bad process at time e¢. Because no process was bad at the time it was visited by
wave i, a bad process at time e implies it received a bad message after it was visited by wave
i. Let M be the first bad message, received by a process after wave i visited this process. If
M was sent after wave i, its sender was bad after wave i, and hence must have received an
earlier bad message after wave i visited it, contradicting the choice of M. Because M was
received after wave i it was not sent before wave i— 1 by assumption. It follows that the bad
message was sent between wave i—1 and i, and so its sender was bad between these two
waves. This contradicts the fact that it reported a value > fi to the i™ wave. O

(Even if we take 7, as the infimum of x, at the time of the visit of the i wave and the stamps
of messages p sent during the i observation period, the infimum of the r, would be "safe".)

Of course in general it is not possible to ensure that a message arrives before a
predefined point in time. But we will see that when the communication channels are FIFO, it
is possible to postpone the visit of the wave in q long enough to ensure that the condition of
theorem 6.2 is fulfilled. We do this by flushing the channels: let each process send a special

PSS o

1 !

o]
o
-
-
-

Figure 6

-15 -

marker message over all of its outgoing communication channels at the beginning of each
observation period. A process does not end its observation period (i.e., does not pass the next
wave) until it has "consumed” a marker from each incoming channel. (It needs a next marker
in each observation period. However, when more then one marker is received within one
observation period, the surplus is saved for the next observation period.)

Theorem 6.3: Assume communication channels work in a FIFO fashion. Flushing ensures
that messages sent before wave i— 1 are received before wave i.

Proof: Suppose p sends ¢ a message M before wave i—1. At the time this wave passes p, p
sends its i™ marker to g. So M is sent before the i™ marker and, by the FIFO property of the
channel, it is also received before this marker. ¢ does not pass the i® wave before it has
received this marker, so M is received before the i wave visits q. O

We can superimpose flushing on algorithm B:

Algorithm D: Directly after initialization, each process sends a marker over all of its
outgoing channels. A process does not pass a wave until it has consumed a marker
from all of its incoming channels. To each wave a process reports the infimum of the
values its x-register had since the previous wave passed. The infimum of the reported
values is broadcast as the new approximation of F.

In the following theorem it is assumed that not only basic messages, but also markers are
received in finite time:

Theorem 6.4: Algorithm D satisfies safety and progress.

Proof: The safety follows from theorems 6.2 and 6.3. Suppose F(t) 2 k for some time ¢,
some k € X. Because the way the approximations are computed is the same as in algorithm
B, it can be proven as in theorem 4.3 that as soon as 3 waves have started and completed after
t, all processes p have f p 2 k. It remains to show that no wave is deferred infinitely. When
all processes eventually begin their i™ observation period, they will all send an i marker on
all of their outgoing channels. Because the markers will all be received in finite time, all
processes will eventually be enabled to end their i™ observation period, pass the i™ wave and
send an (i+1)® marker over all outgoing channels. Because after initialization all processes

start their first observation period (and send markers for the first time) it follows by induction
that all waves will eventually complete. O

A disadvantage of this algorithm is that it uses communication bandwidth of all communication
channels, whereas the other algorithms use bandwidth on a fixed subtopology only. As an
example we sketch the implementation on a ring with a leader, to show how the visits are
deferred. For the leader the code remains the same as in section 4.2:

-16 -

leader:
send «TOKEN, T, |» to Suc (leader);
repeat
wait until «TOKEN, q, /> is received ;
send «TOKEN, T, a» to Suc (leader);
until basic computation terminates.

For the other processes code for handling markers is added:

D # leader:
=X 3 fp=1;
send <xMARKER» over all outgoing channels ;
repeat
wait until «TOKEN, g, f» and for each incoming channel
a «MARKER» have arrived ;
(* Now the visit takes place *)

fo =1
send «TOKEN, a A r,, f» t0 Suc(p);
Tp = X 5

send <sMARKER» over all outgoing channels
until the basic computation terminates.

During waits, basic messages are handled as specified by the basic process, after which
Tp = Tp A X, is executed. It is possible that a process receives two markers over a line before

it can pass a wave. In this case only one marker must be "consumed"”, the other one counts
for the next round.

7 DIA in networks using communication with A—bounded delay

In this section we assume that message delay is bounded by a constant time A. That is, a
(basic) message is received within time A after it is sent. We will adapt the solutions of the
previous sections slightly so they are correct for this communication model. It is necessary
that processes have a local clock: this means that every process can measure the time, elapsed
between two events within this process.

Algorithm C was presented in which a process p included the X-stamp of a message it
sent in its report r,, until it leamed (by receiving an acknowledgement) that it was received.
Of course, no acknowledgements are needed for this purpose when message delay is bounded a
priori: p knows the message is received when a time A has elapsed since its sending. So, p

-17 -

just includes the message in its reports during a fixed time A after it sent it. The reader will

not be surprised by the following theorem, analogous to 4.2, in which A-bounded delay is
assumed:

Theorem 7.1: Let 7, be the infimum of all values X, had during p’s i™ observation period and
the X -stamps of messages p sent later than A before the beginning of the i™ observation
period. Then f; = inf({r, : p is a process}) < F(e), where e is the time the i wave com-
pletes.

Proof: Choose ¢ as in the proof of theorem 4.2. If «M,x» is in transit from p to g at time ¢,
it was sent later than time A before the beginning of p’s i'* observation period, so r, < x and
fi <x. Furtherr, < x8), 50 f; <x®. It follows f; S F(t) < F(e). O

We leave it for the reader to formulate the algorithm more precisely, prove that it has the pro-
perty of progress and give sample implementations.

Next we present a DIA algorithm that is a modification of Algorithm D. When message
delay is bounded by a constant A, no message can cross two waves if there is a time delay of
at least A between two consecutive waves.

Theorem 7.2: When there is a time of at least A between the last visit of one wave and the
first visit of the next wave, a message sent before wave i— 1 is received before wave i.
Proof: Obvious. OJ

This theorem can replace theorem 6.3, and yields a second algorithm for DIA in combination
with theorem 6.2. Again its formulation and a proof of its progress are left to the reader. An
implementation of this algorithm differs from the programs in section 4 only in that we must
ensure, that no process passes wave i+1 within time A after the last process passed wave i.
This is easy: a process that has computed the result of one wave and is about to broadcast it,
waits a time A before it does so. In the case of the ring wave algorithm, this means that only
the leader needs to know A and have a clock.

Both solutions given in this section can also be used in case the local clocks have a

bounded drift p. In that case the processes wait until a time (1+p)+A has elapsed on their
clocks, instead of just A.

8 DIA in arbitrary networks

In the previous four sections rather simple, elegantly implemented DIA algorithms were
presented. In all cases the result of a wave could be computed as a function of the values,
reported by the processes. The algorithms relied on some special property of the communica-
tion system (synchronous, bidirectional, FIFO, and A-bounded delay, respectively). In this

-18 -

section a DIA algorithm is presented that relies on no such properties. The price we have to
pay is high: the new approximation of F in this algorithm depends not only on the reported
values, but also on information gathered in previous waves. Further, the reports have no

longer the format of just an element of X, but they are a message list and a value from X.
This makes implementation rather inelegant.

The following theorem is a straightforward application of the definition of F :

Theorem 8.1: Let rp, be the infimum of the values x, had between waves i—1 and i. Let
fi = inf({r, :p is a process}) A inf({x :«M, x» was sent before wave i, but not received
before wave i—1}). Then f; < F(e) (where e is the time the i™ wave completed).

Proof: If «M, x» is in transit at ¢, then obviously it was sent before wave i , and not received
before wave i—150 f; Sx. Also f; Sr, Sx®. So f; SF(). O

Theorem 8.2: Let r, be x, at the moment wave i passes p. Let f; = inf({rp:p is a
process}) A inf({x : «M, x» was sent before wave i, but not received before wave i }). Then
fi S F(e) (where e is the time the i wave completed).

Proof: Again call a message (process) bad if its X -stamp (x-register) is not = f;. As in the
proof of theorem 6.2, not F(e) 2 f; implies that a bad message, sent before wave i, is
received after wave i. This contradicts with the definition of fi- O

Theorem 8.2 suggests the following algorithm:

Algorithm E: Start with an empty multiset. To each wave a process reports its x-
value and a list of sent and received messages. After each wave the messages are
inserted/deleted in the multiset, so that it contains the messages, specified in theorem
8.2. Next the infimum of the values in the multiset and the reported values is com-
puted and broadcasted as a new approximation of F.

Theorem 8.3: Algorithm E satisfies safety and progress.

Proof: The safety follows from theorem 8.2. Suppose F(t) 2 k at some time ¢, for some
k € X. Let i be the first wave starting after . The X,-values reported to this wave are all
2 k, and all messages crossing wave i have stamps = k. Hence fi2k. O

Implementation on a ring (or other network) with a leader is easy: the leader can maintain
the multiset of messages. Implementation using the tree wave algorithm from section 3 seems
hard, because the leader(s) is (are) located differently in each round, but it needs the multiset.
Broadcasting this multiset together with the result of a wave seems inelegant because of the
huge mass of information that can be contained in it. Note that when X is a small finite set
(like {a,p} in the case of termination detection) the set can be represented compactly by giv-

ing for each k¥ € X the number of times k appears in it. In this case broadcasting may be
feasible, sce [BMRS8S5].

-19 -

It is possible that the receipt of a message is reported earlier than its sending. We sug-
gest a structure in which such messages can be inserted "negatively", and that "negative" and
"positive" insertions annihilate each other. Such a structure is also used (and described) in
[Je85] (be it for a different purpose).

9 Conclusions, discussion

In this report we defined and studied the problem of Distributed Infimum Approximation. We
gave several algorithms that solve the problem. Most of them are based on existing algorithms
for Termination Detection, in fact a special case of DIA.

Because the basic computation can go on “infinitely”, the total number of DIA messages
can also be infinite. We can only say something about the number of messages a DIA algo-
rithm exchanges per update of the local approximations. Call the number of messages a wave
takes W, then all algorithms, except algorithm D, use W messages per update. Algorithm D
uses W+E messages (E is the number of communication channels) because besides the wave
messages a marker is sent over each communication channel. Algorithm C also doubles the
message complexity of the basic communication, because each basic message must be ack-
nowledged. The size of the messages is in all algorithms, except algorithm E, equal to the
space needed to represent one (two for the ring wave) element of X. The markers in algorithm

D can have constant, small size. The messages in the algorithm E can be much longer, for
they contain a message list.

It is possible to control the frequency of the waves as follows: if one wants an update of
the local approximations once in time D, give one process (or more processes) a clock and
ensure that this process does not pass a wave within time D after it passes a previous wave.
Here, by the way, we touch at a less desirable property of our algorithms: they can be slowed
down forever by a defective process. This however seems to be inherent to wave algorithms.

We think that the basic ideas in this report are very useful, but the given algorithms and
theorems may be subject to improvements.

The function F we approximated in this report was defined as an infimum and guaranteed
to be monotone by the process behavior. It may be interesting to investigate the approximation
of non-monotonic functions, although it is not so clear what this could mean.

Also it may be interesting to study other operators than the infimum. Remember, the
infimum (as a binary operator) satisfies commutativity, associativity and idempotency (A7, A8,
A9). Operators satisfying these three properties are considered to be candidates for evaluation

with a wave algorithm in [HMRS86]. The following theorem says that infimum functions are
"generic" for these operators:

-20 -

Theorem 9.1: Let X be a set and W be an operator on X, satisfying commutativity, associa-
tivity and idempotency. Then there is a partial ordering < on X, such that M is just taking
infimum with regard to <.

Proof: Let X and W be given. Define <byx <y <x = xMy. We leave it to the reader to
show that (1) < as defined is a partial ordering (2) W is taking infimum with regard to <. O

Of course more general functions can be considered when some of the properties are not
assumed. In [KM43] it is proven that theorem 9.1 holds also for operators that satisfy the
weaker (a = bMx and b = aMy) =a = b instead of idempotency.

Acknowledgements: 1 am indebted to the members of the Utrecht Monday Moming Club
(MOC) for their useful remarks and ideas.

10 References

[BMR85] Beilken, C., F. Mattern, and M. Reinfrank, Verteilte Terminierung - ein
Wesentlicher Aspekt der Kontrolle in verteilten Systemen, Bericht nr 41/85, Fach-

bereich Informatik SFB 124, University of Kaiserslauten, Kaiserslauten, West Ger-
many, 1985,

[BT84] Bracha, G., and S. Toueg, A distributed algorithm for generalized deadlock detec-
tion, Proc. 3rd Annual ACM conference on Principles of Distributed Computing,
Ottawa, 1984, pp 295-301.

[CM85] Chandy, K.M., and J. Misra, A paradigm for detecting quiescent properties in dis-

tributed computations, Report TR—85-02, University of Texas at Austin, Austin,
Texas.

[Fr80] Francez, N., Distributed termination, ACM ToPLa$S 2 (1980), 42-55

[HMR86] Helary, J-M, A. Maddi, M. Raynal, Controlling knowledge transfers in distributed
algorithms, application to deadlock detection, Publication Interne 278, IRISA,
Rennes, France.

[Hu85] Hughes, J., A distributed garbage collection algorithm, in: J.P. Jouannoud (ed),
Functional programming languages and computer architecture, Lecture Notes in
Computer Science vol. 201, Springer Verlag, Heidelberg, 1985, pp. 256-272.

[Je85] Jefferson, D., Virtual Time, ACM ToPLaS 7 (1985), 404—425.

[K143] Klein-Barmen, F., Uber gewisse Halbverbéinde und Kommutative Semigruppen,
Teil 1, Mathematisches Zeitschrift 48 (1943) 275-288.

[Ra83]

[SL87]

[TL86]

[TT87]

-21-

Rana, S.P., A distributed solution to the distributed termination problem, Inf. Proc.
Lett. 17 (1983), 43-46.

Sarin, S.K., N.A. Lynch, Discarding Obsolete Information in a Replicated Data-
base System, IEEE Transactions on Software Engineering ‘SE—13 (1987) 39-47.

Tan, R.B., and J. van Leeuwen, General Symmetric Distributed Termination
Detection, Report RUU-CS-86-2, Department of Computer Science, University
of Utrecht, Utrecht, The Netherlands (submitted to Computers and Artificial Intel-
ligence).

Tel, G, R.B. Tan, The Equivalence of Some Network Problems, notes July 1987.

