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Dynamic Programming on Graphs with Bounded
Treewidth*

Hans L. Bodlaender
Dept. of Computer Science, University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract

In this paper we study the complexity of graph decision problems, restricted to
the class of graphs with treewidth < k, (or equivalently, the class of partial k-trees),
for fixed k. We introduce two classes of graph decision problems, LCC and ECC,
and subclasses C-LCC, and C-ECC. We show that each problem in LCC (or C-
LCC) is solvable in polynomial (O(n€)) time, when restricted to graphs with fixed
upperbounds on the treewidth and degree; and that each problem in ECC (or C-
ECC) is solvable in polynomial (O(n€)) time, when restricted to graphs with a fixed
upperbound on the treewidth (with given corresponding tree-decomposition). Also,
problems in C-LCC and C-ECC are solvable in polynomial time for graphs with a
logarithmic treewidth, and given corresponding tree-decomposition, and in the case of
C-LCC-problems, a fixed upperbound on the degree of the graph.

Also, we show for a large number of graph decision problems, their membership in
LCC, ECC, C-LCC and/or C-ECC, thus showing the existence of O(n®) or polynomial
algorithms for these problems, restricted to the graphs with bounded treewidth (and
bounded degree). In several cases, C = 1, hence our method gives in these cases linear
algorithms.

For several NP-complete problems, and subclasses of the graphs with bounded
treewidth, polynomial algorithms have been obtained. In a certain sense, the results
in this paper unify these results.

Keywords: Treewidth, partial k-trees, graph decision problems, restrictions of NP-

complete problems, polynomial time algorithms, dynamic programming, local condi-
tion compositions.

1 Introduction

In general it is believed that NP-complete problems cannot be solved in polynomial time.
Therefore much research has been done on the complexity of subproblems of NP-complete
problems.

In this paper we consider (NP-complete) graphs problems, and we pose as restriction
on the graphs in the instance of the problems, that the tree-width of the graphs is bounded
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by a constant k, (or equivalently, that the graphs are partial k-trees.) For some problems,
we pose as an extra restriction that the degree of the graphs is bounded by some constant
d. We prove that for large classes of (NP-complete) problems, these become solvable
in polynomial time with the extra restrictions. The algorithms are polynomial in the
problem-size, but will be exponential in k¥ (and d).

Arnborg and Proskurowski [3] also studied the problem of the complexity of (NP-hard)
graph problems on graphs with bounded treewidth, and obtained linear time algorithms for
the following problems: VERTEX COVER, INDEPENDENT SET, DOMINATING SET, GRAPH
K-COLORABILITY, HAMILTONIAN CIRCUIT, NETWORK RELIABILITY. The algorithms are
linear in the size of the problem instance, but are exponential in the tree-width of the
involved graphs. The algorithms in this paper have some similarity to the algorithms in
[3], but we think the approach in our paper is more general and easier to use. For an
overview, see also [1].

Independently, Scheffler and Seese [24] introduced the notion of P-existential locally
verifiable (P-ELV) properties of graphs. This notion is very similar to our notion of local
condition composition problems. In [24] it is shown that for every P-ELV property P,
and constants k, and d, the problem to decide whether for a given graph G with degree
at most d, and treewidth at most k, P(G) holds, is solvable in polynomial time; (and, in
many cases, in linear time.) We generalize from their results in two ways: our class LCC
contains problems that are not expressible with P-ELV properties; and for the class of
ECC-problems we do not need an upperbound on the degree of the graphs.

The class of graphs with treewidth bounded by some constant k is also important for
the following reason. To many well-known classes of graphs one can associate a constant
k, such that each graph in the class has treewidth k or less. For example, the treewidth
of a series-parallel graph or an outerplanar graph is at most 2, the treewidth of a Halin
graph is at most 5. For an overview of results of this type, see [6]. The following classes
of graphs have a constant number as bound for the treewidth of the graphs in the class:
trees, forests, almost trees with parameter k (k a constant), graphs with bandwidth at
most k (k a constant), graphs with cutwidth at most k (k a constant), series-parallel
graphs, outerplanar graphs, Halin graphs, k-outerplanar graphs (k a constant), chordal
graphs with maximum clique size k (k a constant), circular arc graphs with maximum
clique size k (k a constant), and k-bounded treepartite graphs (k a constant).

Many polynomial time algorithms have been devised for NP-complete graph
problems, restricted to graphs in one of the above mentioned classes. See e.g.
[4,8,9,10,11,13,14,15,17,18,19,21,26,29,30]. In [28] a general approach is taken for a certain
class of problems, on series-parallel graphs (i.e. graphs with treewidth < 2). In [5] also a
general approach is taken, for several of the mentioned classes of graphs. One can observe
that for many of these algorithms, the underlying technique is dynamic programming.

In some sense, this paper explains the observed similarity of the complexity results for
many of the mentioned classes of graphs, and unifies several of the mentioned papers. Of
course, in many cases, a better algorithm is obtained, by looking at a single problem on a
more restricted class of graphs. In this paper we take a general approach, and will prove

membership in P for many problems for the (rather general) class of graphs with bounded
treewidth.



2 Definitions and preliminary results

2.1 Graph definitions

First we introduce some notations and definitions dealing with graphs.

DEFINITION 2.1 For every undirected graph G = (V, E), degree(G) denotes the maximum
degree over all vertices in V.

The distance between two vertices v,w € V in the graph G = (V, E) is denoted by
dg(v, w). When there cannot be confusion over which graph G is used, the subscript G is
dropped.

DEFINITION 2.2 Let G = (V, E) be an undirected graph and let ¢ > 0 be an integer.

1. Let v € V. The set of vertices with distance at most ¢ to v is denoted by N.(v,G) =
{w eV |dg(v,w) < c}.

2. Let W C V. The set of vertices with distance at most ¢ to W is denoted by
N(W,G)={weV |IweW:ds(v,w)<c}= |J N(v,G).

veW

3. Letv € V. Theset of edges with distance at most ¢ > 1 to v is denoted by M.(v, G)=
{(w,z) € E | dg(v,w) < ¢ -1V dg(v,2) < ¢~ 1} = {(w,2z) € E | dg(v,w) <
cAdg(v,z) < c}.

4. Let W C V. The set of edges with distance at most ¢ > 1 to v is denoted by
M (W,G) = {(v,w) € E|Fv € W : dg(v,w) < ¢ - 1Vdg(v,z) < ¢~ 1} =
U Mc(v,G).
veWw

5. Let W C V. We denote Mo(W,G) = {(v,w)€E|veW Awe W}.

When there cannot be confusion over which graph G is used, we drop the index G and
denote: N(v), N(W), M(v), M{W), etc.

Next we introduce the definition of the treewidth of a graph, introduced by Robertson
and Seymour [22].

DEFINITION 2.3 Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({X; | i €
I}, T = (I, F)), where {X; | i € I} is a family of subsets of V, T = (I, F) is a tree, with
the following properties:

. JUxi=v

i€l
2. For every edge e = (v, w) € E, there is a subset X;, i € I with v € X; and w € X;.
3. Forall 4,7,k € I, if j lies on the path in T from ¢ to k, then X; U X C X;.

The treewidth of a tree-decomposition ({X; | i € I},T) is max | Xi| — 1. The treewidth
]

of G, denoted by treewidth(G), is the minimum treewidth of a tree-decomposition of G,
taken over all possible tree-decompositions of G.



We denote the class of graphs with treewidth at most k, by TW(k). The class of
graphs with treewidth at most k, and degree at most d is denoted by TWD(k, d).

The class of the graphs with treewidth at most k equals the class of the partial k-trees
(see e.g. [2]). To define the class of partial k-trees, we first give a recursive definition of
the class of k-trees.

¢ Ky, the complete graph on k vertices, is a k-tree.

e G = (V,E)is a k-tree, and vy, vy ... i form a complete subgraph of G, then the
graph G’ = (VU {w}, EU {(v;,w) | 1 < i < k}), with w ¢ V, is also a k-tree.

A graph is a partial k-tree, if it is the subgraph of a k-tree. It is easy to show with
induction, that each k-tree G has a tree-decomposition ({X; |i € I}, T = (I, F)), such
that for each complete subgraph of G with k + 1 vertices, there is exactly one i € I , such
that X; contains all k¥ + 1 vertices in this complete subgraph. Now it follows that each
partial k-tree has tree-width < k. The reverse relation (each graph with tree-width k is a

partial k-tree), is left as an easy exercise to the reader. As a corollary the following lemma
follows.

Lemma 2.1 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V,E) with
treewidth k. Then there exists a tree-decomposition ({Y; | i € J}, T' = (J, F')) of G with
treewidth < k and |J| < |V| -k + 1.

Independently, Arnborg, Corneil and Proskurowski [2] and Robertson and Seymour [22]
have shown that there exist polynomial algorithms to test whether a graph has treewidth
< k for any given fixed k (or, equivalently, whether the graph is a partial k-tree). The
general problem of deciding the treewidth of a graph is NP-complete [2]. The algorithms in
[2], [22] can also be used to actually yield tree-decompositions with the desired treewidth,
if such exist. We will use the following variant of these results (use also lemma 2.1).

Theorem 2.2 For all k, there exists an algorithm, that finds for each graph G = (V, E)
with treewidth(G )< k, in polynomial time a tree-decomposition {Xi|ieI},T=(I,F))
of G with treewidth at most k, and |I| < |V| — k + 1.

2.2 Algebraic definitions

Next we recall and introduce some algebraic notions and definitions. First we recall the
definition of monoids (see e.g. [16]).

DEFINITION 2.4 A monoid is a 3-tupple (M ,®,0), where M is a non-empty set, @ is an
associative binary composition on this set, i.e. for all a,b,c € M : (aBd)Bc=ad(bd0),
and 0 is an element of M such that foralla € M : a0 =0& a = a. A monoid (M, d,0)
is commutative, if foralla,be M :a D b=b @ a.

Foray,...,a, € M, with (M, ®,0) a commutative monoid, we denote

@ a;=a1DPas®:--Da,.
1<i<n

We also need the following algebraic structure.



DEFINITION 2.5 A totally ordered commuatative monoid (tocm) is a 4-tupple (M, 6,0, <),
where (M, ®,0) is a commutative monoid and < is a binary relation on M, which induces
a total ordering on M:

1. foralla,be M:a<bVb<a
2. foralla,beM:(a<bAb<a)=z>a=1b
3. forall a,b,ce M:(a<bAb<c)=>a<c

We say that a tocm is a consistent totally ordered commutative monoid (ctocm), if for all
a,bceM:a<b=>a®c<bdec

Important examples of commutative monoids are:

¢ (N,+,0), where N is the set of natural numbers, 4+ the usual addition, and 0 also
as usual.

e (N,-,1), with - the usual multiplication on N.

o (Z,+,0), with Z the set of whole numbers and + the usual addition on Z.
o (({truefalse},v, false), where V is the usual or-operation.

o (({true,false},A,false), where A is the usual and-operation.

Important examples of ctocm’s are:

* (N,+,0,<), with < the normal “lesser than or equal to” relation on N.

® (N,+,0,>), with > the normal “greater than or equal to” relation on N.
e (Z,+,0,%)

* (Z,+,0,2)

e (({true,(false},v,false, <), where Vv is the usual or-operation, and < is one of the 2
possible total orderings on {true,false}.

o (({true.false},A false, <), where A is the usual and-operation, and < is one of the 2
possible total orderings on {true,false}.

2.3 Other notations

For functions f : X — Y and subsets Z C X, we denote the restriction of f to Z by flz,
ie. flz:Z—>Y and Vz € Z: f|z(2) = f(2).

2.4 Graph decision problems

In this section we give a number of definitions, dealing with decision problems on graphs.

First we view a decision problem II as a 3-tupple (D, Y, sn), with Dy the set of
instances of Il, Y1 C Dy the set of instances of I that yield the answer ‘yes’to problem
II, and sn is a function Dy — N, giving each instance D € Dy of II a size sp(D). In
general, the si’s will be very natural measures of the size of the instances.



DEFINITION 2.6 A decision problem II = ( Dy, Y, sp) is a graph decision problem, if each
instance D € Dy can be written as a 2-tupple D = (Gp, Ip), where Gp = (Vp, Ep) is an

undirected graph and sp(D) > max(|Vp|,|Ep|). (Ip must contain all other information
of the instance D.)

Note that Ip may be empty, for instance if I = HAMILTONIAN CIRCUIT (for undirected
graphs). Directed graphs G’ can be handled by using the undirected graph Gp, obtained
by ignoring the direction of the edges in G/, and letting Ip contain all necessary information
on the directions of the edges, in some coded form.

DEFINITION 2.7 For a class of graphs ©, and a graph decision problem II = (Dn, Y, sn),
I, restricted to @, is the graph decision problem Ille = (D, Yij6» Xmje ), Where Dyy =
{(G,)eDn|Ge 0}, Ynie = {(G,)e D |G e O} =¥Y1n Dﬂle and Sfle = snlpme.

The above definition gives the natural way of restricting a graph problem to a class
of graphs. Next we give a variant of the notion of polynomial transformation of decision
problems (see e.g. [12], p.34), for graph decision problems. Note that the graphs Gp in
instances D = (Gp, Ip), do not change under a gp-transformation.

DEFINITION 2.8 A graph-invariant polynomial transformation (or, in short: a gp-trans-
formation) of a graph decision problem II; = (D1,Y3,81) to a graph decision problem
II; = (D2,Ya, ;) is a function f: Dy — D,, satisfying:

1. if (G,I)€ D, and f((G,I)) = (H,J) € Dy, then G = H.

2. f can be computed in time, polynomial in s(D) (by a deterministic Turing machine,
or some equivalent machine model)

. foralDeDy:DeYy & f(D)e Ys
4. there is a polynomial p, such that for all D € Dy, s(f(D)) < p(s(D))

The following result can be obtained in the same way as the similar results for (normal)
polynomial transformations of decision problems.

Theorem 2.8 Let I;,II; be graph decision problems and let there erist a gp-
transformation of I, to II;. Let © be a class of graphs.

1. Ifzle € P, then Il;|e € P.
2. If le is NP-complete, then Il3|o is NP-complete.

2.5 Local condition composition problems and edge condition compo-
sition problems

In this section we define LCC, the class of local condition composition problems, and ECC,
the class of the edge condition composition problems. Both are subclasses of the class of

graph decision problems (and of NP). First we give the definition of basic local condition
composition problems.

DEFINITION 2.9 Let II = (D, Y1, s) be a graph decision problem. We say that I is a
basic local condition problem, if and only if there exist



® non-negative integers m,c € N

¢ m commutative monoids (M1, ®1),...,(M™, &™)
* actocm (M™+1 gmtl <)

such that

* each D € Dy is of the form (G,(X,Y,Ry,...,Rm, K, I)), where
— G is an undirected graph
— X is a finite set with s(D) > |X|
— Y is a finite set with s(D) > |Y|
— for all i,1 < i < m, R; denotes a subset of M?
- K € Mmt1
e forall i,1 < i < m+1, there exists a function val;, that maps all 4-tupples, consisting
of an instance D = (G = (V,E), (X,Y,Ry, ..., Rm, K,I)) € Dy, a vertexv e V,

and functions f : N(v) — X, g : M(v) — Y, to elements of M;, such that for all
(constants) d € N+:

1.

there exists an algorithm that calculates valy(D,v, f,g), for all D = (G =
(V,E),(X,Ry,...,Rm,K,I)) € Dy, v € V, FiNf(v) > X,g9: M,(v) > Y
with degree(G)< d, in time, polynomial in s(D).

- if 1 < i < m, there is a polynomial p;, such that for all D = (G =

(V,E),(X,Y,Ry,...,Rp, K, I)) € Dy, with degree(G)< d and subsets W C V:

D valiD, v, fInw) olrtuw) | £ N(W) = (X), g : MA(W) — Y} <
weW

pi(s(D)).

. there exists an algorithm that calculates a @* b for given a, b, such that there

are D = (G=(V,E),(X,Y, Ry, ..., Rm, K, I)) € D, with degree(G)< d,

WiV, W2 C V. WinW, =0, f: N(W1UW;) = X, g: M(WhUW,) = Y,

a= DF vali(D, v, fln.(w) 9lm(w) 20d b= P’ vali( D, w, f|N(w)» 9| M)
weW; weW,

in time, polynomial in s(D).

. if £ = m + 1, then there exists an algorithm, that calculates whether a < b for

given a, b, such that there are D = (G =(V,E),(X,Y,Ry,...,Rn,K,I)) €

Dn, with degree(G)< d, W C V, f; : N(W)—- X, f: NW) > X, g :

M(W) =Y, 92t M{W) = Y, 0 = @™ valimss(D, 0, frlnguys 01l e))
wew

and b = @”‘"’1 valym41 (D, w, f2l No(w)s 92| M (w)) OF b = K, in time polynomial

wew
in s(D).

. if 1 < 7 < m, there exists an algorithm that calculates for all D = (G =

(V,E),(X,Y,Rl,...,Rm,K,I)) € Dn with degree(D)< d, f : V - X, g :

E —'Y and given a = @‘ vali(D, w, f|n(w), 9l M.(w)) Whether @ € R;, in time
weV
polynomial in s(D).

e Forall D = (G = (V,E),(X,Y,Ry...,Ru,K,I)) € Dy : D € Yn, if and only if
there exist functions f:V — X,¢: E — Y, with



L. Vi, i <i < m: @ vali(D,v, flnw), 9l M) € Ri
veV

2. P+ valnia(D,v, f IN(0)> 9| M(v)) X K.
veV

The given definition of basic local condition composition problems may look at first
sight very complicated, but in general it will be not very difficult to use. For a more
intuitive introduction in the notion, see section 5.1.

Next we define the class of local condition composition problems, LCC.

DEFINITION 2.10 Let II be a graph decision problem. We say that II is a local condition
composition problem, if and only if there exists a basic local condition composition prob-
lem I’ and a gp-transformation from II to II’. The class of local condition composition
problems is denoted by LCC.

A subclass of LCC is the class of the edge condition composition problems, or ECC.
Instead of letting val-functions work on the values of f and g in “local” parts of G, like
Nc(v) and M(v), now the val-functions work on the values of f(v), f(w) and g((v, w))
for single edges (v,w) € E. This difference makes that ECC is more restricted than LCC
(unless P=NP). On the other hand, no restrictions on the degree of the graphs are longer
necessary for ECC-problems, in order to obtain polynomial algorithms for the problems,
restricted to graphs with constant bounded treewidth.

DEFINITION 2.11 Let II = (Dr1, Y1, 8) be a graph decision problem. We say that IT is a
basic edge condition problem, if and only if there exist

® a non-negative integer m € N

¢ m commutative monoids (M1, ®1),...,(M™, ™)

e a ctocm (M™+ gm+l <)

such that

e each D € Dy is of the form (G,(X,Y, Ry, .. .y Ry, K, I)), where
— G is an undirected graph
— X is a finite set with s(D) > |X]|
— Y is a finite set with s(D) > |Y]
— for all 4,1 < i < m, R; denotes a subset of M
- K € Mm+t

e forall 4,1 < i < m+1, there exists a function val;, that maps all 4-tupples, consisting
of an instance D = (G = (V,E), (X,Y, Ry, ..., Ry, K,I)) € Dn, a vertexv € V,
and functions f : No(v) — X, g: M,(v) - Y, to elements of M;, such that:

1. there exists an algorithm that calculates valy(D,e, f,g), for all D = (G =
(V,E),(X,Y,Ry,..,Rm,K,I)) € Dy, e € E,f:Nfe)— X,g9: M (e)>Y
in time, polynomial in s(D).

2. if 1 <4 < m, there is a polynomial p;, such that for all D = (G=(V,E),(X,Y,
Ry, ..., Ry, K,I)) € Dn, and subsets E' C E: { @‘val,-(D, W, f|No(e> 9lgepI S :

Ne(W) = (X),9: M{(W) — Y} < pi(s(D))



3. there exists an algorithm that calculates a@*b for given a, b, such that there are
D=(G=(V,E),(X,Y,Ry,..,Rn, K, I)) € Dy, E, CE,E,CE,E\nE; =
0, f: N E, UE)— X,g: M (E, UE2) —Y,a= @‘”ali(p’e7 fINo(e),gl{e})

e€E)
and b= P’ valy(D, e, f|No(e)) 9l{e})» in time, polynomial in s(D).
e€ By

4. if ¢ = m + 1, then there exists an algorithm, that calculates whether a < b
for given a,b, such that there are D = (G = (V, E), (X,Y, Ry, ...,
Rm, K, I)) € Dn, E' C E, fi : N(E") — X, f : N(E) — X,
9 MAE') =Y, g2: M(E') > Y, a = @™ valms1(D, e, filng(e) 91l (e)

ecE’
and b = @"""1 valmy1(D, e, f2|Ny(e)s 2l{e}) oF b = K, in time polynomial in
ecE’

s(D).

5. if 1 < 4 < m, there exists an algorithm that calculates for all D = (G =
(V,E),(X,Y,Ry,...,Rm,K,I)) € Dy, f : V > X, g:E — Y and given
a= @‘ valy(D, e, f|Ny(e)s 9l{}) Whether a € R;, in time polynomial in s(D).

ecE
o Forall D= (G = (V,E),(X,Y, Ry, ..., Rn, K, I)) € Dy : D € Yy, if and only if
there exist functions f:V — X, ¢: E - Y, with

1.Vi,1<i<m: @ val(D,v, f|No(e)’g|{e}) € R;
e€E

2. @+ valmia(D, v, flnye) 9lig) < K.
ecE
DEFINITION 2.12 Let II be a graph decision problem. We say that II is a edge condition
composition problem, if and only if there exists a basic edge condition composition prob-

lem II' and a gp-transformation from II to II’. The class of edge condition composition
problems is denoted by ECC.

Lemma 2.4 Let II be a basic edge condition composition problem. Then Il € LCC.

Proof. Let m, (M1, ®!),...(M™, &™), (M™+ gm+l =), valy, ..., valy,yy be as
indicated by the definition of basic ECC problem, applied to II. To each graph G = (V, E),
appearing in one or more instances D € Dy, one can add an (arbitrary) assignation chg
of each of the edges e € E to one of its adjacent vertices, i.e. V(v,w) € E: chg((v,w)) =
vV chg((v,w)) = w. We denote chz'(v) = {e € E|chg(e) = v}. Note that lehg! (v)] <
degree(G).

Now we use a transformation from II to a (very similar) other graph decision problem
I, by mapping each D = (G = (V,E),(X,Y,Ry,..., R, K,I)) € Dy to (D)= (G=
(V,E),(X,Y,Ry,...,Rn, K, (I, chg))), i.e. chg is included in the problem instances.
Now II' is a basic LCC-problem: take c=1, and let for all ,1<i<m,veV:

vali($(D), v, flnyw) 9lmmw) = €P° vali(D, e, f|Ny(e)» 9l(e})-
e€ch~1(v)

It is easy to see that the val/-functions can be calculated in polynomial time. Further we
have that:

P’ vali(¥(D), v, fINy(v) 9IMi(v)) =

veV



@‘ @ $ 'Uali(-D, e, leo(e))gL{e}) =

vEV e€ch~1(v)

@ vali(D, e, flnge)» 9lie})-
e€E

The remaining details are left to the reader. Q.E.D.

As an easy, but important corollary we have:

Theorem 2.5 ECC C LCC.

3 Polynomial time algorithms for LCC-problems and
ECC-problems on graphs with bounded treewidth

In this section we will give a general method to obtain polynomial time algorithms for (ba-
sic) LCC-problems, restricted to a class of graphs with bounded treewidth, and bounded
degree, and for (basic) ECC-problems, restricted to a class of graphs with bounded
treewidth. First we give some necessary lemma’s.

Lemma 3.1 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V, E). Let
v € X; and v € N(X;). Let k be on the path form i to j in T. Then: v € N(Xk).

Proof. We use induction to ¢. For ¢ = 0 we have v € No(X;) = X;, hence, by
definition, v € Xi = No(Xg).

Suppose the lemma holds for all integers up to ¢ — 1. There must be a vertex w € X j
with dg(v,w) < ¢. ¥ dg(v,w) < ¢— 1, then v € N, -1(X;), and hence by induction,
v € Ne1(Xi) € N{(X4). So now suppose dg(v,w) = ¢. Let z be the one-but-last vertex
on the path in G from v to w, i.e. dg(v,2) = ¢—1 and (z,w) € E. There must be an
' € I with z € Xy, w € Xy, by definition. Note that k is on the path from ¢ to ¢/ in T or
k is on the path from i’ to j. We consider both cases.

Case 1: k is on the path from i to i’. Note that w € Xy = v € N._1(Xy). By induction
it follows that v € No_1(Xk) C N(X3).

Case 2: k is on the path from ¢’ to j. From w € Xy and w € X it follows that w € Xp.
Hence v € No(X}).

Q.E.D.
Lemma 3.2 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V, E). Let
k € I be on the path fromie€ I toj€ I inT. Then:
1. N(X;)n N(X;) C N(X%)
2. MC(X,') N M.(X;)C M (X%)
Proof.

1. Suppose v € N(X;) N N (X;). There must be some i’ € I with v € X;. Now k is on
the path from 7 to ¢’ or k is on the path from i’ to j. In both cases it follows from
lemma, 3.1 that v € N(X)). Hence we have N(X;) N N(X;) C No(Xk).
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2. (v,w) € M(X))N M{(X;) = veE Ny(X;) n Ne(Xj;) A we N (X)n N(X;)
=> VEN(Xr) A we N(Xi) = (v,w)e M (Xg).

Q.E.D.

Theorem 8.8 Letk,de N. Let © be a class of graphs, with @ C TWD(k,d), (i.e. every
graph G in © has treewidth k or less and degree d or less). Let I be a basic LCC problem.
Then llle € P, i.e. there exists a polynomial algorithm for II, when restricted to the
graphs with treewidth < k and degree < d.

Proof. Suppose m, ¢, (M1, 1),..., (M™, &™), (M™+!, @M+1 <) valy, ..., valyyq
are as indicated by the definition of basic local condition composition problem, applied to
Il = (Dn, Y, ).

Let the algorithm work on an instance D = (G = (V,E), (X,Y,Ry, Ry,...,R,,
K,I)) € Dn with G € TWD(k,d), i.e. the treewidth of G is at most k and the degree of
G is at most d. Our algorithm starts with finding a tree-decomposition ({X; | i € I},T =
(I, F)) of G, with treewidth at most k,and |I| < |[V|—k+1. We can do this in polynomial
time, as indicated by theorem 2.2.

We now designate an (arbitrary) processor as “root”, so we see T as a rooted tree.
The set of the sons of a node i € I, (i.e. the direct descendants of i in the rooted tree
T, is denoted by sons(i); the father of ¢ in the tree (if 4 # root), is denoted by father(3),
and the set of all descendants of i, including ¢ self, is denoted by dec(z). Further for each
¢ € I, we pose a (total) ordering upon the sons of i.

Also we define for all i € I:

Y, = { X; if ¢ = root.
T {v € X; | v Xfatheﬂi)}) if ¢ # root.
Z; = U Y.
J€dec(i)
wi = U x.
J€dec(i)

Lemma 3.3.1 Forallv eV there is a unique 1 € I, with v € Y;.

Proof. Let v € V. By definition, thereis ani e I , with v € X;. Now either v € Xroot,
or there is a node j € I, on the path from ¢ to root with v € X jand v ¢ Xfathel(j). Hence
JielIwithvev,.

Next suppose we have v € Y;NYj, i # j. Note that we have v € X iNX;. Now note that
either father(i) or father(j) exists and is on the path from i to j, and hence v € Xf,the,(,-)
orve the,.(,-). This contradicts v € ¥; n Y;. Q.E.D.

The following two lemmas are easily verified.

Lemma 8.3.2 Forallie I: Z; = U Z; U Y,) .
jEsons(i)

Lemma 8.8.3 Forallie I: W, = U w;u X,-) .
jEsons(i)
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Lemma 8.8.4 Leti € I, sons(i)= {jy,.. «yjr}. Letl < a < r. Then:

1. N(W,, u...UW,; _,uX;,)n N(W;,) C Ne(Xi) N No(X,).
2. M(W; U...U W, uX;)n MW, ) C M.(X)n M.(X;,).

Proof. 1. Suppose v € N(W; U...u Wi U Xi) N No(W;,). There must be some
J € dec(ja), with v € N(X;). We consider two cases.

Case 1: v € N.(X,). It follows that j, is on the path from ¢ to j in T, hence, by lemma
32,ve Nc(Xja)-

Case2: 30,1<fB<a-1:v¢€ Nc(W;,). There must be some j' € dec(jg), with
v € No(X;1). Now i and j, are on the path from j to j’ in T, hence, by lemma 3.2,
v € N¢(X;) and v € Ne(X;,).

2. Similar. Q.E.D.

In the remainder, we will use the expression op(v, f,g) as a shorthand no-
tation for wval,(D,, f| Ne(v)) 9|M.(v)), and o,(S,f,g) as a shorthand notation for

@p valy(D, v, f| Ne(v)» 9|M.(v)), With § a subset of V and the domains of f and g con-
vES

tain respectively N (v), N(5), M(v), ML(S).

The algorithm will now calculate for each node i € I a table, called TABLE(%), which
contains (m + 3)-tupples of the form (f : Ne(Xi) = X, 9: My(X)) = Y, rq,.. ey Tm+41)s
such that

(FiN(X) = X, §: M(X)) > Y, q,.. -»Tm+1) € TABLE(:) & 6))

af : Ny(W;) - X, g: M(W;) > Y, with
flnxy =,
9lm(xi) = G,
Vp, 1<p<m+ 1, UP(Zt'vf’g) =Tp

and Vf: N(W;) - X, g¢: M (W;) - Y, with
fINc(Xi) = f’
9lm(xi) = 9,
Vp, 1<p<L m, UP(Zi’f’g) =Tp

one has : Tmiy < Omy1(Z;, f, g).

Note that for each f : N(X;) - X, §: M(X) > Y, meM, . . r,e€ Mm™,
there will be at most one Tm41 € M™1 with (F,§,74,.. sTm+1) € TABLE(?). 7y is
the smallest value of Om+1(Z;, f, g), where f and g are extensions of f and §, such that
op(Zis f,9) =1pforall p,1 < p< m.

The algorithm starts by first recursively calculating the TABLE’s for all sons of i, and
then calculating temporary tables TEMP(i,a), with 0 < @ < 7, where r is the number of

sons of i. For the these temporary tables the following condition will hold, after calculation
of TEMP(i, ):
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(F: N(X)) > X, §: M(X;) = Y, 71,...,7ms1) € TEMP(, a) &

3f: N(Wj, U...uW;, UX,) > X,
g: M (W, U...uW,, UX;)-Y, with
flvuxy = £,
9m.(x;) = §s
Vp, 1<p<m+1: 0p(ZjU...UZ;, UY;, f,g)=1p
and Vf: N(W; U...W;, UX;) > X,
g: M(Wj; u...W; UX;)—Y, with
flnexy = £
Ilm(xi) = §,
Vp, 1<p<m: Up(Zj..lU...UZjaUY.‘,f,g)=1'p
one has : rmy1 < Omy1(Zj1VU...UZ; VY, f, 9)

equation (2), with & = r (= the number of sons of i).

(2)

Note that it follows from lemma’s 3.3.2 and 3.3.3, that equation (1) follows from

We now claim that the following pair of subroutines will calculate the TABLEs and

TEMPs correctly. Basically, the algorithm works as follows: first we calculate (recursively)

TABLE(j,), for all sons j, of i. Then we calculate TEMP(%,0),
for every f : No(X;) » X,and g

by calculating o,(Y;, £, g)
: M(X;) > Y. Then we successively calculate the tables

TEMP(i, a), by composing the tables TEMP(i,a — 1) and TABLE(j,). From the above
observation it follows that TABLE(i) can be chosen to be TEMP(i,r).

CALCULATE . TABLE(:):

begin
Let jy,..., 7, be the sons of i.
fora=1tor
do CALCULATE_TABLE(ja)
enddo;
fora=0tor
do CALCULATE_TEMP(i,a)
enddo
TABLE(z) := TEMP(s,7)
end.

CALCULATE_ TEMP(i, a):

begin
fa=0
then for all functions f : N(X))—- X

do

for all functions ¢ : M(X))-Y
do

forp:=1tom+1
do let r, = 0, (Y, £, 9)
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enddo;
put (f, 9yT1y. 00y 'rm+1) in TEMP(") a)
enddo
enddo
else
for every (f,g,71,...,"m41) € TEMP(4, )
do
for every (', ¢',r{,...,70.11) € TEMP(S, a)
do
if Yo € No(X5) N No(X5,) : f(v) = f'(v) and
Ve € Mo(X)) N M(X;,) : g(e) = ¢'(e)
then
forp=1tom+1
do sp = rp ®P 1},
enddo;
if there is no t € M™+1, with (f, g, s,,.. .y8mst) €
TEMP(%, a)
then put (f,9,81,...,8m, 8m41) in TEMP(¢,a)
else suppose (f,g,s1,...,5m,t) € TEM P(i,a);
if Sm+1 j i
then remove (f,g,s1,..., Sm,t) from TEMP(¢, 0);
put ((f, 9,51, 9my Sm41) in TEM P(i, @)
endif
endif
endif
enddo
enddo
endif
end

Claim 8.4 After ezecution of CALCULATE_TABLE(i) equation (1) holds and after ez-
ecution of CALCULATE_TEMP(i, ) equation (2) holds.

Proof. Consider i € I, let [sons(é)] = 7, and let 6 < & < r. For a = 0, it can be
verified directly, that equation (2) holds after execution of CALCULATE_TEMP(i,0). So
let @ > 1. By using induction, one may assume that the equations hold for TABLE(j,)
and for TEMP(i,a - 1).

Now we first suppose that after execution of TEMP(i,a), (f, 9, 715 -+ Tme1) €
TEMP(i,a). It follows from the algorithm that there must be (f, 9, 1, -+ v Smy1) €
TEMP(i,@ — 1), and (f',g,t1,...,tm41) € TABLE(jq), with: f' : Ny(X;.) — X, g’ :
Mc(Xjipha) — Y, and Vv € N(X;) N N(X;,): f(v) = f'(v), and Ve € M. (X;)n
M (X;,): g(e) = g'(e), and Vp, 1 < p < m + 1: Tp = Sp @ tp. By induction, there
are f: N(W;, U...UW,,_UX,) = X, §: M (W, u...uW, _ UX;) > Y, with
fInexa = fi 8lmxiy = 95 Vp,1<p<m+l: op(Zj V... U Zj, VY, f,§) = rp; and
there are e NC(Wja) - X, g9 MC(WG.;) — Y, with f’INc(Xja) = f g,lMc(Xju) =g’ Vp,
1<p<m+1: ap(Zjaaf’,é’) = Sp;
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Now we define functions F': No(W;, U...UW;, UX;) - X, G : Mo(W;, U...UW,, U
X;) = Y, as follows.

— f(’v), ifve Nc(W'l U...UWj,1 UXi)
F(v) = { Fiv), ifve Nc(W;a) J

Gle) = gle), ifee M(W; U...UW;,1UX];)
g'e), if e € M(W,,)

It follows from lemma 3.3.4, that the definition of F and G is correct. Now, for all p,

1< p<m+1,onehas 0p(Z; U...UZ;, UY;, F, G) = 0,(Z; Uu...uZz; _,UY;, F,G)

® 0p(Zj,, F,G) = 3 ® rp. So now we have proven that the following holds.

(FiN(X) > X, §: M(X)) > Y, 14y, "mp1) € TEMP(i,a) = (3)

Af :N(Wj,u.. W, UX;)—~ X,
g: M (W, u.. W, UX;)—Y, with
flnexy = £,
9lmx) = 9,
Vp, 1<p<m+1: 0,(Z;,U...UZ;,UY,, f,g)=rp.

Next suppose we have f : N(X;) — X, G: M(X;) >, 11 € MY, ... rpyq € M™HL,
such that

Af i N(Wj, U...W; UX,) > X,
g: MW, U... W, UX;)—Y, with
flvxay = £
glMc(Xi) =9
Vp, 1<p<m+1: 0y(Z;, U...UZ;, VY, f,g) =r7p.

We claim that now 3¢ < r,,41, with (f, 8 r1,..., Tm, t) € TEMP(3, a).

Write f' = fin.w,u.w;,_ux) ¢ = I wi v w;_uxys f' = fingw,,), 97 =
gI)Mc(W,-,,), Vp,1<p<m+1:r,=0,2;U...UZ; _, UY, f, g'), and 1}l = 0,(Z;,, f,
9)-

By induction, there are ¢/ < r/, . ; and #” < #"m + 1, such that (f'INgxyys 9l Mo(X:)> T1>
e, rhet) e TEMP(i, 0 — 1), and (f',INc(Xja)’ g”lMc(Xja)’ Yy o, Th, ) € TABLE(?).
From the algorithm it now follows that table TEMP(i, ) will contain the element: (f,
g, i@ rf, ..., h @™t t @™+1 1), By noting that T, ®P ) = 15 and ¢/ @™ ¢ <
Ting1 ™ #fl L1 = Ty, the claim follows.

Finally we note that for each f : N(X;) — X, ¢ : M(X;) - Y, r, € MY, ...,
Tm € M™, there is at most one Ty € M™+1, with (f,9,715--.,Tm41) € TEMP (3, 0).

Claim 3.4 now follows from the above 3 observations. Q.E.D.

Next we show that is is easy to find the answer to the question, whether D € ¥,

or not, i.e. the answer to the problem that we are trying to solve, by ‘looking it up’ in
TABLE(root).
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Claim 8.8 D € Yq, if and only if there are 1y € Ry, 7 € Ry ..., 'y € Ry,
Tm+1 € M™H with rryy < K, and f @ No(Xroot) — X, g : M (Xroot) = X, such
that (f,9,71,...,"m,Tm+1) € TABLE(root).

Proof. First we note that Wi = Zyoor = V.

Now suppose D € Yi1. By definition, there are f: V — X, g: E — Y, with Vp,1 <
p<m:oy(V, f,g) € Rp and om4a(V, f,g) < K. Denote s, = op(V, f,9) (1 < p < m)and
f= f|Nc(Xmg), § = 9|M.(X100r)- It follows from claim 3.4 that either (f,8,%15-+y8m+1) €
TABLE(root), or there is a 741 < Spy1 < K, and (F,8,%15- .., Tm+1) € TABLE(root).

Next suppose there are 7y € Ry, 72 € Ry, ...7ys € Ry, Ty1 € M™+! with Tm41 <
K, and f : Ne(Xpoot) = X, 9 M(Xroot) = X, such that (f,9,71,...,7msTms1) €
TABLE(root). Hence thereare f : V — X, and §: E — Y), with Vp,1 < p < m+1):
op(V, f,g) = rp. It follows that D € V. Q.E.D.

From claim 3.5 it follows that after calculating TABLE(root), we can determine
whether D € Yi1 or not, by successively inspecting all entries in TABLE(root).

It remains us to show that the algorithm uses polynomial time. First note that the
finding of the tree-decomposition can be done in polynomial time, by theorem 2.2. Next
we claim that for each i and o, the size of the table TEMP(i¢,a) (and consequently, of
TABLE(?)), is polynomially bounded in s(D). First note that |N(X;)| and | M(X;)| are
bounded by constants, say ¢; and ¢z, (that are only depending on d, k and c). Further,
for all (f,g,71,...,7m+1) € TEMP(4, ), one has rp € {0p(Z;,U...UZ; UY, £, | f:
Ne(Z;, U...UZ;, UY;) — X, §: M{(Z;, U...U Z;, UY;) > Y}. By definition (of the
class of basic LCC-problems), the number of different values that Tp can assume here, is
bounded by p,(s(D)). Hence, the size of TEMP(4, @) is bounded by

X[ - vie - T] pa(s(D)),

p=1

which is a polynomial in s(D).

It follows that each execution of the procedure CALCULATE_TEMP uses polynomial
time. As this procedure is called 2|I| — 1 = O(|V|) times, and the total remaining work
in the procedure-calls of CALCULATE_TABLE is linear in |I, it follows that one can
calculate TABLE(root) in polynomial time. Finally we note that the last step of the
algorithm also can be done in polynomial time: one can test in polynomial time for each
(£,9,71,. -, PmyTmy1) € TABLE(root), whether r; € Ry, ..., r € R and Tme1 < K.

As TABLE(root) is of polynomial size, this last step of the algorithm also uses polynomial
time. Q.E.D.

For the class of the edge condition composition problems, we can prove a similar result.
We can use an algorithm, very similar to the algorithm, described in the preceding proof.
Here we do not need the requirement that the degree of G is bounded by some constant d.
This requirement was necessary to ensure that the size of the sets N(X;) and M (X;) was
bounded by some constant (only depending on k, and d, and not on |[V]). Now however
we use instead sets No(X;) = X; and Mo(X;). Note that the size of these sets is bounded
by k£ and %—k(k + 1) respectively, i.e. these sizes are bounded by a constant, even if there
is no bound on the degree of the graphs. In this way we obtain the following result:
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Theorem 8.8 Letk € N. Let © be a class of graphs, with © C TW(k), (i.e. every graph
G in © has treewidth k or less). Let I be a basic ECC problem. Then Ille € P, i.e. there
exists a polynomial algorithm for II, when restricted to the graphs with treewidth < k.

Now we state the main result of this paper.

Theorem 8.7 (i) Let Il € LCC, and let k,d € N*. Let © be a class of graphs with
G € © = degree(G)< d A treewidth(G) < k. Then Il|g € P.

(i) Let 11 € ECC, and let k € N*. Let © be a class of graphs with G € © =
treewidth(G) < k. Then Il|g € P.

Proof. The result follows directly from theorem 2.3, theorem 3.3 and theorem 3.6.
Q.E.D.

4 Small-degree polynomial time algorithms for subclasses
of LCC and ECC

There are interesting subclasses of LCC and ECC, that yield linear, quadratic, cubic or
some other small-degree polynomial time algorithms (when we do not count the time,
needed for finding the tree-decompositions with the required treewidth). One can mod-
ify the definition of basic LCC problem to that of basic C local condition composition
problems, and the definition of basic ECC problem to that of basic C edge condition
composition problem by adding the following conditions:

1. There are constants ¢;, ¢z, such that for all D = (G, (X,Y, Ry, ..., Rn, K,
I) € D, one has |X| < ¢35 |Y] < 3.

2. Conditions 1, 3, 4 and 5 of the definition still hold when we replace the sentence
“time, polynomial in s(D)” by “constant time”.

k
3. The degree of the polynomial H Dp is at most C — 1.
p=1

We let the class of C-LCC problems of the graph-decision problems that have a gp-
transformation f to a basic C LCC problem, such that f can be computed in O(s(D)®)
time and s(f(D)) = O(s(D)). Similarly we define the class of C-ECC problems.

It is not difficult to verify, that the algorithms of section 3 can be used for C -LCC and
C-ECC problems, and will use only O(s(D)°) time. For instance, note that the size of
TABLEs and TEMPs are now bounded by O(s(D)°-1). (The constant factor can depend
on k, and for the case of C-LCC-problems also on d, but not on |V| or s(D)).

Hence, we can proof the following result, similar as in section 3.

Theorem 4.1 (i) Let Il € C-LCC, and let k,d € N*. Let © be a class of graphs, with
G € © = degree(G)< d A treewidth(G) < k. Then there ezists a linear algorithm that
solves I1, restricted to ©, assuming that each graph G € © in the instances is given together
with a tree-decomposition of G with treewidth < k.

(ii) Let Il € C-ECC, and let k € N*. Let © be a class of graphs, with G € © =
treewidth(G) < k. Then there exists a linear algorithm that solves II, restricted to O,

assuming that each graph G € © in the instances is given together with a tree-decomposition
of G with treewidth < k.
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The following relations between the classes C-LCC, C-ECC, LCC and ECC can be
obtained without much difficulty.

Theorem 4.2 (i) C-ECC C C-LCC.
(ii) C-LCC C LCC.
(#ii) C-ECC C ECC.

For the case that the treewidth of G = (V, E) is bounded by a logarithmic factor in
|V|, one obtains polynomial algorithms for C-LCC and C-ECC problems, assuming that
the tree-decompositions with the required tree-width are given. It is presently unknown
whether one can find tree-decompositions with logarithmic treewidth in polynomial time.

Theorem 4.3 (i) Let Il € C-LCC for some C > 1, and let k,d € N*. Let © be a class
of graphs, with 3¢ > 0: YG € © = degree(G)< dA treewidth(G) < k. Then there ezists a
polynomial algorithm that solves 11, restricted to ©, assuming that each graph G € O in
the instances is given together with a tree-decomposition of G with treewidth < ¢ -log(|V]).

(%) Let I € C-ECC, and let k € N*. Let © be a class of graphs, with 3¢ > 0:
VG € © = treewidth(G) < k. Then there ezists a polynomial algorithm that solves II,
restricted to ©, assuming that each graph G € © in the instances is given together with a
tree-decomposition of G with treewidth < c - log(|V]).

Proof. (i) Use the same algorithm as in the case of the constant bounded treewidth.
We now will estimate the size of the tables TEMP and TABLE. Note that the size of
N¢(v), or M(v), v € V, is bounded by a constant, that only depends on k, d and ¢. Hence
there are constants ¢y, ¢3, such that | N (X;)| < ¢; -log(|V]) and | M (X;)| < ¢z - log(|V]),
for all G = (V, E) € ©, and graph-decompositions ({Xi | i € I}, T) of G with treewidth
< c-log(|V]). It follows that the size of a table TEMP(¢, @) (or TABLE(3)), is bounded
by

m
| X |erlos(IVD) |y [c21os(IVD) . H pp(s(D)).
p=1
Using that s(D) > |V|, and that |X| and |Y| are bounded by a constant, it follows that
the sizes of the TEMPs and TABLEs are bounded by a polynomial in s(D). The remainer
of the proof is similar to the proof of theorem 3.3.
(ii) Similar. Q.E.D.

5 Problems in LCC and ECC

In this section we will show for a large number of NP-complete graph decision problems,
that they are in LCC or in ECC. First in section 5.1 we will give some of the basic
techniques we use to prove problems to be in (C-)LCC and (C-)ECC, and give some
intuitive ideas behind these notions. In section 5.2 we give a give for many NP-complete
graph decision problems (an indication of the) proof that they are in LCC, ECC, C-LCC
or C-ECC. For many problems, the same techniques will be used to transform them to a
basic LCC or ECC problem. We have restricted ourselves to a number of graph decision
problems, appearing in [12]. For full descriptions of the problems, the reader is also referred

to this reference. We omitted most details of proofs, in this section. Most omitted details
are easy to obtain.
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5.1 Some basic techniques

First we give a more intuitive idea of what a (basic) LCC or ECC problem is. A basic
LCC-problem is a problem of the following type (with some extra restrictions):

INSTANCE: Graph G = (V, E), finite sets X, Y, subsets Ry C M1, ...
Ry, € M™, element K € M™+1, other information I.
QUESTION: Are there functions f: V — X, g:F —Y, such that

e Vp,1<p<m: @pvalp(D’v7f|Nc(v)7g|Mc(v)) €Rp
veV

o Pt valyia(D, v, fIN(o)s 9IMu(v)) 2 K
veV

The extra restrictions basically say, that where necessary, operations @, € R,, and <
can be done in polynomial time; the functions valp can be calculated in polynomial time,

and, for p # m + 1, the number of different values that @’ valy(D, v, f| Ne(v)» 9l M.(v)) can

vES
assume, with some fixed § C V, over all possible f and g, is polynomially bounded. A
basic ECC-problem has the following type (with similar restrictions):

INSTANCE: Graph G = (V,E), finite sets X, Y, subsets R, C MY, ...,
Ry € M™, element K € M™+1, other information I.
QUESTION: Are there functions f:V—>X,g:E Y, such that

e Vp,1<p<m: @’”alp(Dv €, fINo(e)’gl{e}) €R,
ecl

® @"+1 ’I)alm+1(-D7 €, lec(e)’ gl{e}) j K
ecE

We give some examples of the type of conditions that can be expressed as @P valy(D,

vevy
v, lec(u), gIMc(v)) € Rp or @ valp(D’ ¢, fINc(e)’ gl{e}) € RP'

ecE
A condition like: “Vw Ge V, some property of (D, v, f| Ne(v)> 9|M.(v)) holds”, can
be expressed with use of the commutative monoid (({true, false}, A, true), where A is
the usual and-operation. Omne can express the required property as a val-function to
{true,false}. Finally, one must choose the respective set R, ={true}.
Similarly, a condition like: “Jv € V, some property of (D, v, f| Ne(v)s 9|M.(v)) holds”,

can be expressed with use of the commutative monoid ({true, false}, v, false), where V is
the usual or-operation.

By choosing the commutative monoid (N,+,0) or (Z, +,0), conditions like

Y valy(D,, fIn(), 9lmus)) € Rp
veV

, (with R, a subset of N or Z) can be expressed. Note that, except for the case that
p=m+ 1, one must have that

mayl é\; valy(D, 0, f| N () 9l i(v))
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must be bounded polynomially in s(D).

By using one of the ctocm’s (N, +,0,<), (Z, +,0,<), (N, +,0,>), or (Z,+,0,2>), one
can express conditions like

> valm41(D, v, fIN(v)s 9M.(v)) < K or > K.
veEV

Here only the number of bits needed to express the values of valy4;, must be bounded by
a polynomial in s(D).

K we know some fixed upperbound, say L on the maximal value of these sums
(for instances with a ‘yes’-answer), we can use the commutative monoid with elements
{0,1,...,L, L + 1}, and addition @ on this set, with¢é@j=di+j,ifi+j <L+1,and
t®j=L+1,ifi+j>L+1. In this way the number of different values the sums can
attain is bounded by a constant, which is useful, when we want to prove membership in
C-LCC or C-ECC, with C as small as possible.

Conditions like @” valp(D,e, f| No(e)» 9l{e}) can be expressed, while writing the prob-

eeE
lem as a basic LCC-problem, similar as in the proof of lemma 2.4.
With a similar technique, one can express a condition of the type @Pvalp(D, v, f(v)),

veV
while writing the problem as a basic ECC-problem. (Use a mapping V — E, where each

vertex v is mapped upon a neighboring edge e. (We have to assume that G does not have
isolated vertices.))

5.2 A list of problems in LCC and ECC
5.2.1 Vertex cover [GT 1]

In [3] it was shown that the problem can be solved in linear times, for graphs with

treewidth, bounded by some constant number k. This can also be shown with the following
result.

Theorem 5.1 VERTEX COVER € 1-ECC.

Proof. There is a linear time transformation of VERTEX COVER to the following
problem:

INSTANCE: Graph G = (V,E), sets X = {0,1}, Y = {0}, positive integer
K <|V|.
QUESTION: Are there functions f:V — X y9:E — Y, such that
1. Y(v,w)€ E: f(v) =1 or f(w)=1.
2. ) f(v) < K.

veEV
It is straightforward to see that this problem is in 1-ECC. Q.E.D.
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5.2.2 Dominating set [GT 2]

Similar to VERTEX COVER, a linear time algorithm for this problem for graphs with
constant treewidth, was given by Arnborg and Proskurowski in [3]. One also has:

Theorem 5.2 DOMINATING SET € ECC.

Proof. There is a linear time transformation from DOMINATING SET to the following
problem:

INSTANCE: Graph G = (V, E), sets X = {1}uV,Y = {0}, positive integer
K <|v|.
QUESTION: Are there functions f: V — X y9:E - Y, such that

LVY(v,w)€EE: f(v)=w= fw)=1.

2. V(v,w)€ E: f(w)=v= f(v)=1.

3. W€V : f(v) =1 or f(v) is a neighbor of v.

4. The number of v € V, with f(v) = 1, is at most K.

(The vertices v, with f (v) = 1 represent the set V’. For all other vertices v, f(v) represents
the neighbor of v, that is in V/ .) The latter problem can easily be transformed to a basic
ECC-problem, with standard techniques (see section 5.1.) Q.E.D.

5.2.3 Domatic Number [GT 3]

Scheffler and Seese [24] showed that DOMATIC NUMBER can be solved in linear time
for graphs with given treedecomposition with constant bounded treewidth, and constant
bounded degree. (To be precise, they prove that for constant k,d, K, the problem whether
a given graph with treewidth at most k, degree at most d, has a domatic number that
is at least K, is solvable in linear time (not calculating the time needed to find the tree-
decomposition with the required treewidth). However, as the domatic number of a graph
is at most its degree +1, it follows directly, that the general DoMATIC NUMBER problem
(i.e. K is a part of the problem instance), also is solvable in linear time, for this class of
graphs.) A similar result can also be obtained with the following theorem.

Theorem 5.8 DoMATIC NUMBER € 1-LCcC.

Proof. We use that the domatic number of a graph is at most its degree +1. So we

may assume that K < d+1, i.e. K is bounded by a constant. Further note that DoMATIC
NUMBER has a linear transformation to the following problem:

INSTANCE: Graph G = (V, E), sets X = {1,...,K},Y = {0}.
QUESTION: Are there functions f: Vo X,9g:E—->Y,suchthat Vo e V :
(Vi,1<i< K :3we Ny(v): flw) =14)?

The latter problem can easily be transformed to a basic 1-LCC-problem. Q.E.D.

A result for graphs with no bound on the degree of the vertices, can be obtained by
observing that the domatic number of a graph is at most the smallest degree of a vertex
+1. As each graph with treewidth < k has a vertex with degree < k (use e.g. the
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characterization as partial k-tree), it follows that we may assume that we can bound K
by a constant. Together with the following result, one obtains polynomial time algorithms
for graphs with given tree-decomposition with constant bounded tree-width.

Theorem 5.4 DoMATIC NUMBER for constant K € ECC,

Proof. Note the equivalence to the following problem:

INSTANCE: Graph G = (V,E), sets X = {1,.. K}« VK'Y = {0}.
QUESTION: Are there functions f:V—>X,g:E—>Y,such that

1. V'vEV:Vi,2$i$K+1:f.-(v)GN1(v).

2. VvEV:Vz',2$i$K+1:iff,-(v):v,thenfl(v)=i—1.

3. V(v,w)eE:Vz',2$z'5K+1:iff,-(v)=w, then fi(w) =1i—1.
4. V(v,'w)eE:Vi,25igK+1:iff.-(w):v,thenfl('v)=z'—1.

Here f3(v), ..., fk41 (v), denote the vertices in N;(v), that are in the dominating sets Vj,
o Vi Vi={v e V| fi(v) = i}. Now the problem is easily seen to be in ECC. Q.E.D.

This proof shows a technique, which often will be used to transform an (C-)LCC
problem to an ECC-problem. Suppose we have a condition of the form Vo eV:dwe
N1(v) : Q(f(v), f(w), 9((v,w))), where Q is some relation. Now replace the set X (of the
old problem), by X’ = X xV; add a condition that fa(v) € Ny(v) forall v € V; and require
now, that for each edge e = (v,w) € E: if f2(v) = w, then Q(fi(v), fi(w), 9((v,w)) and
if f2(w) = v, then Q(fi(w), fi(v), 9((v, w)). Also require that for all v € V: if fe(v) =,
then Q(f1(v), f1(v), g((v,w)). If we require w to be a neighbor of v, instead of an element
of Ny(v), then we drop the last condition. For each v € V, fa(v) is the edge leading to
the neighbor w, such that Q(f(v), f(w), g((v, w)).

5.2.4 Chromatic Number [GT 4]

Arnborg and Proskurowski [3] showed that CHROMATIC NUMBER can be solved in linear
time for graphs with constant bounded treewidth (and with given corresponding charac-
terization as subgraph of a k-tree). By using that a graph with treewidth k always is
(k + 1)-colorable (this fact can easily be derived with help of the recursive definition of
k-trees), one obtains the following result without difficulty:

Theorem 5.5 CHROMATIC NuUMBER € 1-ECC.

5.2.5 Monochromatic triangle [GT 6]

Scheffler and Seese [24] proved this problem to be linear time solvable for graphs with
constant bounded treewidth and degree. This result can also be obtained with the following
theorem.

Theorem 5.6 MONOCHROMATIC TRIANGLE € 1-LCC.

Proof. Note that MONOCHROMATIC TRIANGLE has a graph-invariant linear transfor-
mation to the following problem:
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INSTANCE: Graph G = (V, E), sets X = {0}, Y = {1,2}.
QUESTION: Are there functions f:V—>X,9:E > Y, such that Vu € V:
=(3v,w € Ny(v): (v,w)€ EA f((v,w)) = f((u,v)) = f((u, w)).

The latter is easily transformed to a basic 1-LCC problem. Q.E.D.

If we replace “triangle” by any larger fixed complete subgraph, then one shows with a
similar proof, that the resulting variant again is in 1-LCC.

We remark that there exist also linear time algorithms for the case that one has no
bound on the degree of the graphs. By using lemma 5.23, it follows that for each triangle
(u,v), (v, w), (w, %) in G, there must be some i € I, with u,v,w € X;. (Similar for larger
complete subgraphs of G.) This fact enables us to modify the basic algorithms of section
3, in order to obtain a linear time algorithm for MONOCHROMATIC TRIANGLE, or one of
its variants with larger complete subgraphs, on graphs with given treedecompostion with
constant bounded treewidth.

5.2.6 Feedback vertex set [GT 7]

Feedback vertex set is the first example in this list, of a problem, dealing with directed
graphs. A directed graph can be seen as an undirected graph, with each edge labeled by it
direction(s). (So there are 3 different labelings possible for each edge.) Hence, there is no
real difference in the way undirected and directed graphs can be handled in this theory.

Theorem 5.7 FEEDBACK VERTEX SET € ECC.

Proof. First we may assume without loss of generality, that we have no isolated
vertices in G = (V, A). Note that the condition that V' contains at least one vertex from
every directed cycle in G is equivalent to the condition that the subgraph of G, induced

by V — V' is cyclefree. Hence we can transform FEEDBACK VERTEX SET to the following
problem:

INSTANCE: Directed graph G = (V,4), sets X = {0, 1, ..., V] -1, oo},
Y = {0}, positive integer K < V].
QUESTION: Are there functions fiVoX,9:4- Y, such that

1. Y(u,v) € A: f(u) = 0o or f(v) = oo or f(u) < f(v).
2. the number of v € V with Jf(v) = oo is at most K.

(The vertices v with f(v) = 0o represent the set V') Q.E.D.

5.2.7 Feedback arc set [GT 8]
This problem can be handled, similar to FEEDBACK VERTEX SET.
Theorem 5.8 FEEDBACK ARC SET € ECC.

Proof. Transform to the following problem.

INSTANCE: Directed graph G = (V,4),8ets X = {0, 1, ..., VI-1}, Y =
{0, 1}, positive integer K < |V|.
QUESTION: Are there functions f:V—=X,9:4-5Y, such that
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1. Ve = (u,v) € 4: g(e) =1 or f(u) < f(v).
2. Z g(e) < K.

e€E

(The edges e with g(e) = 1 represent the set A’ .) Note that we can express the function
g:A—Y asa function ¢’ from the set of undirected edges E, obtained by ignoring the
direction of the edges in 4, to (Y *Y). Q.E.D.

5.2.8 Partial feedback edge set [GT 9]

Scheffier and Seese [24] have shown that the problem with fixed maximum-circuit length
L is solvable in linear time for graphs with given tree-decomposition with treewidth < k
and degree at most d, k and d fixed. One can show that the problem with fixed L, is in

1-LCC, thus obtaining the same result. The problem is open for graphs with arbitrary
degree, and for the variant where L is variable.

Theorem 5.9 Forall L € N*+,L > 3, PARTIAL FEEDBACK EDGE SET with mazimum
circuit length L € 1-LCC.

Proof. Transform to the following problem.
INSTANCE: Graph G = (V,E), sets X = {0}, Y = {0,1}, positive integer
K L|V].
QUESTION: Are there functions f:V — X, g:E =Y, such that
1. Vv € V: There is no circuit in N1(v), with for every edge e in the
circuit f(e) = 0.

2. Y fle) < K.

ecE
Q.E.D.

5.2.9 Minimum maximal matching [GT 10]

Scheffler and Seese proved that the problem, whether the minimum maximal matching
of a given graph G has at most K edges, (for fixed K), is solvable in linear time, for
graphs with constant bounded treewidth and degree, given with the corresponding tree-
decomposition. The following result shows that a similar result still holds, if we do not fix
K, but let it be a part of the problem-instance.

Theorem 5.10 MINIMUM MAXIMAL MATCHING € 1-1LCC.

Proof. The problem has a graph-invariant linear transformation to the following
problem:

INSTANCE: Graph G = (V,E), sets X = {0}, Y = {0,1}, positive integer
K <|V|].
QUESTION: Are there functions f: V — X, g: E — Y, such that

1. Vv € V : there is at most one adjacent edge e, with gle)=1.
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2. Ve = (v,w) € V: g(e) = 1 or v or w is adjacent to an edge €/, with

9(e) = 1.
3. Z g(e) < K.
c€E

(The edges with g(e) = 1 represent the edges in E'.) Q.E.D.

Also we have the following result.
Theorem 5.11 MINIMUM MAXIMAL MaTcHING € ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = Eu{0},Y = {0,1}, positive integer
K <|V|.
QUESTION: Are there functions f:V—>X,g:E—Y,such that

1. Vv € V : f(v) is an edge, adjacent to v or f(v) =o0.
2. Ve = (v,w) € E:if g(e) = 1, then f(v) = e and f(w)=e.
3. Ve = (v,w) € E:if f(v) = e or f(w) = e, then gle)=1.
4. Ve = (v,w) € E: f(v) #0 or f(w)#0 or g(e) =1.
5. Z g(e) < K.

ceE

Q.E.D.

5.2.10 Partition into triangles [GT 11]

Theorem 5.12 PARTITION INTO TRIANGLES € 1-LCC,

Proof. The problem has a graph-invariant linear transformation to the following
problem:

INSTANCE: Graph G = (V, E), sets X = {0}, Y = {0,1}.

QUESTION: Are there functions f: Vo> X,9g:E—-Y,suchthatVu e V
: de = (u,v) € My(v), e = (u,w) € My(v), with f(e) = fle") =1,
and (v,w) € E, and f((v,w)) = 1, and for all other edges (v,z) € E:
f((v,z))=0.

The latter problem is easily transformed to a basic 1-LCC problem. Q.E.D.

Theorem 5.18 PARTITION INTO TRIANGLES € ECC.

Proof. Use the technique, outlined in section 5.2.3. Q.E.D.
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5.2.11 Partition into Isomorphic subgraphs [GT 12]

We will consider the subproblem of this problem, where we require H to be connected.
Theorem 5.14 PARTITION INTO ISOMORPHIC CONNECTED SUBGRAPHS € LCC.

Proof. We choose some arbitrary vertex w € V. Each set V; will be characterized by
the vertex v € V;, that is mapped to w. We use a transformation to the following problem.

INSTANCE: Graph G = (Vg, Eg), sets X = Vg * Vi, Y = {0}, graph H =
(VH, En), vertex w € Vy.
QUESTION: Are there functions f:V — X y9:E > Y, such that
L.YWeV: f(v)=w e fi(v)=o.

2. Vv € V for every w’ € Vy that is adjacent in H to fy(v), there is a
unique v’ € V, that is adjacent to v (in G), with F(v') = (fi(v), w').

3. Y(v,w) € E: if f1(v) = fu(w), then (fo(v), fo(w)) € Eg.
We leave the remainder of the proof to the reader. Q.E.D.

In a similar manner, one can handle the case that H has a fixed number of connected
components. (One can choose a vertex w; from every connected component H;; by counting
the number of times that f2(v) = w, for each i, one can verify that each component of
H appears often as a subgraph.) We also remark that if we fix H , then the problem is
in 1-LCC. This follows by the observation, that for each vertex v, one can require that

da(v, fi(v)) < |Va|. As |Vy] is fixed, it follows that, for graphs with bounded degree, one
can obtain a set X with fixed size.
5.2.12 Partition into Hamiltonian Subgraphs [GT 13]

Theorem 5.15 PARTITION INTO HAMILTONIAN SUBGRAPHS € 1-LCC.

Proof. Use the equivalence of the problem with the following problem:

INSTANCE: Directed graph G = (V, A),sets X = {0}, Y = {0,1}.
QUESTION: Are there functions f: Vo X,9:A-Y, such that Vv € V:

there is one unique edge (u,v) € A with f((%,v)) = 1 and there is one
unique edge (v,w) € A with f((v,w)) = 1.

Q.E.D.

Theorem 5.16 PARTITION INTO HAMILTONIAN SUBGRAPHS € ECC.

Proof. Use the technique, outlined in section 5.2.3. Q.E.D.
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5.2.13 Partition into forests [GT 14]

Theorem 5.17 PARTITION INTO FORESTS € ECC.

Proof. Use that the problem is equivalent to the following problem:

INSTANCE: Graph G = (V, E), sets X = {1,...,K}x{0,...,|[V| =1} x V,
Y = {o0}.
QUESTION: Are there functions f: V — X »9:E - Y, such that

1. ¥(v,w) € E : if fi(v) = fi(w), then (f3(v) = w or f3(w) = v).
2. V(v,w) € B+ if fy(v) = fi(w) and fa(v) = w, then fo(v) = fo(w) + 1.
3. V(v,w) € E:if fi(v) = fi(w) and f3(w) = v, then fa(w) = fa(v) + 1.

(fi(v) denotes the number of the component in which v is placed; f3(v) denotes in a
certain sense the father of v in its subtree. The values of f2(v) decrease, by going up in
the subtrees, and hence assure that there are no induced cycles.) Now the problem is
easily seen to be in ECC. Q.E.D.

5.2.14 Partition into cliques [GT 15]

In [24] it is shown, that this problem is solvable in linear time for graphs with bounded
treewidth, and bounded degree. This can also be shown with the following result.

Theorem 5.18 PARTITION INTO CLIQUES € 1-LCC.

Proof. We transform the problem to the following problem:

INSTANCE: Graph G = (V,E), sets X = {0}, Y = {0,1}, positive integer
K <V, and a total ordering < on V.
QUESTION: Are there functions f:V — X »9:E - Y, such that

1. Yu € V : for all pairs of neighbors v, w of u: if 9((u,v)) = g((u, w)) =
1, then (v,w) € E.

2. the number of v € V' with: for all adjacent w: (9((v,w)=0o0r v < w)
is at most K.

(A vertex v, with for all adjacent w: (9((v,w) = 0 or v < w), is the first (with respect to
the ordering <) vertex of a clique in G’ = (V, {e € E | f(e) = 1}). Hence, the number of
cliques is at most K. The remainder of the proof is left to the reader.) Q.E.D.

We remark that one can find a linear algorithm for this problem on graphs with given
tree-decomposition with bounded tree-width, without a restriction on the degree of the
nodes. (Hint: use lemma 5.23, and make for each node i € I a table, with for each subset
§ C X; we store a number ¢(S), which denotes the minimum number of cliques, in which
the subgraph of G, induced by the set {v € X; | j is a descendant of i, v ¢ X;}uS}cv}
can be partioned.)
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5.2.15 Partition into perfect matchings [GT 16]

In [24] it is shown that the problem is solvable in linear time for graphs with a given
treedecomposition with bounded treewidth, and a bounded degree, when we fix K , the
maximum number of perfect matchings. For variable K , and no degree bound on the
graphs, one obtains polynomial time algorithms with the following theorem.

Theorem 5.19 PARTITION INTO PERFECT MATcHINGS € ECC.

Proof. Transform the problem to the following problem:

INSTANCE: Graph G = (V,E), sets X = {1,...,K}*V,Y = {0}.
QUESTION: Are there functions f:V — X »9:E —Y, such that
1. Vv € V: fy(v) is a neighbor of v.

2. Ve = (v,w) € E: (if fo(v) = w then fo(w) = v and hH(v) = fi(w))
and (if f(w) = v then fo(v) = w and fy(v) = fi(w)).

3. Ve = (v,w) € E: if fy(v) = fi(w), then fo(v) = w and fa(w) = v.
(It follows that for all v € V the vertex w = f2(v) is the unique neighbor with f;(v) =

fi(w). Hence, for all i < K, the subgraph induced by V; = {v € V | fi(v) = i}, is a
perfect matching.) Q.E.D.

5.2.16 Covering by cliques [GT 17]
Theorem 5.20 COVERING BY CLiQues € LCC.

Proof. We use a technique, somewhat similar to that in section 5.2.14. Note that
each vertex needs to be involved in at most d = degree(G) cliques. We denote the set

of subsets of a set S, with cardinality at most d by P4(S). Transform to the following
problem:

INSTANCE: Graph G = (V,E), sets X = P4{1,...,K}), Y = {0}, with
K < |V|], and a total ordering < on V.
QUESTION: Are there functions f:V—-X,9:E—Y,such that

1. Yu € V: for all pairs of neighbors v, w of u and foralli,1<i< K: if
¢t € f(u) and i € f(v) and i € f(w), then (v,w) € E.

2. Ve = (v,w) € E: f(v)N f(w) # 0.
3. We require that: Zval(v) < K, where each vertex v € V, val(v)

veV
denotes the number of i,1 < i < K » such that there is no neighbor w
of v, with w < v and i € f(w).

The details are left to the reader. Q.E.D.
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5.2.17 Covering by complete bipartite subgraphs [GT 18]

Similar (but slightly more complicated) to the proof of theorem 5.20 one shows the follow-
ing result. (The main difference is that one has to look to vertices with distance at most
2, instead of only neighbors.)

Theorem 5.21 COVERING BY COMPLETE BIPARTITE SUBGRAPHS € LCC.

5.2.18 Clique [GT 19]

In [24] it was shown that CLIQUE is solvable in linear time, for graphs with bounded degree
and given tree-decomposition with bounded treewidth. The following result shows that
the bound on the degree can be avoided.

Theorem 5.22 CLIQUE € 2-ECC.

Proof. Transform the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {0,1}, Y = {0}.
QUESTION: Are there functions f: V —» X, g: E — Y, such that

1LY f(z)=K.

veEV

2. the number of edges ¢ = (v,w) € E with f(v) = f(w) = 1 is exactly
3K - (K +1).

Q.E.D.

However, we note that there is a very simple, and (for small values of k) efficient linear
algorithm, to determine whether a graph with a given tree-decomposition with tree-width
at most k contains a clique with ! vertices. The algorithm is suggested by the following

lemma. (Basically, one can look at each i € T , and see whether the subgraph of G, induced
by X; contains a clique with [ vertices.)

Lemma 5.28 Let ({X; | i € I},T = (I,F)), be a tree-decomposition of G = (V, E).
Suppose W C V forms a clique in G. Then Jie I: W C X;.

Proof. Use induction to the cliquesize |[W|. For |[W| < 2, the result follows directly.
Suppose the lemma holds up to cliquesize 1. Consider a clique W C V, with |[W| = [, and
suppose the lemma does not hold for W. Choose a vertex w € W, and let W/ = W — {w}.
Let I' C I be the set {i € I | W’ C I}. By induction I’ #0. Notethat we X; = i ¢ I',
Now choose a node i’ € I’, and a node i € I , with w € X;. Consider the path in T from 4’
to ¢. Let i” be the last node on this path with i € I, and let i be the next node on this

path. Now, for every w’ € W', there must be a vertex Juw, With {w,w'} C X; ,. Consider
the path from i” to j,,. We consider two cases.

Case 1: This path does not use . In this case, the path in T from ¢ to j,, uses i".
Nowwe X;,we X j,»» hence w € X, contradiction.

Case 2: This path uses i"”. Now we have w’ € X, w' € Xj_,, hence w’ € Xym.

It follows that for all w’ € W’: w' € X;m, hence i" € I !, which contradicts the assumption
that i” was the last node on the path from i to i/, that was in I'. Q.E.D.
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5.2.19 Independent set [GT 20]

In [3] it is shown that this problem can be solved in linear time, for graphs with a given tree-
decomposition with bounded treewidth. This result can also obtained with the following
theorem.

Theorem 5.24 INDEPENDENT SET € 1-ECC.

Proof. Similar to the proof of theorem 5.2.1. Q.E.D.

5.2.20 Induced path [GT 28]

For the variant of this problem, where the minimum pathlength is fixed, Scheffler and
Seese [24] proved solvability in linear time for graphs with bounded degree and given
treedecomposition with bounded treewidth. One can also proof the following result.

Theorem 5.25 INDUCED PATH € ECC,

Proof. Transform to the following problem.

INSTANCE: Graph G = (V, E), sets X = {0,1,...,[V]}*xV*V,Y = {0}.
QUESTION: Are there functions f:V—>X,9:E—Y,such that
1. Yv € V': f5(v) is a neighbor of v, and f3(v) is a neighbor of v.

2. Ve = (v,w) € V: if fy(v) # 0 and fi(w) # 0, then (| f(v) - fy(w)| = 1,
and if fi(v) = fi(w) + 1, then fa(v) = w and fa(w) = v and if
fi(w) = fi(v) + 1, then fr(w) = v and f3(v) = w).

3. ¥(v,w) e E: if 1 < f3(v) < K and f3(v) = w then fi(w) = fi(v) + 1.
4. Y(v,w) € E: if 1 < fi(v) < K and f2(v) = w then fi(w) + 1 = fi(v).
5. there is at least 1 vertex v € V with fHi(v) #0.

(Here fi(v) = 0, if v is not in V' ; otherwise f;(v) denotes the number of v on the induced
path: start with numbering one end of the path by 1, number the next vertex 2, etc. fa(v)

denotes the vertex before v on the path: f3(v) the vertex after v.) The remaining details
are left to the reader. Q.E.D.

One can modify this proof in order to obtain the following result:

Theorem 5.26 INDUCED PATH with fized pathlength K € 1-LCC.

5.2.21 Balanced complete bipartite subgraph [GT 24]
With a technique, similar to that used for the CLIQUE problem, we show:
Theorem 5.27 BALANCED COMPLETE BIPARTITE SUBGRAPH € 3-ECC.
Proof. Transform to the following problem.
INSTANCE: Graph G = (V, E),sets X = {0,1,2}*VV,Y = {0}, positive

integer K < |V/|.
QUESTION: Are there functions f:V—>X,g:E Y, such that
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1. the number of vertices v € V with f(v) =1 is exactly K.
2. the number of vertices v € V' with f(v) = 2 is exactly K.
3. the number of edges (u,v) € E with f(v) =1and f(v) = 2 is exactly
K2
Q.E.D.

A polynomial algorithm for this problem for graphs with a constant bound on the
treewidth is easily obtained, by noting that a graph with treewidth < k cannot have a
balanced complete bipartite subgraph with > 2k + 2 vertices. Without much extra effort,
one can obtain a linear algorithm for this problem, using that for graphs with treewidth
< k, we may assume that K is bounded by a constant.

5.2.22 Bipartite subgraph [GT 25]

Theorem 5.28 BIPARTITE SUBGRAPH € 1-ECC.

Proof. Use the equivalence of the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {0,1}, Y = {0}, positive integer
K <|V]|.

QUESTION: Are there functions f:V = X,9g:E - Y, such that the number
of edges e = (v, w) € E with f(v) # f(w) is at least K.

The latter problem is easily seen to be a basic 1-ECC problem. Q.E.D.

5.2.28 Degree-bounded connected subgraph [GT 26]

Theorem 5.29 DEGREE-BOUNDED CONNECTED SUBGRAPH € LCC.

Proof. Use the equivalence of the problem to the following problem:
INSTANCE: Graph G = (V,E), sets X = {0,1,...,]V| -1}, ¥ = {0,1},
positive integer K < |E|.
QUESTION: Are there functions J:V—>X,9:E—Y,such that
1. there is exactly one v € V with f(v)=o0.

2. for each v € V, the number of adjacent edges e with gle) =1is at
most d.

3. for each vertex v € V, with f(v) # 0, there is an adjacent vertex
w € Ny(v), with f(w) = f(v) - 1, and g((v,w)) = 1.

4 Y fle)> K.

e€eFE

(The graph G’ = (V,{e ¢ E | f(e) = 1}) is connected, because each vertex w €V has a
path (with length f(w)) in this graph to the unique vertex v with f(v)=0.) Q.E.D.
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5.2.24 Transitive subgraph [GT 29]

Theorem 5.30 TRANSITIVE SUBGRAPH € 1-LCC.

Proof. Transform to the following problem:
INSTANCE: Directed graph G = (V,4),sets X = {0}, Y = {0,1}, positive
integer K < |A|.
QUESTION: Are there functions f:V—>X,g:E Y, such that
1. for all v € V: for all u, with (u,v) € A, and all w, with (v,w) € A: if
9((uv)) = g((v,w)) = 1, then (u,w) € 4, and g((s,w)) = 1.
2. E g9(e) > K.

e€E
Q.E.D.

5.2.25 Cubic subgraph [GT 32]

In [24] this problem is shown to be solvable in linear time, for graphs with given tree-
decomposition with bounded treewidth, and bounded degree. One can also show this
result with the following theorem.

Theorem 5.31 Cusic SUBGRAPH € 1-LCC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V,E),sets X = {0}, Y = {0,1}.
QUESTION: Are there functions ftVoX,9:E— Y, such that

1. for each vertex v € V, there are either exactly 3, or exactly 0 adjacent
edges e with g(e) = 1.
2. > gle)>1.

ecE
Q.E.D.

Theorem 5.82 Cusic SUBGRAPH € ECC.

Proof. Let P3(V) denote the set of all subsets of V, that contain exactly 3 elements.
Transform to the following problem:

INSTANCE: Graph G = (V,E), sets X = P3(V)u {0}, Y = {0,1}.
QUESTION: Are there functions f:VoX,9:E— Y, such that
LWweV:iwe fo)2wisa neighbor of v.
2. foralle=(v,w)e E: ifwe f(v) or v € f(w) then g(e) = 1.
3. forall e = (v,w) € E: if 9(e)=1, thenw € f(v) and v € f(w).
4. ) gle)>1.

ecE
Q.E.D.
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5.2.26 Hamiltonian completion [GT 34]

Theorem 5.83 HAMILTONIAN COMPLETION € ECC.

Proof. We assume that K 2 1. f K = 0, then see the HAMILTONIAN Circult
problem.

Note that a graph G = (V, E) has a Hamiltonian completion with k£ < K extra edges,
if and only if one can partition the vertices in V into k < K disjoint subsets V4, .. os Vi,
with for all 4,1 < i < k, V; induces a subgraph of G which contains a Hamiltonian path.
We now use a technique, similar to the technique used with e.g. INDUCED PaTH.
Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {L..,[VI}*VV,Y = {0}.
QUESTION: Are there functions f:V—>X,9:E Y, such that

Ve = (v,w) € E: f2(v) = w, if and only if fa(w) =v.

Ve = (v,w) € E: fo(w) = v, if and only if f3(v) = w.

Ve = (v,w) € E: if f2(v) = w, then f(v) = Si(w) +1.

Ve = (v,w) € E: if fo(w) = v, then hH(v) = fi(w) - 1.

YweV, iw)=1or f2(v) is a neighbor of v.

the number of vertices v, with fi(v) =1 is at most K.

SR o

The remaining details of the proof are left to the reader. Q.E.D.

5.2.27 Hamiltonian circuit [GT 387] and variants

Hamiltonian circuit is solvable in linear time, for graphs with a given tree-decomposition
with bounded treewidth (see [3]). Probably, this is an example, where the method of
Arnborg and Proskurowski gives better results than the method of this paper, as we only
were able to proof that HAMILTONIAN CircuiT € ECC (hence giving polynomial, instead
of linear algorithms). The proof is very simple.

Theorem 5.34 HAMILTONIAN CIRCUIT € ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V,E), sets X = {0,1,. V= 1}xV,Y = {0}.
QUESTION: Are there functions f: V — X y9:E — Y, such that
1. Vv € V: f5(v) is a neighbor of v.
2. V(v,w) € V: if fo(v) = w, then f,(v) = (fi(w) + 1) mod [V].
3. ¥(v,w) € V: if fo(w) = v, then fi(w) = (fi(v) + 1) mod vl.
Q.E.D.
Of course, the related problems HAMILTONIAN PATH, DIRECTED HAMILTONIAN Cir-
CUIT and DIRECTED HAMILTONIAN PATH can be handled in the same way, with only

minor variations. (For (DIRECTED) HAMILTONIAN PATH see e.g. HAMILTONIAN CoM-
PLETION.) The proofs are left to the reader.
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Theorem 5.85 1. HAMILTONIAN PATH € ECC.
2. DIRECTED HAMILTONIAN CircuiT € ECC.
3. DIRECTED HAMILTONIAN PATH € ECC.

5.2.28 Subgraph Isomorphism [GT 48]

We will consider some different subproblems of this problem. First note that the following
problem is NP-complete (by transformation from 3-PARTITION).

INSTANCE: Tree G = (V, E) with degree(G)< 3, forest H = (W, F), with
degree(H)< 2.
QUESTION: Does G contain a subgraph isomorphic to H?

Thus, we cannot expect to obtain polynomial algorithms for SUBGRAPH IsoMoRrPHISM
for graphs with bounded tree-width, unless we assume that H is connected (or unless
P=NP). One also must require that G has a bounded tree-width. (If we only have that
H has a bounded tree-width, then again we have an N P-complete variant of the problem;
e.g. use a transformation from HAMILTONIAN Parn.)

So, let us now consider the case, where H is connected, and G has a bounded tree-
width, i.e. G is the graph, appearing in the instance of the graph decision problem, and
H is “hidden” somewhere in the other information I. This version of the problem is in
LCC. This can be seen by transformation to the following problem:

INSTANCE: Graph G = (Ve, Eg), connected graph H = (Va, En), sets X =
Ve U {0}, Y = {0}, vertex w € V.
QUESTION: Are there functions f:V—>X,9:E Y, such that

1. Vv € Vg: if f(v) # 0, then for every w’ € Vy, that is adjacent to f(v),
there is a v’ € Vi, adjacent to v, with f(v") = w.

2. there is exactly one vertex v € Ve, with f(v) = w.

It follows that the problem to determine whether a given connected graph H is iso-
morphic to a given graph G can be solved in polynomial time, for graphs G with constant
bounded treewidth and constant bounded degree. For graphs with no bounds on the
degree, such a result would imply that P=NP, because SUBGRAPH IsoMorPHISM is NP-
complete, for G and H connected, outerplanar graphs [27]. (Recall that each outerplanar
graph has treewidth at most 2.) (For a discussion of similar results, see section 6.2.)

As a curiosity we mention, that the fact, that the problem to decide whether a graph
G has bandwidth at most k, for some constant k, is solvable in polynomial time, follows
as a corollary. (This result was first obtained by Saxe [23].) Let G, be the maximal
graph on n vertices with bandwidth k,ie Gin=(Vy, Eg.n), with V,, = {1,2,..., n} and

Expn = {(,5) | i,5 € V, A |i — j| < k}. The following observations was already made by
Saxe [23].

Lemma 5.36 (Saxe [28]) Let G = (V, E), with |V| = n. Then bandwidth(G) < k, if
and only if G is isomorphic to a subgraph of Gy, .

34



The treewidth of G, also is at most k. The degree of Gt is at most 2k. Hence,
it follows, that one can decide in polynomial time, for each connected graph G (and
hence, also for each G, that is not connected, by applying the algorithm to each connected
component of G), whether G is isomorphic to a subgraph of G n, and thus, by lemma
5.36, whether bandwidth(G) < k.

5.2.29 Graph contractability [GT 51]

We only consider this problem for fixed graphs H. With induction to the number of
edge-contractions one can proof the following lemma.

Lemma 5.87 Let G = (Vg,Eg), H = (Vi, Ey) be graphs. We can obtain a graph
isomorphic to H from G by a sequence of edge contractions, if and only if we can associate
with each vertez v € Vi a set of vertices F(v) C Vg, such that

1. For all v € V : the subgraph of G, induced by F(v) is connected.

2. v#w & F(v)n F(w) = 0.

3. U Fv)=vs.
veEVy

4. Forallv,w € Vy: (v,w) € Eg & (' € F(v),v'€ F(w) : (v, w') € Eg).
We leave the proof to the reader.
Theorem 5.38 For all graphs H, GRAPE CONTRACTABILITY to H € LCC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = Vy % {0,1,...,|V| -1}, Y = {0}.
QUESTION: Are there functions f:V — X, g:FE —Y, such that

1. For each v € Vg, we have a condition: There is exactly one w € Vg :
f(w) = (v,0).

2. For each (v1,v2) € Ep, we have a condition: I(w1,w;) € Eg :
H(w) = v A fi(wz) = v,

3. ¥(v,w) € Eg : fi(v) = fi(w) or (fi(v), fi(w)) € Ex.

4. Yv € Vg : f2(v) = 0 or v has a neighbor w with fi(v) = fi(w) and
fa(w) < fa(v).

(f represents F~1.) Note that we have |Vy| + |Ex| + 2 conditions! (This is constant,
because H is fixed.) Q.E.D.

With the technique, outlined in section 5.2.3, one obtains also the following result:

Theorem 5.89 For all graphs H, GRAPH CONTRACTABILITY to H € ECC.
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5.2.30 Graph homomorphism [GT 52]
This problem, for fixed graphs H, can be dealt with, similar to GRAPH CONTRACTABILITY.
Lemma 5.40 Let G = (Va, Eg), H = (Vy,Eg) be graphs. We can obtain a graph

isomorphic to H from G by a sequence of tdentifications of non-adjacent vertices, if and
only if we can associate with each vertez v € Vi a set of vertices F(v) C Vg, such that

1. For allv € V : F(v) is an independent set in G.
2. v#w & F(v)n F(w) = 0.

3. |J F(v)=vg.
veVy

4. For allv,w € Vy: (v,w) € Eg & (' € F(v),w'€ F(w) : (v',w') € Eg).
Again, we leave the proof to the reader.

Theorem 5.41 For all graphs H, GRAPE HOMOMORPHISM o H € LCC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V,E),sets X = Vg, Y = {0}.
QUESTION: Are there functions f:V — X »9:E — Y, such that

1. For each v € Vi, we have a condition: There is exactly one w € Vg :

f(w) = .

2. For each (v1,v2) € Ep, we havea condition: I(wy,w;) € Eg : f(wy) =
v A f(’lU2) = vVq.

3. V(v,w) € Eg : (f(v), f(w)) € Eg.
Q.E.D.

Theorem 5.42 For all graphs H, GRAPE CONTRACTABILITY to H € ECC.

Proof. Again, use the technique outlined in section 5.2.3. Q.E.D.

5.2.31 Graph grundy numbering [GT 58]

Theorem 5.48 GRAPH GRUNDY NUMBERING € 1-LCC.

Proof. Note that the function f never has to take values beyond the range {1,...,d+

1}, where d = degree(G). Now one can proof membership in 1-LCC by standard methods.
Q.E.D.
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5.2.32 Kernel [GT 57]
Theorem 5.44 KEeRrNEL € 1-LCC.

Proof. Transform to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {0,1}, Y = {0}.
QUESTION: Are there functions f: V — X, g: A —Y,such that

1. Ve = (v,w) € A: f(v) =0 or f(w)=0.
2. Yo € V: if f(v) = 0, then there is an edge (u,v) € A, with f(uw)=1.
Q.E.D.

Theorem 5.45 KERNEL € ECC.

Proof. Transform to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {0,1}+V, Y = {0}.
QUESTION: Are there functions f:V — X »yg: A=Y, such that

1. Ve = (v,w) € A: fi(v)=0or fi(w)=0.

2. WweV: fi(v) =1or (fa(v),v) € A.

3. Ve = (v,w) € 4: fi(w)=1or fr(w)#vor fi(v)=1.
Q.E.D.

5.2.833 K-closure [GT 58]
Theorem 5.46 K-CLOSURE € 1-ECC.

Proof. Immediate. Q.E.D.

5.2.34 Intersection graph basis [GT 59]

This problem is equivalent to COVERING BY CLIQUES, and hence in LCC.

5.2.35 Degree constrained spanning tree [ND 1]

Scheffler and Seese [24] prove that this problem is solvable in linear time for graphs with
bounded degree and given tree-decomposition with bounded treewidth. A similar, but

weaker result can be obtained with the following result.

Theorem 5.47 DEGREE CONSTRAINED SPANNING TREE € LCC.

We omit the proof of this theorem. If we fix the maximum degree of the spanning
tree K, then the problem is in ECC, (and hence can be solved in polynomial time for
arbitrary graphs with constant bounded tree-width, without a restriction on the degree of
G.) We will call the subproblem of DEGREE CONSTRAINED SPANNING TREE where the
maximum degree of the spanning tree must be K or less, “DEGREE K SPANNING TREE”.
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Theorem 5.48 DEGREE K SPANNING TREE € FCC.

Proof. If we have a spanning tree T = (V, F) of G = (V, E), with degree(T)< K, then
we can chose some arbitrary vertex v* € V as root of the tree, and then we can associate
with each vertex, a number, denoting its distance to the root, a vertex denoting its father
in the tree, (except for the root), and a subset of V with at most K — 1 vertices in it
(except for the root, where it may contain K vertices), denoting the sons of the vertex in

the tree. (By chosing v* some vertex with degree less than K, we may assume each vertex
has at most K — 1 sons.)

Thus, we can transform the problem to the following problem:
INSTANCE: Graph G = (V, E), sets X = {0,1,...,|V| - 1} *V*x {W C
VW <K-1},Y = {0}.

QUESTION: Are there functions f:V—>X,g:E5Y, such that
1. There is exactly one vertex with f(v) =o0.
2. Yv € V: fy(v) € Ny(v) - {v} or fy(v) = 0.
3. YW e V: f3(v) C Ni(v) — {v}.
4. V(v,w) € E : if fo(w) = v, then fi(w) = fi(v) + 1 and w € f3(v).
5. V(v,w) € E :if fo(v) = w, then fi(v) = fi(w) + 1 and v € fa(w).

We leave the details for the reader. Q.E.D.

5.2.36 Maximum leaf spanning tree [ND 2]

Scheffler and Seese [24] showed linear time solvability for the subproblem where the min-
imum number of leaves is some given constant, for graphs with given constant-width
tree-decompositions, and constant bounded degree. We do not obtain linear time algo-
rithm, but polynomial time algorithms. However, we do not need a bound on the degree
of the graph, and the minimum number of leaves may be variable.

Theorem 5.49 MAXIMUM LEAF SPANNING TREE € ECC.

Proof. Again, we associate with each vertex a number, that denotes its distance to
the root, and another vertex, that denotes its father in the tree. f3(v) = 1, if and only if
v is a leaf in the tree, i.e. if and only if there is no other node w, with v the father of W
in the tree. We transform the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {0,1,...,|V| - 1} * V x {0,1},
Y = {0}, positive integer K < [V].
QUESTION: Are there functions f:V—>X,g:E Y, such that

1. There is exactly one vertex with filv)=0.

2. Yo € V: fo(v) € Ny(v) - {v} or filv)=o0.
3. Y(v,w) € E : if fo(w) = v, then fi(w) = fi(v) + 1 and f3(v) = 0.
4. Y(v,w) € E : if fo(v) = w, then fi(v) = fi(w)+1 and f3(w) = 0.
5. > fs(v) > K.

veV

Again, we leave the details for the reader. Q.E.D.
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5.2.37 Shortest total path length spanning tree [ND 8]

Theorem 5.50 SHORTEST ToTAL PATH LENGTH SPANNING TREE € LCC.

Proof. Note that the sum over all pairs of vertices u,v € V, of the length of the
path from u to v in a spanning tree T = (V, F) equals the sum over all edges (u,v) in
T of the number of paths from vertices w € V toz € V, that use this edge. The latter
number equals the product of the number of vertices in the two subtrees of 7', obtained by
removing the edge (u,v) from T. So we map each edge e = (u,v) on a pair of two numbers
9e(u), ge(v), denoting the number of vertices in the subtree with u, and v respectively as
root. We count the sum of ge(u) - 9e(v) over all edges e = (u,v), that are chosen to be in
the spanning tree T. The other techniques are similar as in section 5.2.36. Q.E.D.

5.2.38 Bounded diameter spanning tree [ND 4]

Theorem 5.51 BouNDED DIAMETER SPANNING TREE € EcCcC.

Proof. We associate each vertex v with a number (f3(v)), that denotes the maximum
distance of the vertex to a leaf, in its subtree. The next vertex on the path to this leaf is
denoted with fa(v). The requirement that the diameter of the graph is bounded by D now
can be expressed with the conditions 9 and 10 below. Transform to the following problem:

INSTANCE: Graph G = (V, E),sets X = {0,1,..., V]-1}xV*{0,1,..., V|-
1}*V,Y = {0,1)}, positive integer D < |V|, weight w(e) € N+ for each
e € E, positive integer B.

QUESTION: Are there functions f:V—>X,9:E Y, such that

There is exactly one vertex with filv) =o0.

Yo € V: fo(v) € Ny(v) - {v} or fi(v) = 0.

Yo €V : fo(v) € Ny(v) — {v} or f3(v) = 0.

Ve = (v,w) € E : if f(w) = v, then filw) = fi(v) +1 and g(e) = 1
and f3(v) > f3(w) + 1.

Ve = (v,w) € E : if fo(v) = w, then fi(v) = fi(w) + 1 and g(e) = 1
and f3(w) > fa(v) + 1.

Ve = (v,w) € E: if fy(w) = v, then f3(w) = f3(v) + 1 and g(e) = 1.
Ve = (v,w) € E: if f4(v) = w, then f3(v) = fa(w) + 1 and g(e) = 1.
Ve = (v,w) € E: if g(e) = 1, then [f(v) - f(w)| < 1.

Ve = (v,w) € E : if g(¢) = 1 and not (fa(v) = w or fy(w) = v), then
f3(v) + fa(w)+1 < D.

10. Yo € V: f3(v) < D.

11. Z g(e) - w(e) < B.

ecE

Ll

o

 ® N o

Q.E.D.
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5.2.39 Isomorphic spanning tree [ND 8]

This problem is a special case of subgraph isomorphism. From the discussion in section
5.2.28 the following result follows.

Theorem 5.52 ISOMORPHIC SPANNING TREE € LCC.

5.2.40 Bounded component spanning forest [ND 10]

We consider the version of the problem where the weight w(v) € Nt of the vertices are

given in unary notation, i.e. w(v) < 8(D). (This problem is also NP-complete.) We have
the following result.

Theorem 5.58 BOUNDED COMPONENT SPANNING FOREST with weights in unary nota-
tion € LCC.

Proof. In each component one can choose a spanning tree, and a root in this tree.
We associate with every vertex v its father in the tree J1(v) (except for the root), and the
sum of the weights of all vertices in its subtree fa(v). Here, we now do not need to use
the distance of a vertex to the root. A vertex v, with fi(v) € Ne(v) — {v}, is assumed to

be a root of a spanning tree. (We use that f2(v) > fo(w), for all sons v of w.)
Transform the problem to the following problem:

INSTANCE: Graph G = (V, E), weight w(v) for every v € V, sets X =

V+{0,1,..., ey w(®)}, Y = {0}, positive integer K < |V|, positive
integer B.

QUESTION: Are there functions f:V — X ,9:E —Y, such that
1. Ve V: f2('l)) = EweNl(v)—{v};fl(w)=v(f2(w) + w('w))
2. WweV: fo(v)+w(v) < B.
3. The number of v € V, with fi(v) ¢ Ny(v) — {v} is at most K.

Q.E.D.

With a more precise argument, one can show that the version of the problem, where

B is any fized positive integer, is in 1-ECC. (For instance, one can use that each vertex
has at most B — 1 sons in a spanning tree.)

5.2.41 Steiner tree in graphs [ND 12]

Scheffler and Seese [24] proved that the problem of determining whether a given graph G
has a Steiner tree of weight B or less for fixed B and a fixed number k of given vertices, is
solvable in linear time for graphs with bounded degree and given tree-decomposition with
bounded treewidth. With our techniques, we have polynomial time algorithms (instead of
linear), but do not restrict the degree of the graphs, and have variable B and k.

Theorem 5.54 STEINER TREE IN GRAPHS € ECC.
Proof. This can be shown with techniques, quite similar to those used in previous

sections on spanning-tree problems. Q.E.D.
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5.2.42 Graph partitioning [ND 14]

Theorem 5.55 GRAPH PARTITIONING with weights given in unary notation € LCC.

Proof. First we note, that without altering the problem, we can require that each
set V; induces a connected subgraph of G = (V, E). We handle this problem more or less
similar to BOUNDED COMPONENT SPANNING FOREST. Components are ‘named’ by the
vertex that is the root. Each vertex has this ‘name’ associated with it in f3(v).

Transform the problem to the following problem:

INSTANCE: Graph G = (V, E), weights w(v) for every v € V, l(e) for every
e€ b, sets X =V +{0,1,..., ey w(v)} *V, Y = {0}, positive integer
K < |V|, positive integer B.

QUESTION: Are there functions f:V — X »9:E — Y, such that

1. VveV: f2('v) = EweNl(v)—{v};fl(w)=v(f2(w) + w(w))'
2. WweV: fo(v)+w(v) < B.
3. Y € V: f3(v) = v, or (fi(v) € Ni(v) - {v} and fa(v) = f3(f1(v))).
4. E I((v,w)) < J.
(v w)EE; f3(v)#f3(w)
Q.E.D.

5.2.43 Acyclic partitioning [ND 15]

This problem can be handled more or less similar as GRAPH PARTITIONING.
Theorem 5.56 AcycLIC PARTITIONING with weights given in unary notation € LCC.

Proof. In order to represent the acyclic property of the graph G’, we can associate
with each component a number (with f4); and require for each edge (v,w) € E, that

fa(v) < fo(w). (Note that Ny(v) denotes the vertices adjacent ot equal to v, without
regard to the direction of the edges.)

Transform the problem to the following problem:

INSTANCE: Directed graph G = (V, A), weights w(v) for every v € V, I(e)
for every e € A, sets X = V% {0,1,..., Svev w(v)} * V, Y = {0}, positive
integer K < |V|, positive integer B.

QUESTION: Are there functions f:V — X »g:A—>Y, such that

YweV: fo(v) = EweNl(,,)_.{.,};ﬁ(w)=v(f2(w) + w(w)).

Yo e V: fo(v) + w(v) < B.

Vo € V: f3(v) = v, or (fi(v) € Ny(v) — {v} and fa(v) = f3(fi(v))).
- Y(v,w) € E: f3(v) = fa(w) & fa(v) = fa(w).

V(v,w) € E: fa(v) < fa(w).

> Kw)<d.
(v w)EA; f3(v)# 3 (w)

AR

Q.E.D.
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5.2.44 Max cut [ND 16]
Theorem 5.57 Max CuTt € 1-ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {0,1},Y = {0}, positive integer K,
a weight w(e) for each e € E.
QUESTION: Are there functions f: V — X, g: E — Y, such that

Y () - f(w)]-w(e) > K

e=(v,w)eE

Q.E.D.

5.2.45 Minimum cut into bounded sets [ND 17]

Theorem 5.58 MiNIMUM CUT INTO BOUNDED SETS € 2-ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {0,1}, Y = {0}, positive integer K,
a weight w(e) for each e € E, positive integer B < |V, specified vertices
s,teV.

QUESTION: Are there functions f:V — X »g9:F —Y, such that

. f(s)=0.
f@)=1.
- IVI-B< ) f(v) < B.

veV

Y. If(w)- f(w)| - w(e) > K.

e=(v,w)eE

W N =

-

Q.E.D.

5.2.46 Longest Circuit [ND 28]
Theorem 5.59 LoNGEST CircuIT € ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = ({0,1,..,[V| -1} *xV « V) U {¢},
Y = {0}, positive integer K, a length I(e) for each e € E.
QUESTION: Are there functions f:V — X »9: E =Y, such that
1. ¥v € V : if f(v) # ¢, then fo(v) and f3(v) are neighbors of v.
2. ¥(v,w),(w,v) € V : if f(v) # € and f2(v) = w, then f(w) # € and
fs(w) = v and (fi(v) =0 or fy(w) = fi(v) - 1).
3. Y(v,w),(w,v) € V : if f(v) # € and f3(v) = w, then f(w) # € and
fa(w) = v and (fy(w)=0or fi(w) = fi(v) + 1).
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4. There is exactly one vertex v € V, with f;(v) = 0.

5. 32l(e) > K, where the sum is taken over all edges (v,w), with fo(v) =
w and f3(w) = v.

Q.E.D.

5.2.47 Longest Path [ND 29]
Theorem 5.60 LoNGEST PATH € ECC.

Proof. Similar to the proof of theorem 5.59 Q.E.D.

5.2.48 Chromatic Index

Scheffler and Seese [24] show that this problem is solvable in linear time for graphs with
given tree-decomposition with treewidth, bounded by a constant, and degree bounded by
a constant. This result can also be obtained with the following theorem.

Theorem 5.81 CurROMATIC INDEX € 1-LCC.

Proof. By using that the chromatic index of a graph is either its maximum degree,
or its maximum degree +1, hence is bounded by a constant, for constant degree graphs,
it follows easily that CHROMATIC INDEX € 1-LCC. Q.E.D.

The CHROMATIC INDEX problem is solvable in polynomial time, (with a similar, but
slightly more involved technique) for graphs with bounded tree-width, but without a bound
on the degree [7).

6 Overview of results and final remarks

6.1 Overview of results

In table 1 we give an overview of the known results for the considered problems. For many
other (NP-complete) graph decision problems, similar results can be obtained.

6.2 Problems, that are not in LCC, (unless P = NP)

In this section we give a number of problems, that are not in LCC (or any of its subclasses),
unless P = NP. Results of this type follow directly if the problem is NP-complete, when
restricted to a class of graphs with bounded tree-width (and bounded degree).

Theorem 6.1 If P # NP, then

1. BANDWIDTH ¢ LCC.

2. DIRECTED BANDWIDTH ¢ LCC.

3. MINIMUM CUT LINEAR ARRANGEMENT ¢ LCC.
4. WEIGHTED DIAMETER ¢ ECC.

5. BICONNECTIVITY AUGMENTATION € LCC.
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VERTEX COVER 1[3] 1[3]
DOMINATING SET 1 (3] 1 [3]
DomaTic NUMBER 1 [24] ‘P’
CHROMATIC NUMBER 1[3] 1[3]
MONOCHROMATIC TRIANGLE 1[24] ‘v
FEEDBACK VERTEX SET P P
FEEDBACK ARcC SET P P
PARTIAL FEEDBACK ARC SET 1 (fixd L) ?
MINIMUM MAXIMAL MATCHING 1 P
PARTITION INTO TRIANGLES 1 P
PARTITION INTO ISOMORPHIC CONNECTED

SUBGRAPHS P ?
PARTITION INTO HAMILTONIAN SUBGRAPHS 1 P
PARTITION INTO FORESTS P P
PARTITION INTO CLIQUES 1 17
PARTITION INTO PERFECT MATCHINGS 1 P
COVERING BY CLIQUES P ?
COVERING BY COMPLETE BIPARTITE

SUBGRAPHS P ?
CLIQUE ‘1’ [24]; 2 2; ‘1’
INDEPENDENT SET 1[3] 1 (3]
INDUCED PaTr 1[24)(fixd K); P | P
BALANCED COMPLETE BIPARTITE SUBGRAPH | 3; ‘1’ 31
BIPARTITE SUBGRAPH 1 1
DEGREE-BOUNDED CONNECTED SUBGRAPH P ?
TRANSITIVE SUBGRAPH 1 ?
CUBIC SUBGRAPH 1 [24] P
HAMILTONIAN COMPLETION P P
HAMILTONIAN CIRCUIT ‘1’ [3] ‘1 [3]
SUBGRAPH ISOMORPHISM for connected graphs | P (%st) N [27]
GRAPH CONTRACTABILITY to a fixed graph H | P P
GrAPH HOMOMORPHISM to a fixed graph H P P
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GRAPH GRUNDY NUMBERING 1 ?
KERNEL 1 P
K-CLOSURE 1 1
INTERSECTION GRAPH BAsIs P ?
DEGREE K SPANNING TREE ‘1’ [24] (fixd k); P | P
MAXIMUM LEAF SPANNING TREE ‘1’ [24] P

SHORTEST TOTAL PATH LENGTH
SPANNING TREE P

BOUNDED DIAMETER SPANNING TREE | P P

IsoMORPHIC SPANNING TREE P

BoUNDED COMPONENT SPANNING

FoRrEesT (weak version) P ? (P, fixd B)

STEINER TREE IN GRAPHS ‘1’ [24] (fixd B,k);

P P
GRAPH PARTITIONING (weak version) | P ?
ACYCLIC PARTITIONING (weak version) | P ?
Max Cut 1 1
MiNniMuM CuT INTO BOUNDED SETS | 2 2
LoNGgEsT Circulr P P
LONGEST PATH P P
CHROMATIC INDEX 1 [24] ‘P’ [7]

Table 1:

Overview of complexity results of several problems, restricted to graphs with given tree-
decomposition with bounded treewidth. In the first column, the complexity of the problem,
restricted to TWD(k, d) (k, d fixed) is given; in the second column, the complexity when
restricted to TW(k). Keys: 1, 2, 3: problem in 1-LCC, 2-LCC, 3-LCC (first column),
or 1-ECC, 2-ECC or 3-ECC (2nd column), hence solvable in linear, quadratic or cubic
time, for the specific classes of graphs. Also solvable in polynomial time, for graphs with
given tree-decomposition with logarithmic tree-width (and, in the case of column 1, degree
bounded by a constant). ‘1’: problem solvable in linear time. P: problem in LCC or ECC,
hence solvable in polynomial time. ‘P’: Problem solvable in polynomial time. N: Problem
NP-complete. ?: Open, whether problem solvable in polynomial time or not. (*): For

Subgraph Isomorphism, the larger graph G must have the bounded tree-width. Other
restrictions are given in the table.
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6. STRONG CONNECTIVITY AUGMENTATION ¢ LCC.
7. ISOMORPHIC SPANNING TREE ¢ ECC.

Proof. BANDWIDTH and DIRECTED BANDWIDTH are NP-complete for trees with de-
gree 3. BICONNECTIVITY AUGMENTATION and STRONG CONNECTIVITY AUGMENTATION
are NP-complete for graphs, without edges. WEIGHTED DIAMETER is NP-complete for
trees. MINIMUM CUT LINEAR ARRANGEMENT is NP-complete for series-parallel graphs
(= graphs with treewidth < 2) [20]. One can show that ISOMORPHIC SPANNING TREE
is NP-complete, when restricted to graphs with tree-width < 3, by transformation from
3-PARTITION. From theorem 3.7 now the result follows. Q.E.D.

For SUBGRAPH ISOMORPHISM for connected graphs, a similar result holds. This prob-
lem is not in ECC (unless P = NP), because it is NP-complete in the case that G and
H both are outerplanar graphs [27]. (Recall that each outerplanar graph has treewidth
at most 2.) Note that this problem is in LCC, hence it separates the classes TW(k)
and TWD(d, k) in complexity. (This result follows also from the result for ISOMORPHIC
SPANNING TREE.)

For the OPTIMAL LINEAR ARRANGEMENT problem, Sudborough [25] announces work
with Sun, which suggests that this problem is NP-complete, even when restricted to series-
parallel graphs (hence OPTIMAL LINEAR ARRANGEMENT ¢ ECC, unless P=NP).

Also, all problems, that are not in NP, will be not in LCC or any of its subclasses.

Theorem 8.2 LCC C NP.

Proof. One can guess f and ¢ non-deterministically in polynomial time, and then
check in polynomial time whether @pvalp(D, v, fIN(v)> 9IM.(v)) € Rp or X K, for

veV
1<p<m+1. Q.E.D.

6.3 Final remarks

Although the formalisms may look complicated, we feel that the methods exposed in this
paper will not be very difficult to use in practice; in particular, for problems in C-LCC
and C-ECC and some others, it will be possible to obtain algorithms for these problems
on graphs with treewidth < k, that are reasonably easy to implement, and are reasonably
efficient, for small values of k.

Often, easy improvements on the time needed by applying the general method on
specific problems can be made by using the specific characteristics of the problem. It was
not the purpose of this paper to obtain the “best” algorithm for each specific problem.

The algorithms in this paper can be modified to run on a parallel machine, e.g. a
EREW PRAM. One can find a tree-decomposition with tree-width at most a constant k
in poly-logarithmic parallel time, with a polynomial number of processors. The dynamic
programming algorithms of section 3 can be transformed to parallel algorithms, that use
a polynomial number of processors (linear, for problems in 1-LCC, 1-ECC), and O(log =)
time or O(log? n) time on a EREW PRAM. These results will be reported elsewhere.
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