POWERDOMAINS

R. Hoofman

RUU-CS-87-23
November 1987

A
"0

STRA

‘igal

o’: :*:: :c
7 ARV

o3
<,

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

POWERDOMAINS -

R. Hoofman

Technical Report RUU-CS-87-23
November 1987

Department of Computer Science
University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht
The Netherlands

Abstract

This paper gives a constructive introduction to powerdomains. Powerdomains are
some sort of mathematical structures used to describe the semantics of computer
programs. They arise out of the combination of order-theoretic semantics and
nondeterminism. In chapter 1 these and other concepts are clarified.

The next chapter gives the construction of some restricted class of powerdo-
mains. The powerdomains are defined in an abstract way in chapter 3, and with
the help of some category-theory their existence is proved. Chapter 4 states some
results about the form of powerdomains (for example, it turns out that each pow-
erdomain is a certain completion of a free nondeterministic poset), using the new
approach of the previous chapter.

We only consider bounded powerdomains, except for chapter 5, where we give
a countable, lower powerdomain.

Contents

1
1.1 Order-theoretic semantics
1.2 Nondeterminism
1.3 Category-theory
2
2.1 The Smyth-approach
2.2 Some properties of powerdomains
3
3.1 Powerdomains are continuous algebras
4 _
41 Powerdomains over restricted classes of depo’s.
4.2 Powerdomains over arbitrary depo’s L.
5

5.1 A (lower) powerdomain for countable nondeterminism

Chapter 1

1.1 Order-theoretic semantics

Order-theoretic semantics interpret syntactic (formal) objects as elements of a set
with some ordering structure. First we review some of the basic concepts.

Definition 1.1.1 A partially ordered set (poset) is a pair (S, <), where S is a set
and < is a binary relation on the elements of S, such thatVz,y,z € S:
1. z<z2
2. z5{yAy<z=>a=y
. zliyAy<z=>z<:2
Definition 1.1.2 Let (S5,<) be a poset, S'C S and x € S, then
1. z 1s @ minimal (maximal) element of S’ iff £ € S’ and for eachy € S": y< =
(z < y) implies z = y.
2. z 13 a lower (upper) bound of S’ iff z < y(y<z)forallye s
9. z is a least (greatest) element iff z € S’ and z is a lower (upper) bound of
S,
4. = is the greatest lower (least upper) bound of S’ iff z is the greatest (least)
element of the set of all lower (upper) bounds of S'.

The least upper bound (lub) of a set S is denoted by LS, and the greatest lower
bound (glb) by ns.

There is a special kind of functions which preserves the order structure of
posets.

Definition 1.1.3 A4 function f: (8,2) = (R, <) between posets is monotone iff
Jorallz,ye S:z<y smplies that f(z) <’ f(v).

The behaviour of a computer program can be represented by a sequence of partial
results. We can take the set of all partial results as our domain of interpretation,
and define an ordering < on this set such that sequences describing the behaviour
of programs are increasing with respect to <.

Example 1.1.1 Let Py:="For i:=1 to n do print(*’)” be a program, then we have
a sequence of partial results [x, %k, %x%, ..., %...%|, where the last string is the final
result and consists of n stars. Take Sy = {Z|T; = x A |F| < oo} the set of all finite
strings of x, and order them by length.

Example 1.1.2 Let Py:="While true do print(’x’)” be a program. Now take S; =

{ZF|Zi = » A || < oo} ordered by length. We can say that the infinite string % x. ..
18 the end result of P,.

We see that end results are lubs of chains consisting of partial results. It is therefore
natural to take those posets as semantic domains which have lubs of all chains.

Definition 1.1.4 A chain C in a poset (S,<) is a countable subset C C S, such

that there is a denumeration co,cy,cy,. .. of the elements of C, which satifies Vi :
¢i < Ciy1.

Definition 1.1.5 A complete partially ordered set (cpo) is a poset which has lubs
of all its chains.

The poset S; of example 2 is, and the poset S; of example 1 is not a cpo. Often

instead of cpo’s so-called dcpo’s are used, because these structures are more easy
to handle mathematically.

Definition 1.1.6 Let (S, <) be a poset, then S’ C S is directed iff it is not empty,
and Vz,y € S'3r € S’ such that z <rAy<r.

Equivalently we could say that every finite subset of a directed set S has an up-
perbound in S.

It is easy to see that every chain is a directed set. In fact the concept of directed

set is a kind of generalization of the concept chain. We can generalize cpo’s to
dcpo’s in the same manner.

Definition 1.1.7 A directed complete partially ordered set (dcpo) is a poset
which has lubs of all its directed subsets.

Clearly every dcpo is a cpo. The following theorem shows that the difference
between cpo’s and dcpo’s is essentially one of cardinality.

Theorem 1.1.1 A poset is a cpo if and only if it has all lubs of countable directed
sets.

Proof: See [21].

O

Definition 1.1.8 A function f(S,<) — (R, <) between posets is continuous iff it
i3 monotone and it preserves lubs of directed subsets. That 18, whenever S'C S is
directed and US' ezists, it follows that f(US’) = U{f(z)|z € S'}.

3

Note that functions between arbitrary posets can be continuous, this in contrast
with the more usual definition of continuous functions between dcpo’s.

An important application of order-theoretic semantics is the attaching of mean-
ing to recursive specifications of functions([17]). For this sort of applications we
need dcpo’s which have a least element 1. Another important issue are the so-
called domain-equations, where dcpo’s are specified in terms of the result of oper-
ators applied to other dcpo’s([21]).

1.2 Nondeterminism

Nondeterminism is an ever recurring concept in computer science. For example in
the area of formal automaton theory and concurrency.

In general a distinction is made between bounded and unbounded nondetermin-
ism. In the former case there is at every moment (point) a choice between only a
finite number of alternatives, whereas in the latter case there may be an infinite
number of alternatives. Unbounded nondeterminism can be further distinguished
in countable and uncountable nondeterminism.

Example 1.2.1 Let P,:="z:=%;print(z)” be a nondeterministic program, where
"z:=%" is a nondeterministic assignement which assigns to z an arbitrary integer.

Clearly P, is unbounded nondeterministic, and may be represented by the following
diagram:

where v s a nondeterministic choice node.

Example 1.2.2 Let P;:="z:=-1; Repeat z:=z+1; s:=(irue or false) until s; print(z)”
be a nondeterminisic program, where or is a nondeterministic choice operator
which yields one of its arguments. Although the result of Py can be any inte-
ger (just as with P,), P, is a bounded nondeterministic program:

v

So bounded or unbounded nondeterminism is strongly related to the level at which
one chooses his primitives.

We can give a function semantics to programs, i.e. we interpret each program
P as a function gp : S — R, where S is a set of input values and R is a set of
output values. For a value s € S gp yields the result of P when given input s.

5

In the same manner nondeterministic programs can be represented as functions
hp: S — P(R), i.e. functions from the set of input values to the powerset of the
set of output values. Here hp yields the set of all possible results for a certain
input s € S. When we consider bounded nondeterminism only, we restrict our
attention to functions hp : § — Py(R), with Py(R) the set of finite subsets of R.

Nondeterminism arises out of the existence of nondeterministic choice in pro-
grams, which we model by a choice operator or. This operator takes a set as argu-
ment and yields nondeterministically one of its elements. In the case of bounded
nondeterminism this set has to be finite, so we might as well take a binary or-
operator which yields one of its arguments.

We interpret the nondeterministic choice operator or in the semantic domain
Ps(R) as set-union (U), so for example if hq is the function semantics of the
nondeterministic program Q and hp that of P, then Az.hp(z)Uhg(z) is the function
semantics of the program P or Q.

(P¢(R),V) is in fact a very special structure, for it is the free (bounded) non-
deterministic set generated by R. A (bounded) nondeterministic set (T,+) is a
set together with a binary, commutative, associative and idempotent operator +.
This + is the interpretation of or when we take T as a semantic domain. For
example P or Q” would be interpreted as Az.hp(z) + hg(z) . It is easy to see that
(P#(R),V) is a nondeterministic set.

Ps(R) is free for it has the following property: Given a function f : R — T,

with T a nondeterministic set, there is a unique f# : Py(R) — T such that the
following diagram commutes:

R) P,(R)

f#

v
T
with {-}: 2z — {z}.
So in a certain sense Ps(R) is the unique way of making R in a nondeterministic
set.
In this paper we will try to do the same with dcpo’s, i.e. to find the free
nondeterministic dcpo generated by a certain dcpo. These free nondeterministic

dcpo’s are called powerdomains and they are a combination of order-theoretic
semantics and nondeterminism.

Example 1.2.3 Let 51 be the flat poset over the set S, i.e. Sy = SU{L} and for
€,y € S1 we have z < y implieszc =y orz = L. Clearly S, is a dcpo. The free
nondeterministic depo generated by S, is the set {S'|S'C SA(L € S'VS finite}
together with an ordering: S| < S} implies S| =S, if L ¢ Si and S; — {L} C S}

if L €S}, and with set-union as +-operator.

Powerdomains are used in a lot of different areas, such as semantics of con-
current programming languages ([4,7,9,10,11]), denotational semantics of non-
deterministic program schemes([5,17,18]), and in connection with so-called port
automatons([14]).

1.3 Category-theory

In this section we give a short introduction to some concepts of category-theory
we will need later on. Proofs of theorems will be omitted, but may be found for
example in [13].

To avoid some set theoretical paradoxes (such as the set of all sets not members
of themselves) we will work inside a universe V, i.e. a set of sets which is closed
under certain standard operators such as powerset, cartesian product, etc. A set
which is a member of V is called small. In general all sets we use in this paper will
be small, so this predicate will often be omitted.

The first definition is that of a category.

Definition 1.3.1 A category C is given by data (1),(2),(3) subject to azioms
(a),(b),(c) as follows:
1. A class Ob(C) of C-objects XY, 2Z,...
2. For each ordered pair of objects (X,Y) a set C(X,Y) of C-arrows from X
to Y.
o IfC(X,Y)NC(X,Y)#0, then X=X andY =Y.
3. A composition operator o assigning to each f € C(X,Y)and ge C(Y,2) a
third arrow fo g € C(X, Z).
b. Composition is assiociative.

c. For each object X there ezists an identity arrow idy € C(X,X) such that
for each f € C(Y,X):idx o f = f, and for each gEC(X,Z):goidx =g.

Example 1.3.1 Set is the category with as objects all (small) sets, and as arrows
all functions between these sets. Sett is the category with as objects all (small)
nondeterministic sets (i.e. sets with a binary, associative, commutative and idem-
potent operator +), and as arrows all linear functions (i.e. functions f such that

f(z+y) = f(=) + f(y))-

We can define morphisms between categories as follows.

Definition 1.3.2 4 functor F : C — D between categories C and D, assigns to
each object X in C an object FX in D, and to each arrow feC(X,Y) an arrow
Ff € D(FX,FY), in such ¢ way that F(idx) = idpx and F(go f)=Fgo Ff.

A forgetful functor is a functor which simply "forgets” some or all of the structure
of an algebraic object.

Example 1.3.2 Define a functor U : Sett — Set on objects as U(< S, + >) = S,
and on arrows as Ff = f, then U forgets the +-operator and is therefore a forgetful
functor.

There are some constructions on objects and arrows in a category.

8

Definition 1.3.3 The product of objects Y;,Y; in a category C consists of an
object Y1[1Y,; and arrows m; € C(illYz, Y1), m € C(M111Y2,Y2), such that for
every other object Z and arrows f; € C(Z,Y)), i € {1,2}, there is a unique f €
C(Z,YiTl1Ys) with mio f = f;,

Definition 1.3.4 An equalizer of two arrows f,g € C("1,Y,) 43 an object Y of C
and an arrow e € C(Y,Y;) such that foe = goe, and for every other object Z

and arrow h € C(Z,Y,) with foh =goh there is a unique h' € C(Z,Y) such that
eoh’=h.

Y Y,

Example 1.3.3 In Set the product of two sets is the usual cartesian product, while

the equalizer of two functions f,g:Y; — Y; is the objectY = {a € Y1|f(a) = g(a)}
together with the inclusion arrow e : Y — V3.

Definition 1.3.3 can easily be generalized to the product of any (small) set of
objects.

Products and equalizers are instances of the more general concept of a limit.

Definition 1.3.5 Let F: J — C be a Junctor. A cone from an object Y in C to

F 18 a Ob(J)-indezed family T of arrows r; € C(Y, Fi), such that for every arrow
u € J(4,7) the following diagram commutes:

F(u
F(i) © —~ F(j)

A Limit of F is a cone (Y, T) such that for every other cone (Z,v) there is a unique
arrow g € C(Z,Y) such that the following diagram commutes for every object i in
J.

F(i)

If we take - 5 . for J then limits of functors F' : J — C are equalizers in C.

Reversing all arrows in the previous definition gives a definition of the so-called
colimits.

A category is small if both the set of its objects and the set containing all its
arrows are small.

Definition 1.3.6 A category C is called small-complete if every functor F : J —
C from a small category J to a category C has a limit.

Theorem 1.3.1 If C has all small products (= product of a small set of objects)
and equalizers of all pairs of arrows, then C is small-complete.

Example 1.3.4 By ezample 1.3.3 and theorem 1.9.1 it follows that Set is small-
complete.

Definition 1.3.7 A functor H : C — D is said to preserve the limit of a functor
F:J — C when every limit (Y,7) of F in C yields by composition with H o limit
(HY,Ht) of HF : J —» D in D.

Theorem 1.3.2 If C is a small-complete category, and H : C — D preserves all
small products and all equalizers, then H preserves all small limits.

We now give the following important definition of an adjunction.

Definition 1.3.8 An adjunction < G,F,n >: X — A is given by the following
data:

1. A functorG: A — X.
2. For every object x € X an object Fz € A.
3. An X-indezed family of arrows n in X, such that n, € X(z,GFz).

subject to the requirement that for each f € X (z,Ga), with a an object of A, there
ezists a unique f* € A(Fz,a) such that Gf* on, = f. So the following diagram

10

commutes:

s

Gf#

Ga

The map F of an adjunction can be extended to a functor X — A (denoted by
the same symbol F), if we define Fif = (5, o f)*, for arrows f € X(z,y). This
functor F is called the left-adjoint of G, while G is the right-adjoint of F. The set
1 is the unit of the adjunction. The subscript of 5, will often be omitted.

In this paper adjunctions will be used to characterize free structures. In general
a lefi-adjoint to a forgetful functor maps objects to free structures.

Example 1.3.5 Define a map Py : Ob(Set) — Ob(Set*) by P4(S) :=< {S'|S' C
SAS finite},U >, i.e. Py maps each set to the set of all its finite subsets, while
the +-operator is set-union(U). Now < U, Py, {-} >: Set — Set* is an adjunction,
with {-} : t — {t}, and U the functor of ezample 1.3.2. So the functor P; (defined

on arrows as Py(g)(8") = {g(z)lz € S}, for g: § — R and 5' C S) is a left-
adjoint of U.

A few results about adjunctions:

Theorem 1.3.3 Any two left-adjoints F and F' of a functor G : A — X are
isomorphic, i.e. Fz & F'z in A.

Theorem 1.3.4 Given two adjunction < F,G,n >: X — A and < F.G,7 >:
X — A the composite functors FF and GG yield an adjunction.

The following theorem states when a given functor has a left-adjoint.

Theorem 1.3.5 (Freyd Adjoint Functor Theorem) Given a small-complete

category A, a functor G: X — A has a left-adjoint if and only if it preserves all
small limits and it satisfies the following

Solution Set Condition: For each object 2 € X there is a small set I and an I-
indezed family of arrows F; : z — Ga; such that every arrow h : ¢ — Ga can be
written as a composite h = Gto f; for some indez i and some ¢t : a; — a.

11

Chapter 2

2.1 The Smyth-approach

In [20] Smyth gave a construction of powerdomains over w-algebraic dcpo’s with
least elements. In fact he defined two kinds of powerdomains: the upper powerdo-
main Fy(D) and the convez powerdomain Po(D) over a dcpo D. More recently
a third powerdomain is introduced (for example in [22]), the lower powerdomain
Pr(D).

In this section we state some of Smyth’s results and give proofs for the lower
powerdomain. At the end we will have two different (but isomorphic) representa-
tions of the powerdomains over w-algebraic dcpo’s.

Definition 2.1.1 An element d of a dcpo (epo) D is compact provided that, for
every directed S C D (chain §), f d < US, then d < s for some s € S.

Let Dy be the set of compact elements of D.

Definition 2.1.2 4 dcpo (cpo) D is algebraic iff each element d € D is the lub
of a directed subset of D, (of a chain in Dy).

So every element of an algebraic dcpo D can be ” approximated” by a set of compact
elements.

Definition 2.1.3 4 dcpo (cpo) D is w-algebraic iff it is algebraic and Dy is a
countable set.

In this chapter dcpo’s (cpo’s) will be w-algebraic and contain a least element.

Just as deterministic programs can be represented by an increasing chain of
intermediate results, and the final result is the lub of this chain, so the behaviour
of a bounded nondeterministic program could be depicted by a finitary tree, where
the nodes are marked with intermediate results. The branching at a node stands
for a nondeterministic choice, and every path in the tree is an increasing chain.
So we introduce the concept of a generating tree.

Definition 2.1.4 Let D be a dcpo. A generating tree over D is a node-labeled
finitary tree T satisfying:

12

1. for each node t the label I(t) € D,
2. ift' is a descendant of t in T, then I(t) < I(¥),
3. T has no terminating branches.

A path in a tree T is a sequence of nodes beginning in the root, and such that if
t’ follows t, then ¢’ is a descendant of ¢ in T.

Definition 2.1.5 A set S is generated by e tree T iff S = {Ux|x is a path in T}.
A set S C D is finitely generable (f.g.) iff there is a generating tree T, which
generates S.

An f.g. set is the final result of a computation represented by a generating tree.

Example 2.1.1 Let P:=”"While true do print(0 or 1)” be a program, then T(P),
the generating tree representing P, is as follows:

/N
/NN

01 10 11

The set S generated by T(P) will contain for ezample 1v, the string consisting of
infinitely many one’s (this is the lub of the rightmost path in T(P))

A generating tree is called sirict if all the node labels are in Dy. The class of fg.
sets generated by all generating trees is the same as the class of f.g. sets generated
by the all strict generating trees (see [20]).

Let F(D) be the set of all sets generated by (strict) generating trees, i.e. the set
of all end results of nondeterministic computations. We will define three different
orderings on F(D). It will turn out that the the set of equivalence classes of the
equivalence relation induced by such an order is a powerdomain.

First we define three relations Ps(Dy) x F(D).
Definition 2.1.6 Let A € Py(Do) and S € F(D), then

ACLS:=Vac€cAJse€S:a<s
ACpy S:=VseSJacA:a<s
A[;GS:=AELSAAEUs

The relation C¢ is sometimes called the Egli-Milner ordering.
With the help of these relations we define an order on F (D).

13

Definition 2.1.7 Let S, S’ € F(D) then

S<LS":=VAe Pf(Do),A CrS=>AC. S
Sy S':=VAc Pf(Do),A CuS=ACy S
S=<cS':=VAe Pf(Do),A CeS=ALCc S

The elements of Py(D,) are cross-sections of generating trees over D. So they
are in a certain sense approximations of end results of programs, i.e. of f.g. sets.
Definition 2.1.7 states that for S, S’ € F (D) S'is greater as S if every approximant
of S approximates S’ too. The three different kinds of ordering reflects a difference
in the philosophy about what information the elements of Ps(Do) should give us
about the final result of a computation.

Definition 2.1.8 A pre-cpo is a structure (S,<) wich satisfies all the require-
ments of a cpo, ezcept that the relation < is not anti-symmetric.

We are going to prove that the structures (F(D), =) are w-algebraic pre-cpo’s Gf
a statement is true of all three orderings we will omit the subscript). Because the
orderings < are not anti-symmetric we have pre-cpo’s instead of cpo’s. Quotienting
the preorder (F(D), <) by the equivalence < N <1 will give us a cpo.

The following lemmas and theorems are true for all three orderings, but we wil
give proofs only for <;.For <y and <o proofs may be found in [20].

Lemma 2.1.1 Suppose S is generated by a tree T,A € Py(Dy) and A C S, then
AL T, for some cross-section T of T.

Proof: It is known that A C; S ,80Va € A33 € S : a < s. Now the elements of A
are compact, and those of S are lubs of paths in T. So for all ¢ € A there
are nodes ¢, in T such that a < l(ta). Let each such ¢, lie in cross-section
T,, then there is a cross-section T,» which is lower in T then all T, (for A is
finite). T, contains for each ¢, an ¢ such that I(ts) < I(t) because T, Ty T,
Soa<I(t,) <I(t)and AT T,.

(]

Lemma 2.1.2 If S is generated by tree T then S is the lub of the set of cross-
sections of T with respect to the order <.

Proof: T,, X S is trivial. Suppose Vn : T. 2 Y. We have to prove VA € Py¢(Do) :

AC S=> ALCY. Suppose A C S then by the previous lemma A C T, so
ALCY.

0O

Lemma 2.1.3 Every increasing chain with elements of P¢(Do) has a f.g. set as
lub.

14

Proof: Given the chain (4;|i € N) ordered by T}, construct a tree T as follows:
Label the root with L. If v is a node at depth n labeled with b € D, then
take as successors of v (if any) one node for each ¢ € Any with b <e¢. Add
a node at level n with label L, and take as successors of this node one node
for each label in A,,; which is not smaller then any label in A,,. This node
1 will also has as successor the node with label 1 which is just in the same
manner added to Any;. Now T is a finitary tree with infinite paths, while
the cross-sections are the sets A; U {1}.

We will prove that LI(4;) = S, with S the set generated by T:
- S is an upperbound of (4;).
For A;C; A; U {_L} =T;C.S.

- S is the least upperbound of (4;).
Suppose VA; : A; C; Y. Then if A CLS,AC, T;C; A;,C, Y. So
SCLY.

a

Lemma 2.1.4 Let A € Py(Do) and (A;li € N) a chain in Py(Dy). If A C
U(4ili € N) then AC A, for a certain n € N.

Proof: There is a f.g. set S such that S = U(A;l¢ € N). Suppose T is the tree

which has S as lub (built as in the previous lemma), then with lemma 2.1.1
AELT.'=A.'U{J_},SOAELA,'.

a

Theorem 2.1.1 (F(D), X) is an w-algebraic pre-cpo with Py(Dy) as set of com-
pact elements.

Proof: For z € F(D) define B(z) := {f € Ps(Do)|f E z}. Now:

(a) The least element is {L}.

(b) Suppose (4;) is a chain in F(D), then A = U{B(A;)|i € N} is a count-
able directed set with the same lub as (A:). Because of the countability
and by lemma 2.1.3 A has a lub in F(D).

(¢) Suppose (4;)is a chain in F(D), and f C LI(A;) with f € Py(D,). Then
f E UA by the previous point. So with lemma 2.1.4 we have 3f' € A :
f E f'. Now 34, € (4;) such that f' € B(A,),so fC f'C A,.

(d) Py¢(Dy) is countable.

(¢) By lemma 2.1.2 it follows that each element of F (D) is the lub of a
chain with elements of Py(D,).

15

Corollary 2.1.1 (F(D)/ %,= / %) is an w-algebraic cpo.

Every w-algebraic cpo is an w-algebraic dcpo (see [21]).
Corollary 2.1.2 (F(D)/ %,=< / =) is an w-algebraic depo.

Although the powerdomain construction given above is very plausible intuitively
, we will give an other equivalent construction which is more easily to handle
mathematically. The elements of this powerdomain representation will be left-
closed, directed subsets of Py(Dy), while the ordering is just ordinary set-inclusion.
First we will introduce some terminology.

Definition 2.1.9 Let S C P, with P a poset. S is left-closed ifa < b€ S implies
a€S.

Definition 2.1.10 An ideal over a poset P 1s a left-closed, directed subset of P.
For a € P the principal ideal (generated by a) I, is the set {a' € Pla' < a}.

We represent each element S of F(D) by the set containing those elements of
P(Do) which are smaller than S with respect to the ordering C. In fact every

such a set is an ideal over Py(Do),and every ideal over Ps#(Do) is of the form
{4 € P¢(Do)|A C S} for some S € F(D).

Theorem 2.1.2 Let D be an w-algebraic depo. Let I(D,C) be the set of ideals
over D with respect to the ordering C. Then:

1. the lower powerdomain Pp(D) is isomorphic to < I(P¢(Dy),CL),C>.
2. the upper powerdomain Py(D) is isomorphic to < I(P¢(Do),Cr), C>.
3. the convez powerdomain Pp(D) is isomorphic to < I(Py(Do),Co), C>.

Proof: It is easily proved that the " generating tree construction” is equivalent to
the ”ideal construction” of this theorem. For take an arbitrary set of the
form {A € Py(D,)|A C S} with § € F(D), then it is trivial that this set is
an ideal. The other way round take an ideal I, then because Ps(Do) C F(D)
and every directed subset of (D) has a lub, I has a lub too. Moreover if
A € Py(Do) and A C UI then because A is compact it follows that JA’ € I :

A E A, so by left-closedness of I we have A € I. Therefore every ideal is of
the form above mentioned.

The order =< reduces to C, because every element of F(D) is represented by
the set of its approximations, i.e. the elements of P4(Dy) which are smaller.

a

16

2.2 Some properties of powerdomains

In this section we will use the ideal representation of powerdomains. First we state
a lemma which we will make frequent use of in this section.

Lemma 2.2.1 Let S C Py(D,) be a finite subset, then

1. US = US with respect to T,
2. US =TS with respect to Ty

Proof: Trivial.

a

We will look at the forms which the or-operator assumes in the different power-
domains.

Definition 2.2.1 Let I,,I, € P(D), then define I, U I, = {A1 U Ay|4; € 1),

It will turn out that U is the or-operation in Py(D) and Po(D). We show that T
is well-defined, i.e. I; U I, is an ideal.

Lemma 2.2.2 U is well-defined in Py(D) and Pg(D).

Proof: (a) I U I, is left-closed.

- Lo
Let A€ I, UL and B Cy A. There are A; € I; such that A;UA, =
A. If BCy A, U A, then by the properties of Cy; it follows that
B Cy Ai. So by left-closedness of I; we have B € I;. Therefore
B=BUBEI1 U L.

- B¢
Suppose BE¢c A = A, U A; € I U I, as before. By writing out the
properties of T we have the following two statements:
1. Vae AAbe B:b< a
2.VbeBIac A:b<a
Now define By := {b€ B|3a € 4, : b < a} and By := {b€ B|3a €
Az : b < a}. By 2. it follows that B — B, U B; and by 1. it follows
that B; #£ 0.

It is easy to verify that B;CcA;, so B; €I, and B = B, U B, €
L UL
(b) I U I is directed.
- By
Suppose A,B €L, UL and A = A1UA;, B=B,UB,, A;,B; eI,
then there are R; € I; such that ACuyR; A B{CyR;. Now B, u
B2I;UR1 U Rz, Al U AggURl U Rz and R] U R2 € I1 U I2.

17

- Cc
Analogous to the Cy-order.

Contrary to [22] U is not well-defined in P;(D).

Example 2.2.1 Take D the flat poset generated by the set {a,b}, i.e. D =
({L,a,b},<) withz,y e D: 2 < y implies z = L Ve = y. Now define the
following two ideals over D:

L= {{J-}’{a}a{-l-aa}}

I :={{1},{b},{L,b}}

then 1, U I, = {{1},{14,a},{L,8},{a,b},{L,q, b}}. This is not left-closed, for
{a}EL{a,b}, but {a} ¢ I, U I,.

Therefore the or-operation will be defined in P(D)as asLULU(I; UL).
Lemma 2.2.3 If I, I; € Py(D), then LULU(I,; U L) € Py(D).

Proof: (a) LULU(L U L) is left-closed.

If BCLA € I, then B € I,, Now suppose BC; A € I; UI,. Then
A = A, U A, with A; € I;. Define B; := {b€B|aec 4;:b< a} for
¢t = 1,2. By the properties of Ty, it follows that B = B, U B,.

If By # 0 then B = By,C1A; so B € I,. The case that B, =0
is analogous. If both By, B, # @ we have B;,C1 A;, so B; € I; and
B=31UB2€I1 UIz.

According to lemma 2.2.1 below I, U I, contains all the lubs of sets

{A1, Az} with 4; € I,. So by the first part of lemma 2.2.5 I; U I, U (LOL)
is directed.

Now we can state the following theorem.
Theorem 2.2.1 Let I, I, be ideals, then
I1 or I2 = Il U I2 n PU(D)

Lo ILL:=ILUL in Pc(D).
I] or I2 = I1 U I2 U (I1 U Iz) n PL(D).
Proof: By the previous two lemmas the or-operations are well-defined. We check

that they are commutative, associative and idempotent. The first two prop-
erties are trivial, so we concentrate on the last one.

18

-Cu
We have to prove that I = T U I. Trivially I C I UI. Now take an
element AUA’ of I U I,then AUA'Cp A so by left-closedness AU A’ € I.
- Lo
I CIUI Take AUA' € IUI I is directed so {A, A’} has an
upperbound U in I. It is easy to verify that AU A’ CcU,s0 AUA' € I.
-CL
Analogous to the case Cg.

a

The powerdomains are dcpo’s so they have lubs of all directed sets. In the rest of
this section we will give some results about the existence of glb’s and lubs of other
subsets of P(D) (a statement without subscript is true of all three powerdomains).

Lemma 2.2.4 Let I € P(D),then {L} € I.

Proof: Trivial.

Theorem 2.2.2 For every subset S C Pr(D) NS exists.

Proof: We prove that NS is an ideal, then it follows by the properties of set-inclusion
that NS = NS.

(a) NS #0
By the previous lemma.
(b) NS is left-closed

Suppose A € NS, then VI € S: A€ I. If BC;AthenVIe S: B €l
so Bens.

(c) NS is directed
Suppose A,B € NS. ThenVI€ S : A,B € I, so there is a C; € I such

that AC,Cr A BC;C}. But by lemma 2.2.1 AU B is the lub of {4, B},
:{o) AUBELC[and AUBe .

Therefore AU B € NS,and {A, B} has an upperbound in NS.

Theorem 2.2.3 For every finite subset S C Py(D) NS exzists.

19

Proof: We prove that NS is an ideal, then NS = NS.
Non-emptiness and left-closedness are as in the proof of the previous theorem.
Now take A,B € NS then VI € S: A,B € I, so there is a C; € I which is an
upperbound of the set {4, B}. With lemma 2.2.1 it follows that U{C/|I €
S} = n{Cy|I € S}, s0 VI € S : U{Ci|I € S}CyCy, therefore VI € S :
U{CIII € S} € I. Trivially we have ACy U {CI|I € S} ABCy U {CIII € S},
and so has {A, B} an upperbound in NS.

Pc(D) does not have a glb for every subset S C Po(D).

Example 2.2.2 Take for D the following w-algebraic dcpo:
T

1
Every element of D is compact. Now define the following two ideals:
I := {A € P4y(D)|ACc{a}}
I := {A € Py(D)|ACc{b}}
Now Iy N I; is not an ideal because {c},{d} € I N I; do not have an upperbound
in this set. Moreover

Ji:={A € Py(D)|ACc{c}}
Jy :={A € Py(D)|ACc{d}}
are two different mazimal lower bounds of {I,1,}.

We now give some results about the existence of lubs.

Lemma 2.2.5 Let S = {I;|j € J} be a finite set of ideals over a poset (D, <), and
let Sy :={f(j)lj € J} for a function f:J — U{I;|j € J} wich satifies f(j) € I;.
If USy ezists for all functions f, then LIS ezists in the ideal completion of D.

Proof: Define L := {USy|f is a function as defined in lemma}. We will prove
that I := {d € D|3d' € U(S)U L :d < d'} is the lub of S.

(a) I is directed.
We prove that U(S) U L is directed, then it follows that I is directed.
Take a,b € U(S) U L then if

- a,b € I;, then they have an upperbound in I; for this set is directed.

20

- a € Ij,b € I}, # k, then there is a function f with f(j) = a, f(k) =
b, and US; € L CU(S)U L.

- a € I;,b € L, then b = LISy for a certain function f. Now a and f(j)
do have an upperbound a’ in I;. Take a function f’ which is equal
to f, except that f'(j) = a’. We have that US; € L and USy is an
upperbound of Sy. So b < USy. It is trivial that a < o’ < LSy, so
{a, b} has an upperbound.

- a,b € L, then there are functions f, g such that US; = a and US, =
b. Take a function h such that Vj € J : f(j) < h(§) A 9(4) < h(j).
Then US, € L is an upperbound of Sy and Sy, so a = US; < LIS,
and b = US,; < USh.

(b) Iis left-closed.
Trivial.
(c¢) Iis an ideal.
By point (a) and (b).
(d) I =uS.
US C I is trivial.
Suppose US C U, with U an ideal. Take a € I, then if a € I; for some
J € J it follows a € U. If a € L then a = US; for some function f.

Now S; C U and Sy is finite, so this set has an upperbound in U. But
then by leftclosedness of U it follows that a = LS; € U.

Theorem 2.2.4 Every finite S C Pr(D) has a lub.

Proof: Every finite subset R C Py(D;) has a lub with respect to the ordering

Lz, for UR = UR (lemma 2.2.1). So by the previous lemma LIS = {4 €
P#(Do)|3A’ € U(S)U L : A < A}, with L =UTS.

O

The lub of the set {I;, I} is given by US = {A € Py(Do)|34’ e LUL U (L, T L):
A < A'}. According to the first part of the proof of lemma 2.2.3 I; U I, U (LOL)
is left-closed, so in fact U{l;,;} = [UL U (I1 U L). So it turns out that in the
lower powerdomain the or-operation yields the lub.

Definition 2.2.2 A poset P is finite bounded complete if for every subset S C P
which has finite many but not zero upperbounds in P, US ezists.

Lemma 2.2.6 Let P be a poset, then:
for every finite S C P NS ezists = P is finite bounded complete.

21

Proof: Take S C P and suppose S has finite many but not zero upperbounds.
Define Up(S) := {r|r is an upperbound of S}. Now S has upperbounds so
Up(S) # 0. NUP(S) exists (for Up(S) is finite) and it is easy to verify that

US = nup(s).
0O
Theorem 2.2.5 Py(D) is finite bounded complete.
Proof: This follows by theorem 2.2.3 and lemma 2.2.6.
a

22

Chapter 3

3.1 Powerdomains are continuous algebras

From now on dcpo’s need not have a least element.
In a paper by Hennessey and Plotkin ([11]) powerdomains are characterized as free

continuous algebras. In the rest of the paper we take this more abstract approach
to powerdomains.

Definition 3.1.1 An algebra is a set (the carrier of the algebra) together with an
indezed family of operations (functions) defined on (cartesian powers of) that set.

Definition 3.1.2 An ordered algebra is an algebra with o poset as carrier and
monotone operations.

Definition 3.1.3 A continuous algebra is an algebra with a dcpo as carrier and
continuous operations.

A free algebra is just an instance of the more general concept of a free structure.
The free continuous algebra A(D) generated by a dcpo D satisfies the requirements
made visible in the following diagram:

n
D — A(D)

f#

A 4
Al

Thus there is a continuous function n : D — A(D) such that given a continuous

f: D — A with A’ an algebra of the same signature as A(D) (i.e. it has

the same operations),there is a unique continuous operator-preserving function

f#: A(D) — A’ such that f¥on = f.

Definition 3.1.4 A function f: A — A’ between algebras of the same signature

is operator-preserving iff f(w(ay, ... »@n)) = w(f(ar),..., f(an)) for all operations
w: A" = A, n € N and elements q; € A.

23

Note that in the above we have confused algebras with their carriers, a harmless
practice which will be carried on in the rest of this paper.

As all free structures, free algebras can be understood as elements in the range
of a left-adjoint to a forgetful functor, in this case the forgetful functor which
maps algebras into the category of their carriers. In this section we will prove
the existence of a left-adjoint which constructs powerdomains. In the next section
we will see that this abstract approach can be used to find representations of
powerdomains over some restricted classes of dcpo’s.

Definition 3.1.5 Let + be a binary, commutative, associative and idempotent
operator.

A (bounded) nondeterministic set is an algebra with a +-operator.

A (bounded) nondeterministic poset is an ordered algebra with a +-operator. A
(bounded) nondeterministic dcpo is a continuous algebra with a +-operator.

Now define the following categories:
Decpo : depo’s and continuous functions.
Dcpot : nondeterministic dcpo’s and linear, continuous functions.
The functions in Dcpo* are operator-preserving (here linear), i.e. flz+y) =
#(2) + 1),

There is a forgetful functor U : Depot — Depo which maps nondeterministic
dcpo’s to their carriers, i.e. it "forgets” simply the +-operation. The left-adjoint of
U makes every object of Dcpo into a free nondeterministic dcpo (a powerdomain).

Theorem 3.1.1 The functor U : Dcpot — Dcpo has a lefi-adjoint P.

Before we prove this theorem we give some of the results of [11]. For each algebraic
element D of Dcpo the functor P constructs the convex powerdomain, so in this
case P(D) & Pg(D). Left-adjoints which give the lower and upper powerdomain
when applied to an algebraic dcpo can be obtained in the same manner if we put
some additional requirements on the elements of Depo*. If we take those objects of
Dcpot which satisfy z < z+y, and we take the left-adjoint of the forgetful functor
from Dcpo to this subcategory, then we have the lower powerdomain constructor
Pr. In the same manner the equation z + y < z gives the upper powerdomain
constructor Py. We will concentrate on the convex powerdomain in this chapter.

Further we need not worry about the existence of a least element for according
to [11] P maps dcpo’s with a least element to powerdomains with a least element.

Now we are going to prove theorem 3.1.1 by the Freyd Adjoint Functor Theorem
(FAFT). To apply the FAFT we have to verify the following items:

- Dcpot is small-complete.
- U : Depot — Depo preserves all limits.

- U satisfies the solution set condition.

Theorem 3.1.2 Dcpot has all small products.

24

Proof: Given a small index set I we have [[(D;i € I) = {ala: I — UD; and a(i) €
D;}. For a,b elements of the product we have
a<b:=Viel:a(i) <)
(a +b)(3) := a(i) + b(3).
Let S be a directed subset of the product then
US = a, with a(3) := L{b(i)|b € S}.
Projections: prj:[[(Dili € I) » D;:a a(j), for j € I.

Theorem 3.1.3 Dcpot has all equalizers.

Proof: Let f,g: D; — D, be two arrows in Decpot. We need an object D and arrow
e: D — D such that the following diagram commutes:

e f
D,

D

D,

h' h

o4

It is easy to verify that if we take D := {z € D1|f(z) = g(2)} and e the
inclusion D — D, then these requirements are satisfied.
(]
Theorem 3.1.4 Decpo* is small-complete.

Proof: By theorem 3.1.2, 3.1.3 and 1.3.1.

a

Small products and equalizers in Dcpo are the same as in Depot but without
the +-operation. So the functor U : Decpot — Depo triviallly preserves small

products and equalizers. By theorem 1.3.2 and the previous theorem it follows
therefore that

Theorem 3.1.5 U : Dcpot — Dcpo preserves all small limits.

Before we can prove that the solution set condition holds for U we need some
theory about closed sets.

Definition 3.1.8 Let S be a subset of a set D. S is closed for a certain property
? iff p(S) is true. The closure of § in D for property p is a closed set S C D such
that (1) S C S’ and (i) if S C R and R is closed Jor p then S' C R.

25

The closure of a set S for a property p always exists if V consists of for p closed
sets implies that NV is closed for p, and if p(D) is true. In this case the closure
of § is equal to NV with V := {S|S C S’ and S’ is closed for p}. V # 0 because
DeV.

In this paper we will use the following types of closed sets and corresponding
closures.

Definition 3.1.7 Let D be a nondeterministic poset and S C D, then § is:
U-closed iff S' C S directed and US' € D implies LIS’ € S,

L-closed (=left-closed) iff t <y € S implies z € S,

+-closed iff 2,y € S implies z + yES,

L |-closed iff S is U-closed and l-closed,

U+--closed sff S is Li-closed and +-closed,

U | +-closed iff S is -closed, |-closed and +-closed.

We will now concentrate on the U-closure of a set S in a poset D, denoted by S.
In the following f(S) = {f(a)|a € S} for a function f and a set S.

Theorem 3.1.8 Let S,8,,5, C D e Pos*, then

U W s
N o
0 n =

51 C S; implies 5, C 3,
If D in Dcpo, then T in Depo.

Sed o e N

Proof: Trivial.

Theorem 3.1.7 If f : D — E is continuous then (%) C 7(S).
-

Proof: Define R := {z € 5|f(z) € f(S)} then clearly S C R C 5. We now show
that R is U-closed.

Take R’ C R, R’ directed and suppose that LIR' exists in D. Then UR' € §

—

and f(UR') = Uf(R) € f(S),so UR' € R. R is U-closed, so § C R, so
S=Rand f(5) = £(S).

Theorem 3.1.8 If f : D — D continuous, then f(S) € S implies f() C 3.

Proof: By the previous theorem we have F(S) C f(S). Now f(S)C 8,50 f(S)CT
by theorem 3.1.6.

26

Theorem 3.1.9 S xS =5 x 5

Proof: It is trivial that $x 5 C S x 8, for § x T is U-closed and S x S CSx3S.
We now prove § x §C xS in two steps:

(a) SxSCSxS
Fora € D define f, : D - Dx D : y —< a,y >. This function
is continuous, so f,,(;! C fa(S) by theorem 3.1.7. Now S x § =
U{fa(S)la € S} C U{fu(S)la € S}. Clearly fo(S)C Sx Sfora€ S, so
fa(S)C T x5, and U{fo(S)la € S} C T x S.

(b) Sx5C Sx?ForaeDdeﬁnega:DﬂDxD:yv-»< y,a >.
This function is continuous, 50 ga(S) C 94(S) by theorem 3.1.7. Now
§ x5 =U{ga(3)la € T} € U{ga(S)la € S}. Clearly g,(S) C S x T for
aeg,soE,TS_)(_ISx?,andU{MMES’}QSX?.

By(a) SxSCSx35,50Sx5CTx3. SoSx5TCSxSC5xS.

O

Theorem 3.1.10 f(S x §) C S implies fExS) CT withf:DxD — D

continuous.

Proof: By theorem 3.1.9 we have f(8 x 8) = f(§x 5). By theorem 3.1.7 we have

F(S % E) € f(S x S). Finally f(SxS) C S so by theorem 3.1.6 (4) it follows
that f(Sx S)CS.

Corollary 3.1.1 If S is +-closed, then 5 is L+-closed.

Proof: Trivially § is U-closed. S is +-closed, so for every 2,y € S : z + y € S. But
then by the previous theorem z,y€S=>z+y€3T, 5037 is +-closed.

Corollary 3.1.2 U+-closure(S) = + — closure(S)

Proof: Define §; = U+-closure(S), S; = + — closure(S). Now S; is U-closed and
+-closed (by the previous corollary) and S C S,, 50 $; C Sy.
Sy is +-closed and S C 51, 80 +-closure(S)C S;. Further S} is Ll-closed and
with +-closure(S) C S we have that S, C S5

27

It is easy to see that the cardinality of the Li-closure and the +-closure of a set S
is bounded by the cardinality of S (in fact card(3) < 2¢ard(5) | see [3]). So by the
previous corollary this is true of the Li+-closure of S,

Now we can give

Proof of theorem 2.2.1: We have already verified that Dcpo* is small-complete and

that U : Dcpot — Dcpo preserves all small limits. It remains to find a
solution set for each D € Dcpo.
Consider any function f : D —» UE with E € Dcpo*. Let E’ be the L+-
closure of f(D) in E, then the cardinal number of E' is bounded given D.
Taking one copy of each isomorphism class of such nondeterministic dcpo’s
E’ then gives a small set of nondeterministic dcpo’s (see [13]), and the set of
all functions D — UE’ is then a solution set (see [13]).

O

The existence of arbitrary free continuous algebras with finitary operations

(i.e. every operation is of the form w : 4™ — A,n € N) can be proved by a slight
extension of the theory of this section.

28

Chapter 4

4.1 Powerdomains over restricted classes of dcpo’s

Existence of powerdomains (free nondeterministic dcpo’s) has been proven in the
previous section. In this section we try to find a representation for powerdomains
by categorical means.

First we introduce some new categories:

Set : Sets and functions between sets,

Sett : Nondeterministic sets and linear functions,

Pos : Posets and monotone functions,

Pos* : Nondeterministic posets and monotone, linear functions.

We have forgetful functors Dcpot — Sett and Depo — Set which forget the or-
dening. There is also a forgetful functor Sett — Set, which maps algebras with
a +-operator to their carriers. All these functors have left-adjoints. Consider the
following diagram where the arrows represent left-adjoints.

0
Set = Decpo
Pf P
'
o+
Sett —> Dcpot

The functor O maps sets to discrete posets, i.e. the order is such that z < y e
r = y. Discrete posets are trivially dcpo’s because the only directed subsets are
the one element sets.

P; is the finite powerset constructor, which we have already met in the first chap-
ter. More formally:

Theorem 4.1.1 The forgetful functor Depo — Set has a left-adjoint O : Set —
Depo.

Proof: For S € Set define O(S) =S,and for 2,y € S : = Sy:=(z =y). The
components of the unit are the identity functions.

29

O

Theorem 4.1.2 The forgetful functor Dcpot — Set* has a left-adjoint OF
Sett — Dcpot.

Proof: For S € Set* define O+(S) = S. Order and unit are as with O. The +-
operator in O*(S) is that of S.

O

Theorem 4.1.3 The forgetful functor Sett* — Set has a left-adjoint Py : Set —
Sett,

Proof: For S € Set we have Py(S) = {z C S|z £ O A= finite} and 2 +y:=z Uy,
for z,y € P;. The unit of the adjunction consists of the one-element set
constructor: {-} : § — UP(S) : a — {a}.

O

According to theorem 1.3.4 (the composition of two left-adjoints is a left-adjoint)
the functors PO and Ot P; are both left-adjoints of the forgetful functor Dcpot —
Set. It follows with theorem 1.3.3 that they are isomorphic. So the diagram above
can be said to commute in a weak sense, i.e. PO(S) 2 OFPy(S) for a set S. Any

discrete dcpo D = (S, <) can be written as O(S), with S the set of all its elements.
So

Theorem 4.1.4 For any discrete poset D = (S,<), P(D) = OtPy(S).
Proof: P(D) = PO(S) = O+Py(S).

]

We have found a representation for powerdomains over discrete dcpo’s, because
O : Set — Dcpo identified this subcategory of Dcpo. The idea is now to take

another functor to Dcpo with a larger image, and to apply the same method.
Consider the following diagram:

C
Pos =~ Depo
F P
1 A 4
C+
Pogt Dcpot

The arrows are left-adjoints to the appropiate forgetful functors. Again the square
(weakly) commutes.

30

Theorem 4.1.5 The forgetful functor Pos* — Pos has a lefi-adjoint F : Pos —

Post.

Proof: Given a subset S C D, with D € Pos, define Minmaz(S) := Min(S) U
Maz(S), with Min(S) the set containing the minima of S, and M az(S) the
set containing the maxima of S.
Now for D € Pos define
F(D) := {Minmaz(z)lz C DAz # 0 Az finite},
mSy==$Ecy,f°rw,y€F(D),
¢ +y := Minmaz(z Uy), for z,y € F(D).
The unit np : D — UF(D) is given by np(a) = {a}.

(a)

(b)
(c)

(d)
(e)
(1)

(F(D),Cc) is a poset.

Reflectivity and transitivity are trivial. Now suppose zLoyAyCoz, 2,y €
F(D), and take a € z, then there are b,¥ € y such that ¥ < a < b. If

a is a minimum in z, then take a, € z such that a; < ¥ <a,s0a; < a

and @ = a;, but then b = a and ¢ € y. If a is a maximum in z then

take a; € y such that a <b < a3, thusa=a; anda=0b ¢ y. Therefore

z Cy.

Analogous y C z and so z = y.

+ is well-defined.

Trivial.

+ is monotone.

Suppose zCcz’. We have to show that = + yEcz' +y for all y € D.
Takea € ¢ + y. If a € z then 3a’ € 2’ such that a < d/, so there is an
element greater than ain z’' +y. Ifa € y thena € z' + y or there is an
other element greater than a in 2’/ + y.

Take a’ € 2’ + y then there is a smaller element in « + y analogously.
So z + yCoez' +y.

+ is commutative, associative and idempotent.

Trivial.

np is well-defined and monotone.

Trivial.

Given a monotone function f : D — UE, with E € Post, define

f*: F(D) — E as f*({y1,...,yn}) = f(1) + --- + f(yn). This func-
tion f# is well-defined.

31

D
D > UF(D)

Uf#

UE

(g) f* is linear.
Suppose y,y' € F(D) with y = {31,...,yn}, ¥’ = {¢,...,4.}. We
have to show that f(y + y) = f#(y) + f#(y"). Now f#(y + y) =
f#(Minmaz(yUy')) = f#(Minma:c{yl,...,y,.,y{,...,y:,,}). Say Minmaz{y],...,

{21,...,2,}. It is easy to see that
FE@) 4o + fH(zp) < fHun) + - + FR(y)
and

) + -+ fAy,) < @)+ + f#(z,) in E (because + is
monotone in E). So f#(y +y') = f*(y) + f*(y).

(h) f# is monotone.
Trivial (because f and + are monotone).

() Uffonp=Ff
Uf*(np(a)) = Uf*({a}) = Uf(a) = f(a).
(3) f* is unique.
Suppose g is an arrow in Post and U 9(np(a)) = f(a). Then for y €

F(D) we have Ug(y) = Ug({s2} U -~ U {ya}) = Ug({m}) +--- +
Ug({ya}) = f(n) +--- + f(yn) =Uf*(y). Sog = r*.

0O

Just as with P; the elements of the free ordered algebras are finite sets. This is
because we consider bounded nondeterminism only, and so we have finite sums.

The left-adjoints C : Pos — Dcpo is the so-called completion by ideals of a
poset D.

Theorem 4.1.6 The Jorgetful functor Depo — Pos has a left-adjoint C : Pos —
Decpo.

Proof: We will just describe the adjoint and leave the full proof, which is just a
(boring) verification of properties, to the reader.
Define C(D) := {I|I is an ideal over D}. For), e C(D): I < I, :=
Iy € I, and given a directed subset S C C(D) we have LUS = US. The
unit maps each element to the principal ideal generated by that element

32

np : D — UC(D) : a — I,. Given a monotone function f:D — UE, with
E € Dcpo define f# : C(D) - E as f#(I) = U{f(a)|a € I}. This f* is the
unique continuous function which makes the following diagram commute,

D
D — UC(D)

Ut

UE

O

The functor C* : Post — Dcpo* is the same as C, except that a +-operation is
defined for the elements of C(D).

Theorem 4.1.7 The forgetful functor Depot — Post has a left-adjoint C+ .
Post — Depot.

Proof: Let C*+(D) := C(D), with the same order, lubs and unit. Let | S be the

l-closure of a set S. For 5L,I; € C*(D) define I; + I, =] {21 + 22|z, €
LiNg, € Iz}

O

Take D € Pos then we have PC(D) & C*F(D). 1t is of some interest to charac-
terize the subcategory Image(C) of Depo.

It contains all (not necessari y countable) algebraic dcpo’s. For suppose D an al-
gebraic dcpo and Dy the set of its compact elements, then D & C(Dy). The other
way round take D € Pos, then C (D) is algebraic and has the set of principal ideals

as the set of its compact elements.
So we have the following result:
Theorem 4.1.8 If D is an algebraic dcpo, then P(D) = C*+F(D,).

Proof: P(D) = P(C(Dy) = C*F(D,).

0

This is the same we have proven in chapter 2 but here it follows in a much more
elegant way.

33

4.2 Powerdomains over arbitrary dcpo’s

In this section we will find that the powerdomain over a dcpo D is isomorphic to
a certain completion of F(D), with F the left-adjoint F : Pos — Pos*.

First we define two new categories:

Pepo : posets and continuous functions,

Pcpot : nondeterministic posets and linear, continuous functions.

Clearly Dcpo is a subcategory of Pcpo,and Pcpo is a subcategory of Pos (Pcpo
has the same objects as Pos). Consider the following diagram:

Cu
Pcpo Dcpo
F P
1 C:" \
Pecpot + Decpot

The arrows are left-adjoints to the appropriate forgetful functors. All these left-
adjoints will be shown to exist. Because the diagram (weakly) commutes we have
that PCy(D) = C} F(D), for D € Pcpo.

In contrast with the left-adjoint C : Pos — Dcpo the functor Cy : Pcpo —
Dcpo preserves all existing lubs of directed subsets, because the unit of Cyis
continuous. So if D € Pcpo and D is directed complete then Cu(D) = D, so

P(D) & PC,(D) = C}F(D). Thus the construction of P follows from that of the
left-adjoint Pcpo — Dcpot.
First we have:

Theorem 4.2.1 The forgetful functor Depo — Pcpo has a left-adjoint C, : Pcpo —
Decpo.

Proof: Left to the reader, or see [3].

For every D € Pcpo we take a special Zp € Depo:

Definition 4.2.1 Let D € Depo, then Zp := {z C D|z is U l-closed}.
Theorem 4.2.2 (Zp,C) with C the subset order is an object of Dcpo.
Proof: In fact (Zp,C) has lubs of all subsets S C Zp . For define LS := w(US),
with 7(R) = U |-closure(R) for a set R.

Clearly Vz € § : 2 C n(US). SupposeVz e S:zC L € Zp, then US C L,
so m(US) C L, for L is U |-closed and n(US) is the Ul |-closure of US in D.

34

O

We can define a continuous function n : D — Zp by n(a) := {b € D|b < a}.
Although we can not prove it we think that Cu(D) is isomorphic to the Li-closure
of n(D) in Zp (we only need to prove that given a continuous f:D — E thereis
a unique f# : U-closure(n(D)) — E such that f = f# o n).

Anyhow the mere existence of Z gives us some information about the structure
of Cy(D), for the unique function g# : Cu(D) — Zp induced by a function g :
D — Zp has to be continuous.

Now S et,Set*,Pos,Pos*,Pcpo,Pcpot,Depo and Dcpot are all small-complete
and do have the same products and equalizers (possible with additional order,
lubs, etc.). Forgetful functors between these categories preserve small products
and equalizers, and therefore preserve all small limits. In particular this is the
case with the forgetful functor Depot — Pcpot,

Theorem 4.2.3 The forgetful functor Dcpo* — Pcpot has a left-adjoint Cct .
Pcpot — Depot.

Proof: By the above Depot is small-complete and U preserves all small limits. We
have to find a solution set for each D € Dcpot. So given f : D — UE,
D € Pcpot, E € Dcpot consider f(D), the U-closure of f(D) in E. f(D) is
+-closed for take y1,y; € £(D),then y; = £(2), 50 41+ = f(21) 4 f(z2) =
f(z1 + ;) € f(D), for f is an arrow in Pcpot and is therefore linear. By
corollary 2.1.1 we have that f(D) is U+-closed, so f(D) € Dcpot. The
cardinal number of f(D) is bounded by that of D. Taking one copy of each
isomorphism class of such nondeterministic dcpo’s m then gives a small set

of nondeterministic depo’s (see [13]), and the set of all functions D —» U f(D)
is then a solution set (see [13]).

O
For D € Pcpot we define W, € Depot.
Definition 4.2.2 Let D € Pcpot, then Wp := {z C D|z is U | +- closed}.

Theorem 4.2.4 (Wb,C,+) € Dcpot with C the subset order, and z + y :=
¢{a+bla € z,b € y} with H(R)=U] +- closure(R) for a set R, and z,y € Wp.

Proof: Define R, := {a + bla € z,b ¢ y} for sets ¢ and y. We prove that the
+-operator is continuous in Wp, i.e. if S is a directed subset of Wp, then for
all y € D LI(S) +y = U{z + y|z € S}. In fact this is true for all subsets S.
First we prove that U{z + y|z € S} CU(S)+y. Takea € z, then a € us,
so a € ¢(US) = US. It follows that R, , C Risy. Soz+y = ¢(R,,) C
#(Rusy) = U(S) + y.
The other way round we prove that L(S)+y C L{z +y|z € S}. So we have
to prove that ¢{a +bla € ¢(US),b € y} C U,es ¢{a+bdla € z,b €y} Ifwe
can show that {a + bla € $(US),b e y} C ¢ Uzes ¢{a+bla € z,b € y} , then
this follows trivially. We can further reduce this with the following fact:

35

® ¢ Upcv ¢(p) = dU(V), for a set V containing sets.

So we have to show that {a + bla € ¢(US),b € y} C #{a+bla € US,b € y}.
Now we need the following:

o f$(V) C ¢f(V), for a linear, continuous f : G — H between nondeter-
ministic posets G and H.

This can proved easily, in analogy with the proof of theorem 3.1.7. Now
define a function f, : D - D : g — aq + b, then clearly this function is
continuous and linear. So Jo(#(US)) C ¢£(US) for an element b € y. There-

fore {a + bla € $(US),b € y} = U{f($(US))b € ¥} < {Sf(US)Ib € y} C
¢{a +bla € US,b € y}.

O

Define ' : D — Wp by n(a) := {b € D|b < a}, then #' is continuous and
linear. Perhaps C? is isomorphic to the Li+-closure of n'(D) in Wp. Because

Depo — Pcpo and Dcpot — Dcpo do have left-adjoints it follows that a left-
adjoint of Depot — Pcpo exists.

Theorem 4.2.5 The forgetful functor Dcpot — Pcpo has a left-adjoint K :
Pcpo — Dcpot.

As already showed we have that if D € Dcpo then K(D) & P(D).

Theorem 4.2.6 Let D € Pcpo, n the unit of K and A the +-closure of n(D) in
K(D), then K(D) = Ct(A).

Proof: Consider the following diagram:

D -~ 4 — UCH(A)

UE

where E € Dcpo*, § the unit of Ct and U the forgetful functor Decpot —
Pcpo. We show first that everything in the diagram is well-defined.

1 is a function D — UK(D), so we can restrict its image to A, because
n(D) C A. A € Dcpo*, because the +-operator is continuous in 4, so
C(A) is well-defined.

We now prove that § o7 is universal. First § o n is an arrow in Pcpo, because
both and § are continuous and so is their composition. Given a continuous

36

f: D — UE there is a unique continuous, linear f; : K (D) — E such that
f = Ufy on. This function cuts down to a function fi: A= E. So there
is a unique continuous, linear f, : C}(4) — E such that f = f,046. So
we have f = Uf 0 6 o7. Thus there is a unique function which makes the
diagram above commute. It follows that § o7 is a universal arrow. But then

CH(A) = K(D).
a
It will turn out that A = F(D), with F the left-adjoint of Pos* — Pos. But,

before we can give a proof of this, we need some theory about order-creating
functions.

Definition 4.2.3 A function f : A — B between posets is order-creating (o.c.)
iff ¢ Sy & f(2) < f(y)

Note that an order-creating function is order-preserving (monotone).
Theorem 4.2.7 If a function f : A — B between posets is o.c., then fis injective.

Proof: Trivial.

O

Theorem 4.2.8 If a function f : A — B between posets is o.c. and surjective,
then f is continuous.

Proof: Suppose f(US) # U{f(z)|z € S}, then there is an y in the range of f such
that y is an upperbound of f(S) and f(US) £ y. Because f is surjective
thereisanz € S: f(z) =y. SoUS £ z, and z is an upperbound of S. This
gives a contradiction with the fact that LUS is the lub of S.

a

Theorem 4.2.9 If a function f : A — B between posets is o.c. and surjective,
then f has a continuous inverse.

Proof: By theorem 4.2.7 f is injective and so it is bijective. Therefore f has an
inverse f~1. It is easy to verify that f!is o.c. too. So by surjectivity of
f~! and by theorem 4.2.8 it follows that f! is continuous.

Theorem 4.2.10 The unit of C is o.c.

37

Proof: Let 5 be the unit of Ct. It is trivial that n is monotone, for f is continuous.
Suppose 2 £ y and n(z) < 7(y). Consider the following diagram:

n
D UCH(D)

U

4
UWp

where Wp is the nondeterministic dcpo of theorem 4.2.4, and f(a) = {b €
DIb < a}. The order on Wp, is inclusion. So if z £ y we have f(z) € f(y).
Now there does not exist a unique continuous, linear function f* which
make the diagram above commute, for n(z) < n(y) and #(n(z)) = f(=z) ¢
F(y) = f*(n(y)), so f* can not be monotone. This gives a contradiction so
f@) <fly)=>z<y.

Theorem 4.2.11 The unit of K is o.c.

Proof: Let 2={1,T}, L<Tand L+ T=T then 2 € Dcpot. Let 7 be the unit
of K, D € Pepo.
Suppose z,y € D, z £ y and 7(z) < n(y). Let f: D — U2 be the function
defined by f(z) = L if z < y, and f(z) = T otherwise. for 2 € D. This
function f is continuous, so there is a unique continuous, linear function
f# : K(D) — 2 which makes the following diagram commute.

n
D — UK(D)

Uf#

v

U2
However this function f# can not be monotone, because U f#(n(z)) = f (z) =

T 2 1 = f(y) = Uf*(n(y)), but n(z) < n(y). So we have a contradicton,
and it follows that f(z) < f(y) implies z < y.
The reverse is trivial for n is continuous.

38

It would be nice if we could show that F : Pos —s Pos* extends to a left-adjoint

of the forgetful functor Pcpot — Pcpo. The following two theorems seem to lead
into this direction.

Theorem 4.2.12 The unit of F is continuous.

Proof: Suppose S C D directed, and US exists for D € Pos. Let U € F(D) be an
upperbound of n(), with 7 the unit of F. Then for each z €S,aeU:z<aq,
so U contains upperbounds of S. Now we have that Vae U :US < a, so
n(uS) = {us} <.

Theorem 4.2.13 For D € Pos, the +-operator is continuous in F(D).

Proof: Suppose S C D directed, and LIS exists. We prove that U(S) + y is the lub
of §':= {2+ ylz € S}, with y € F(D).
Let u be an upperbound of S’. We show that there is a v C u, such that v
is an upperbound of S.
Suppose it is not so, then Vv’ C udz € S such that ¢ Lov. Define a set
R:={ze€SVv'CuXxeR:z Ecv'}. Then RC S and R is finite, because
u is finite. So there is an upperbound z' of R in S (for S is directed), and
z' +yCou, so by the properties of Cc we have Jv C u such that zCoz2'Cov.
Contradicton.

Now take v := U{v C u|v is an upperbound of S}. Then LISCcv, so u(s) +
yEov + yCou.

a

However it is difficult to show directly that the unique function f*:F(D) - E
induced by a continuous f : D — E is continuous. We already know that K (D) =
C}(A) (theorem 4.2.6), and now we will prove that F(D) & A. It then easily
follows that F is a left-adjoint of the forgetful functor Pcpot — Pepo.

Definition 4.2.4 Let D ¢ Pcpo and n the unit of K, then define a function
o : F(n(D)) = A es a({n(dr),....,n(da)}) = n(d) + - + n(d).

Lemma 4.2.1 a is o.c.
Proof: It is easy to see that « is monotone.

Now suppose z = {n(dy),...,n(d.)} Ecln(dy),...,n(d},)} = 2’ and y =
a(z) < a(z’) = y'. Consider the following diagram:

39

D - UK(D)

U f#
ben f

UCH F(n(D))
where 7 is the unit of K, ¢ the unit of F, and § the unit of Ct. According to
theorem 4.2.13 the +-operation is continuous in F(D), D € Pos. n(D) € Pos
so CEF(n(D)) is well-defined. 5,8 are continuous because they are arrows

in Dcpo and Pcpot resp. , and € is continuous by theorem 4.2.12. So the
composition § o € o 7 is continuous as well.

Now there exists a unique continuous, linear f# which makes commute the
diagram above. We have f#(y) = f¥(n(dy) + -+ + n(d,)) = f¥(n(d)) +
o+ fA(n(dn)) = Soeon(d) + -+ 80eon(ds) = 6({n(d)}) +--- +
6({n(dn)}), because ¢ = {-}. Because of the fact that & is linear the last
expression is equal to 6({n(dy)} + --- + {n(da)} = 6§({n(dr),...,n(dn)}).
Analogous we have f#(y') = 6({n(d.),...,n(d")}). Now y < y', so since
f# is monotone we must have f¥(y) < f#(y') . But {n(dr),...,n(dn)} /
Ec{n(dy),...,n(d.,)}, so since é is o.c. (theorem 4.2.10) it follows that
() = 6({n(dr),...,n(dn)}) £ 6({n(d}),...,n(d%)}). Contradiction. So

a(z) < afz') implies 2 < z'.

Lemma 4.2.2 o is surjective, continuous and linear.

Proof: Takey € A, theny = n(dy)+- - -+n(d,). Nowlet z = Minmaz{n(d:),---,n(d,)}
then z € F(n(D)) and o(z) = y. So « is surjective.

By theorem 4.2.8 and the fact that o is surjective and o.c. it follows that o
is continuous.

Finally it is easy to verify that « is linear.

Theorem 4.2.14 Let n be the unit of K, then F(n(D)) = A.

Proof: « is an arrow in Pcpot by the previous lemma. By theorem 4.2.9 and lemma
4.2.2 a has a continuous linear inverse a”!, and it is easy to verify that a~!
is linear.

Definition 4.2.5 Let D € Pcpo and 1 the unit of K, then define o function
B: F(D) — F(n(D)) as follows: B({dy,...,dn}) = {n(dy),...,n(dn)}.

Lemma 4.2.3 8 is o.c.

Proof: Trivially 8 is monotone (because 7 is monotone).
Suppose z = {dy,...,dn} Lc{d,,... ydm} = 2’ and B(z)CeB(z'). Because
rCcz’ there is a d! € 2’ such that Vd;ez':d; £ d;, or there is a d! € ' such
that Vd; € z : d; £ d!. In both cases f(z) Ecf(z') for 5 is o.c. (theorem

4.2.11).
a
Lemma 4.2.4 8 is surjective, continuous and linear.
Proof: Left to the reader.
a
Lemma 4.2.5 Let D € Pepo and 1 the unit of K, then F(D) & F(y(D)).
Proof: Left to the reader.
O

Corollary 4.2.1 K(D) = CYF(D), for D € Pos.

Corollary 4.2.2 The forgetful functor Pepo — Pcpo* has as left-adjoint F,

So what we in fact have done was to extend Dcpo to a category Pcpo and find
left-adjoints F' : Pepo — Pcpot and C} : Pcpot — Depot. The composition of
these two functors is isomorphic to the left-adjoint K : Pcpo — Dcpot, and if K
is restricted to Depo it is isomorphic to the left-adjoint P : Dcpo — Dcpot.

So the solution of the problem lies not in the considering of subcategories of
Dcpo, but on the contrary in the extension of Decpo. Also note that it was essential
that we knew that a left-adjoint of Depot — Pepo existed.

The result of this section is that the powerdomain P(D) over a dcpo D is in
essence isomorfic to F(D). The only thing we have to do to make F(D) completely
isomorphic to P(D), is to add in a certain manner lubs of directed subsets to F(D).

41

Chapter 5

5.1 A (lower) powerdomain for countable non-
determinism

Powerdomains with an or-operation which can take an infinite number of argu-
ments, are much more difficult to find than bounded nondeterministic powerdo-
mains. In [2] a construction is given for upper and convex countable powerdomains
generated by flat posets. In this section we will see that lower bounded powerdo-
mains are easily extended to lower countable powerdomains over arbitrary dcpo’s.

First define Dcpof as the subcategory of Depot such that for every object D
of it the following holds: Vz,y€e D:z < z + y.

Theorem 5.1.1 The forgetful functor Dcpof — Dcpo (which "forgets” the +-
operation) has a lefi-adjoint Py : Depo — Decpof.

Proof: See [11].

a

The functor Pp constructs for every algebraic dcpo the lower powerdomain of
chapter 2.

Now for countable nondeterminism we need an operation ¥ : D¥ — D which is
commutative, associative and idempotent. Because of the idempotency ¥ can be
used for finite nondeterminism too, for example we can define z +y := Zzyyyy

Define a new category Dcpo} as follows: the objects of Decpo¥ are dcpo’s D
with an operator ¥ : D“ — D which is continuous, and such that {zli e N} C
{7:li € N} implies £z < Ty, for Z,7 € D“. The arrows in Dcpo¥ are all linear an
continuous functions between its objects. Clearly Dcpo¥ is an extened version of
Decpot.

For every T € D“ € Dcpo} define a set Sy as follows: Sz = {Z7ly €
D® and Vgan € N : Vi < n : 7 = gand¥i > n : T: = ZTa}. It is easy to
verify that Sz is directed and that X7 = LS5

Consider the forgetful functor Dcpo¥ — Dcpof which forgets the sums of
infinite different elements.

42

Theorem 5.1.2 The forgetful functor Dcpo} — Depof has a left-adjoint PE :
Depof — DcpoF.

Proof: Let D be an object of Dcpof, then PF(D) = D. The order and lubs of
PE(D) are the same as those of D.
Define an operator X : (PF(D))* — PE(D) as follows: £ = U{y, +--- +
Ynln € N and Vy;3i : y; = 3;}.

Theorem 5.1.3 The forgeiful functor DcpoE — Depo has a left-adjoint.

Proof: We have the left-adjoint P, : Depo — Depo} and PE : Depof — Depo¥. By
theorem 1.3.4 PEPy, is a left-adjoint of this theorem.

o

So for countable nondeterminism we can use the same lower powerdomain con-
struction as for bounded nondeterminism, except that we have an or-operation
which is defined for countable many arguments.

43

Acknowledgement : I thank Jan van Leeuwen for suggesting powerdomains
as a fruitful subject for study and for useful comments on a draft version of this
paper.

44

Bibliography

[1]

[2]

[4]

(5]

[6]

[8]

Abramsky S.
On semantic foundations for applicative multiprogramming,
in: J. Diaz (ed), Automata, Languages and Programming, 10th Colloquium,

Lect. Notes in Comp. Sc., vol 154, pp 1-14, Springer-Verlag, Heidelberg,1983
Proc. ICALP ’83, LNCS 154

Apt K.R., Plotkin G.D.
A Cook’s tour of countable nondeterminism,
in: S. Even, O. Kariv (ed), Automata, Languages and Programming, 8th Col-

loquium, Lect. Notes in Comput. Sci., vol 115, pp 479-494, Springer-Verlag,
Heidelberg,1981

Banaschewski B., Nelson E.
Completions of partially ordered sets,
SIAM J. Comput. 11 (1982), 521-528

Broy M.
A fized point approach to applicative multiprogramming,

Theoretical Foundations of Programming Methodology, D. Reidel Publishing
Company, Dordrecht, 1982, pp 565-622

Broy M.

On the Herbrand-Kleene universe for nondeterministic computations,
Theor. Comput. Sci. 36 (1985), 1-19

Escrig D.F.

A characterization of Plotkin’s order in powerdomains, and some of its prop-
ertses,

Theor. Comput. Sci. 31 (1984), 73-82

Francez N. et al.

Semantics of Nondeterminism, Concurrency, and Communication,
J. Comput. Syst. Sci. 19 (1979), 290-308

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B.
Initial algebra semantics and continuous algebras,
J. Assoc. Comput. Mach. 24 (1977), 68-95

45

[9] Hennessy M.C.B.
Powerdomains and nondeterministic recursive definitions,
in: M. Derani-Ciancaglini, U. Montanari (ed), International Symposium on

programming, 5th Colloquium, Lect. Notes in Comp. Sci., vol 137, pp 178-
193, Springer-Verlag, Heidelberg, 1982

[10] Hennessey M.C.B., Ashcroft E.A.

A mathematical semantics for a nondeterministic typed A-calculus,
Theor. Comput. Sci. 11 (1980), 227-245

[11] Hennessey M.C.B., Plotkin G.D.
Full abstraction for a simple parallel programming language,

in: J. Becvar (ed), Foundations of Computer Science, Lect. Notes in Comp.
Sci., vol 74, pp 108-120, Springer-Verlag, Heidelberg, 1979

[12] Lehmann D.J.
Categories for fizpoint semantics,

in: Proceedings 17th IEEE Symposium on Foundations of Computer Science
(1976), pp 122-126

[13] Maclane S.

Categories for the Working Mathematician,
Springer-Verlag, New York, 1971

[14] Milne G., Milner R.
Concurrent processes and their syntaz,
J. Assoc. Comput. Mach. 26 (1979), 302-321

(15] Nelson E.
Recent results on continuous ordered algebras,

in: L. Budach (ed), Fundamentals of Computation Theory, Lect. Notes in
Comp. Sci., vol 199, pp 320-330, Springer-Verlag, Heidelberg, 1985

[16] Plotkin G.D.
A powerdomain for countable nondeterminism,

in: Automata, Languages and Programming, 9th Colloquium, Lect. Notes in
Comput. Sci., vol 140, pp 418-428 Springer-Verlag, Heidelberg, 1982

[17] Poigne A.
On effective computations of nondeterministic schemes,
in: M. Derani-Ciancaglini, U. Montanari (ed), International Symposium on
programming, 5th Colloquium, Lect. Notes in Comp. Sci., vol 137, pp 323-336
Springer-Verlag, Heidelberg, 1982

[18] Poigne A.

On algebras of computation sequences and proofs of equivalence of operational
and denotational semantics,

