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Abstract

In this note we prove a lower bound of %nH,. = 0.346nlogn for
the average number of messages for distributed leader finding in asyn-
chronous, bidirectional rings of processors.
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1 Introduction

In this note we consider the problem of finding a leader in an asynchronous,
bidirectional ring of processors. Each processor is distinguished by a unique
identification number. We assume that the size n of the ring is not known
to the processors. There is no central controller. The problem is to design
a distributed algorithm that “elects” a unique processor as leader, (e.g., the
highest numbered processor,) using a minimum number of messages.

We assume that the processors work fully asynchronous and cannot use
clocks or timeouts. As observed in [11], from this assumption it follows
that we can assume that the algorithm is message-driven: except for the
initialization phase of an election, a processor can only perform actions upon

receipt of a message. We also assume that processors and the communication
subsystem work error-free.

*This research was done while the author was visiting the Laboratory for Computer
Science of the Massachusetts Institute of Technology, with financial support by the Nether-
lands Organization for the Advancement of Pure Research (Z.W.0.).



Much work has been done in order to obtain good upper and lower
bounds for the election problem. For unidirectional rings one has an upper
bound of 1.356n log n+ O(n) messages worst case [5,12], and an exact bound
of nH, messages average case [4,11]. (H, is the n’th harmonic number,
ie, Hy = Y%, 1 ~0.69logn.) For bidirectional rings without a sense of
orientation one has a worst case upper bound of 1.44n log n messages [10,13],
and an average case upper bound of %’ZnII n ~ 0.48n logn messages [1,7,9].

For the lower bound results for bidirectional rings, one usually assumes
that processors do have a sense of orientation, i.e., each processor has the
same idea about “left” and “right”. This only strengthens the results. The
first lower bound for this problem was obtained by Burns [3], who obtained
a worst case lower bound of inlogn messages. Pachl, Korach and Rotem
[11] proved a lower bound of %n log n message for the average case.

Frederickson and Lynch [8] prove a lower bound of gnlogn + O(n) on
the worst case number of messages for synchronous bidirectional algorithms,
that run in time, bounded by some constant t,, on all rings with size n. This
lower bound is also valid for the asynchronous case: every algorithm that
runs on an asynchronous ring can also run on a synchronous ring and the
time that is used by the algorithm is bounded, for instance by the number
of messages that is sent.

In this note we improve the lower bound of [11], and prove a lower
bound of inH, =~ 0.346nlogn messages for the average number of messages
for the leader finding problem in asynchronous, bidirectional rings, with
sense of orientation. For this lower bound result, we will assume that the
asynchronous algorithm works on a synchronous ring. In this way we lose
the implicit non-determinism, introduced by the fact that we have to deal
with asynchronous, bidirectional algorithms.

2 Main results

We give a number of definitions. Most of them can be found in [11]. We
will assume that all identification numbers are chosen from Z.

For X C Z, we define D(X) to be the set of finite, non-empty sequences
of distinct elements of X, i.e., D(X)={(s1...sk) | k>1;1<i<k=>s;€
X;i# j= si# s;j}. We abbreviate D(Z) = D.

The concatenation of two strings s = (s1...8¢) and t = (t;.. 1) is
denoted by s-t = (sy...8:8; .. ).

A string s is said to be a prefix of t, (denoted by s < ?) if there is a



v € D U {e}, with t = sv. (¢ denotes the empty string,)

The I’th element of a string s is denoted by s;. The length of a string
8= (s1...x) is denoted by length(s) (= k).

We denote Di(X) = {s € D(X) | length(s) = k}. For s € D, the set of
cyclic permutations of s is denoted by C(s).

We say that a ring r is labeled with s = (idy . ..idx) € D if the successive

processors in 7 have identities successively idy, ..., id. (Note that it also
follows that the size of r is k.)

Let A be an arbitrary bidirectional, asynchronous leader finding algo-
rithm. We now will consider the behavior of A, when it works on a syn-
chronous ring and all processors start the algorithm on the same moment.
We assume that the algorithm can deal with the case that it receives mes-
sages of both its neighbors on the same moment. (If not, we can assume
for instance that it always first processes the message received from the left
neighbor, and then the message from the right neighbor.)

Note that we now have a deterministic behavior: executing A on rings
with identical length, and identical labelings of the rings will give the same
messages that are transmitted.

We ignore the time, necessary for internal computations in processors.
We assume all processors start at time 0.

We now consider the variant of the problem, where after termination
of the algorithm, not only a unique processor is designated as leader, but
also each processor knows the identity of the leader. Note that this latter
requirement costs at most n extra messages.

The following lemma follows directly from the fact that A is message-
driven.

N

Lemma 2.1 If no processor sends a message on time k, then also no pro-
cessor sends a message on time k + 1.

Lemma 2.2 When A is ezecuted on a ring with size n, and k < n/2 - 1,
then there must be at least one processor that sends a message on time k.

Proof. Suppose there exists a ring r with size n, such that no processor
sends a message at time k < n/2 — 1. It follows from lemma 2.1 that no
processor sends a message after time k. Suppose processor p is designated
as leader. Let g be a processor with distance |n/2] to p. By assumption,
¢ must know the identity of p upon termination, i.e., at time k. Let ' be
a ring, obtained from 7 by changing the identity of p. As g will receive the



same messages when A is executed on r or on 7/, it will terminate incorrectly
in at least one of these two executions. Q.E.D.

Now note that it can only depend on (a subset of) the 2k +1 identities of
the processors with distance at most k to a processor p, whether p will send
(2) message(s) on time k or not and what message(s) it will send. (This can
be proved easily with induction on k. The status of processor p just before
time k depends on the id’s of the processors with distance at most k — 1
to p (induction hypothesis). It depends on the id’s of the processors with
distance at most k — 1 to the neighbors of p, what, if any, messages p will

receive at time k (use again the induction hypothesis). Hence, by induction,
the result follows.)

DEFINITION 2.1 Let k € N. Xi = {u € D | length(u) = 2k + 1, and if we
have a ring labeled by s € D, and « < s, then the processor with identity
k41 Will send at least one message on time k}.

From the above discussion, it follows that the total number of messages,
sent on a ring r, labeled with s and with size n, on time k < n/2,is at least

Hv € Xi | 3w € C(s) : v < w}|. Now we proceed with an argument, which
is similar to the argument in [11).

Lemma 2.3 Let k < nf2-1. Then Vs € D : length(s) = 2k + 1 =
C(s) n X2k+1 ;é 0.

Proof. Consider a ring labeled with s. By lemma 2.2, there will be
at least one message sent at time k. This message will correspond to an
element in C(s) N Xor41. Q.E.D.

Consider a fixed ring size n, and all (n — 1)! rings with all identification
numbers taken from some fixed subset X of Z with size n, i.e., we consider
all rings with labelings in D,(X). (Labelings, which are a cyclic shift of
each other, give the same ring, i.e., each ring corresponds with n elements

of Dy(X).) The total number of messages sent at time k,(k <nf2-1)over
all these rings is at least:

1 E {v € Xi | Jw € C(8) : v < w; length(v) = 2k + 1}|.
" seDa(X)

Now note that:

E H{ve D(X)|IweC(s):v< w;length(v) = 2k + 1}| = n - nl.
s€Dy(X)



These n - n! instances of strings v € D(X) (with Jw € C(s) : v < w;
length(v) = 2k + 1, taken over all s € Dy(X)) can be grouped together
in groups of 2k + 1 elements, such that each group consists of all cyclic
permutations of one sequence. (Note that each string v € Dary1(X) yields
the same number of instances.) The number of groups now is (n-n!)/(2k+ 1).
It follows from lemma 2.3 that each of these groups contains an element of
Xak+1- So it follows that

n-nl

E Hv € Xk | 3w € C(3) : v < w;length(v) = 2k + 1}| > TSR
s8€ Dy (X)

Hence the average number of messages, sent in a ring with size n is at least
) L) o R [n/2)-1

n
n (-1 2 %+l "

lnH,. + O(n).
k=1 2

=1 2k+1

Theorem 2.4 Every asynchronous, bidirectional leader finding algorithm
will use at least %an + O(n) messages on the average, assuming the algo-
rithm runs on a synchronous ring.

3 Discussion

The given lower bound is of the type, where we average over all possible
labelings of the processors with identity numbers, and where the delay time
of the messages can be chosen by an “adversary”. Here we choose the delay
time of all messages equal. The lower bound result for the average case
on bidirectional rings of Pachl, Korach and Rotem [11] also is of the type,
where an adversary may chose the delay times of messages, in order to have
a large number of messages sent. It is an interesting open problem to find a
lower bound for the average case number of messages in a bidirectional ring,
where we also average over all possible delay times of all messages (where the
delay time of a message is described by some given probability distribution).
However, we remark that it is not difficult to modify the proof in section 2 in
order to obtain a -2!3n logn lower bound for the average number of messages
sent, if the maximum and the minimum delay time of a message differ at
most a constant factor c.

The same lowerbound can be obtained (with minor changes in the proof )
for the average expected number of messages for probabilistic algorithms.

Very recently, Duris and Galil [6] obtained 2(nlogn) lower bounds for
the average number of messages on rings, where processors know the ring
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size. With a powerful new technique, these bounds were improved in [2] to
snlogn + O(n) for the unidirectional case, and (1 — e)nH,, for the bidirec-
tional case.
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