A balanced search tree with O(1)
worst-case update time

Christos Levcopoulos and Mark H. Overmars

RUU-CS-87-8
May 1987

., Rijksuniversiteit Li_‘trecht

X 2 ,
g % Vakgroep informatica
*»
RN Budapestt 3584 CD Utrecht
“ corr, wg:pégous 80,012 3508 TA Utrecht
Telutobn 1454
The Netheriande

i

.

it L

i
i

amortized update time once the position of the key is known. In [4] this result is
based on some properties of 2-4 trees. In [5] a bucketing technique is used. Rather
than storing single keys in the leaves of a tree, each leaf is allowed to store O(logn)
keys. When such a bucket becomes too large, it is split in two buckets of half the
size. This means that a new bucket has to be inserted in the tree. Dividing the
cost over updates at which no bucket is split this results in an amortized 0(1)
method.

The best known worst-case bound is O(log*n). This is achieved using a very
complicted method by Harel (see [2,3]). In this paper we will describe a quite
simple method, based on the bucketing technique of [5] that achieves a worst-case
update time of O(1) only. (The same result has recently also been achieved in a
completely different, and much more complicated way by van der Erf[8].)

The technique is based on a combinatorial result on piles that is interesting in
its own right and might have a number of other applications. Assume we are given
an infinite number of piles on which we place stones, and, after each k stones, we
split the highest pile into two piles each of half the size. We will prove that after
placing kn stones, the highest pile has size at most O(klogn). We will use this
result to show that, with the appropriate update scheme, buckets in the tree will
never grow too big.

The paper is organized as follows. In Section 2 we describe the combinatorial
result on piles. In Section 3 we describe the search structure with O(1) worst-case
update time once the position of the key is known. The query time of the new

structure will remain bounded by O(log n). In Section 4 we give some concluding
remarks and directions for further research.

2 Splitting piles.

We consider the following problem. Let S be an infinite array S(1), S(2),..., whose
entries are all initially 0. Let P;(k, n), for any integers k and n greater than 1, be
the non-deterministic procedure operating on S as described in figure 1. You can
consider S(1), 5(2),... as being a row of piles. We put stones on arbitrary piles
and every k steps we take the largest pile and cut it in two piles, both of half the
size.

Let Ai(k,n) be the largest integer, such that at some moment during some
execution of P,(k,n), some entry in S can be set to Ai(k,n). The problem is to
estimate A;(k,n) in terms of k and n.

It appears to be a complicated task to estimate Ay (k,n) exactly. Moreover, it
is not necessary for our purposes. It is enough to estimate the growth of Ai(k,n)
in terms of k and n, preferably within a not too large approximation constant.
In this section we show that A4;(k,n) = O(klog n). More precisely, we show that
Ai(k,n) < 4k x [logn]. (It can also be shown that 0.5k X llogn| < Ai(k,n).
Hence, the bound is tight except for constants. For our purposes the lowerbound

is not important and, hence, it will not be shown here and is left as an exercise to
the reader.)

To prove the bound on A;(k,n) we consider two variations of Pi(k,n), the
deterministic version P,(k,n) shown in figure 2 and another non-deterministic
version P3(k,n) as shown in figure 3.

Let Aj(k,n) be the largest integer, such that at some moment during the
execution of P;(k,n), some entry in S can be set to A;(k,n). Similar let Az(k,n) be
the largest such integer for P3(k,n). We will first prove an upperbound for A,(k, n).
Next we prove that A,(k,n) > A3(k,n) and finally, we prove that Ai(k,n) <
2A3(k, n) S 2A2(k, n)

Lemma 2.1 The following relation holds: Az(k,n) < 2k[logn].

Proof. For convenience, we assume in this proof that n is a power of 2. The
results can then be extended in a straight-forward way to any value of n.

Let G(7), 1 < i < n, be the contents of the i-th entry of S just before it is
depleted by Py(k,n). In the proof we use the following simple fact:

Fact 1: For 1 <i < n — 1, the inequality G(i) < G(i + 1) holds.

If n < 4, the lemma follows because Py(k,n) performs only kn incrementation
steps, and kn < 2k X [log n] if n < 4. So we may assume that n > 8 (remember
we made the assumption that n is a power of 2). We prove by induction that
Gn+1~27) < 2x (logn —j) x k, for 0 < J < logn — 1. The induction is
performed inversely, i.e. we start from J =logn —1 and proceed down to the case
Jj=0.

For the basis of the induction, we show that the inequality G(n +1 — 2lgn-1) <
2k holds, which is equivalent to the inequality G(1 + %) < 2k.

Suppose that G(1 + 2) > 2k. Then, by Fact 1, it holds that Yon/2<i<n G(2) >
2k x 2 = kn. which would imply that more than kn incrementation steps are
performed by Py(k,n), a contradiction.

For the induction step, we show that for 0 < J < logn — 1, the inequality
G(n +1-27) < G(n +1 — 2/+1) 4 2k holds.

At the time the entry n41—2/+1 jg depleted, no entry has contents greater than
G(n+1—2/1). So, because only k x (29+! —1) incrementation steps are performed
after this depletion, we obtain the chain of inequalities 3-(n_si+1)<icn(G(3) ~ G(n +
1-27+1) < | x (2941 —1) < 2k x 27— k. But if the inequality G(n+1—~2%) > G(n+
1—27%1) 4 2k would hold, then, by Fact 1, we would obtain 3, 11_zi+1)<ica(G(3) —
G(n+1-2"1) > ¥ 2i)<icn(G(E) — G(n+1— 27+1) > 2k x 29, which contradicts
the previous chain of inequalities. [

Lemma 2.2 It holds that Ay(k,n) > As(k,n).

NOo e W

REPEAT at most n times
REPEAT at most k times
Let ¢ be some integer;
S():=S@E)+1
Let j be an integer such that §(j) > S(i) for all i > 1;
Let I be an integer such that S(I) = 0;
Set S(I) to at most | S(j)/2];
Set S(j) to at most [S(j)/2]

Figure 1: The non-deterministic procedure Py(k,n).

t:=0;j:=1;
REPEAT n times
REPEAT k times
IFi=nTHENi:=jELSEi:=i+1;
S(z) = S(i) +1
S(j) :=0;
ji=j+1

Figure 2: The deterministic procedure Py(k,n).

REPEAT at most n times
REPEAT at most k times
‘Let i be some integer;
S(t) :=S@E)+1
Let j be an integer such that S(j) > S(i) for all i > 1;
5(j) =0

Figure 3: The non-deterministic procedure Ps(k, n).

Proof. Let Pj(k,n) be some deterministic version of P3(k,n) which achieves
to set some entry of S to A3(k,n). Without loss of generality, we may assume that
P;(k,n) operates according to the following rules:

(i) It executes line 4 (the incrementation step) a minimum number of times.

(ii) It executes line 6 (the depletion step) m times, where m is the minimum
number necessary according to rule (i) to achieve to set some entry to As(k,n).

(iii) Once it sets some entry of S to zero in line 6, in the continuation it does
not operate on this entry any more.

(iv) The m entries which are set to zero in line 6, (see rule ii) are the entries
with index 1,2, ...,m in this order.

By rules (i) and (iv) above, the procedure Py(k,n) does not change the contents
of any entry with index larger than m. By the rules (i), (ii) and (iii), the entry
S(m) is equal to A3(k,n) just before it is set to zero.

Let b;, respectively b, for 1 < i < m be the sum Yi<j<m S(j) just before the
i-th entry is set to zero by procedure Pj(k,n), repectively by procedure Py(k,n).
We observe that by, = A3(k,n). Hence, to show the proposition, it suffices to show,
by induction on i, that b; < b} holds, for 1 < i < m. For the induction basis, we
note that b < b = k. Now assuming inductively that for some i < m we have
bi-1 < b_,, it suffices to show that b; < bj. According to the line 5, at the time
S(i — 1) is depleted by Pi(k, n), it is not smaller than the average contents of the
entries i —1,1,...,m, i.e. it holds S(i —1) > [b;_; /(m —i+1)]. This gives us a way
to estimate an upper bound on b; in terms of bi—1 for 1 < i < m — 1. We obtain
bi < bioy + k — [bi_; J(m —1i+ 1)]. We observe that the right-hand side of the
latter inequality does never decrease when b; increases. Hence, by the induction
hypothesis, we obtain b; < b_, + k — [6;_1/(m — i 4+ 1)]. On the other hand, by
the definition of P;(k,n) we derive that b, = bioy + k- [bj_/(m —i+1)]. By
combining this equality with the latter inequality, we get b; < b.. O

Lemma 2.3 It holds that A;(k,n) < 2 x As(k,n).

Proof. The proof is by contradiction. By supposing that for some k and n
the inequality A,(k,n) > 2 x As(k, n) holds, we show how Py(k,n) can “imitate”
Py(k,n) to set some variable to an integer greater than A;(k,n).

To be able to distinguish the values of the entries of the array depending on
which of the two procedures is operating, we let P3(k,n) use another array, which
we call S3. The procedure P;(k,n) imitates an execution of Py(k,n) which sets
some entry to a value greater than 2 x A3(k,n) as follows.

For any integer i, when P, (k, n) increments the i-th entry of S, and the resulting
value of the entry is > Ajs(k,n), then P3(k,n) increments the i-th entry of Ss,
otherwise it leaves the array S unchanged for this step. When P,(k,n) decreases
the value of the i-th entry, then Ps3(k,n) sets the i-th entry of S to zero, if it is
not already zero. The procedure Ps(k, n) continues in this way until Py(k,n) sets
some entry, say the j-th entry of S, to 1 + 2 x As(k,n), in which case P3(k,n)
increments the j-th entry of S; and stops.

We claim that when P3(k,n) stops, the equality S3(j) = 1+ Az(k,n) holds.
To see this, we can conclude by straight-forward induction that after every step of
Py(k,n) and the corresponding step by Ps(k,), it holds that S3(i) = max(0, S(3)—
Aj(k,n)) for all ¢ > 1. (Note that before S(j) is set to 2 x As(k,n), no entry in
S has value greater than 2 x As(k,n) and, hence, when Py(k,n) sets an entry to
some value at line 7 or 8, this value is never greater than As(k,n). Hence, Ps(k,n)

correctly sets in this case the corresponding entries in S5 to zero, if they are not
already zero.) O

Theorem 2.4 It holds that Ai(k,n) < 4k X [log n].

Proof. This follows immediately from the above lemmas. According to Lemma
2.3 Ay(k,n) < 2A45(k,n). According to Lemma 2.2 As(k,n) < Az(k,n) and ac-
cording to Lemma 2.1 A,(k,n) < 2k x [logn]. The bound follows. O]

3 The data structure.

In this section we will describe the data structure with O(1) worst-case update
time once the position of the inserted or deleted key is known. The query we
will treat is the so-called neighbor query: given a key K, if it is in V report it,
otherwise, report one of the two neighbors in V' according to the given order. We
will first describe a partial result.

Lemma 3.1 Let V be a set of at most n’ keys, there exists a structure to store V
such that insertions can be carried out in O(1) worst-case time when the position
of the key is known and neighbor queries can be carried out in time O(v/'n').

Proof. We store V as a list of lists. We split V, ordered, in subsets V,, ..

V; such that
Vil < [2v7] 0<i<j
V> [Vl 1<i<j-1

Initialy we take care that no V; has size larger than [\/;17[. Each subset V; we store
in a doubly linked list L;, With each list we keep a header, containing its size and
a pointer f; to its first element. Each element in L; has a pointer to the header of
the list it is in. (In fact, this is not completely true. At some stages the keys will
point to a list that is under construction but, while this list is under construction
it will point to the old list. Hence, the keys will have a pointer to a pointer to the
list they are in.) We also make a doubly linked list L’ that stores the lists Ly, ...,
L; in the right order. Clearly L’ has at most O(\/f?) entries.

To perform a neighbor query with a key K, we walk along the list L’. For each
list L; we check f; to see whether the first element in L; is smaller or larger (or
equal) to K. In this way we can locate in time O(\/m the list L; K should be in

)

when present. Next we walk along L; to locate K or one of its neighbors. This
again takes time O(v/n’).

Assume we want to insert a key K. We have a pointer to the key in some list
L; where K has to be inserted after. Performing the insertion in the doubly linked
list is no problem and clealy takes time O(1). Next we increase the size of L; by
one. (We can reach this size field because we have a pointer to the list or a pointer
to a pointer to the list.)

When the size of L; gets larger than [1.5v/n’] we start to find the middle of the
list (such that it can be split when it becomes too large.) To this end we initiate
a new list header that will later contain the new half list and we set a pointer
m; that points to f;. The new list header gets a pointer to the old header. With
each next insertion in L; we do the following. We check whether the insertion is
before, or after m; in the list. When it is before m; we move m; one key to the
right. Otherwise we move it two keys to the right. When m; passes a key we make
its pointer point to the new list header. It is easy to see that in this way, at the
moment the size of L; becomes [2v/n”] m; points to the middle element of L; and
all elements before m; point to the new list header. At this moment we split the
list before m; in two, adapt the size fields and add the new list header to L'. This
takes time O(1). O

To improve the query time, we will split the set in bags of size at most O(log? n)
and store each bag in the way described above. The bags we store in a balanced
search tree. We will guarantee that bags never become too large by splitting every
logn updates the largest bag at the moment. To this end we must be able to
maintain the largest bag. The following lemma shows that this is possible.

Lemma 3.2 Let V be a set of at most n' objects and assume each object has been
assigned a value between 0 and log? n'. We can maintain V such that snsertions of
objects (with value) take time Oflogn'), a value can be incremented by 1 in time
0(1), and the object with mazimal value can be determined and deleted in time

o(1).

Proof. We again use a list of lists (of lists). We split the set V in subsets Vi
in which V; contains all objects with value between (i —1)logn' and ilogn’. L
is a doubly linked list that contains the non-empty sets V; in order. Each V; is
structured in the following way. We construct a doubly linked list L; that contains
all different values of elements in V: in order. For each such value v we construct
a doubly linked list L, of objects with value v. For each L; we have pointer to
the smallest and largest element. Clearly L and each L; has at most log n’ entries.
The different operations are performed in the following way:

To perform an insertion with an object p with value v we search for the appro-
priate entry Ly, logn] in L. If it does not exist we create it. Next we search for
the entry v in this list. If it does not exist we create it. Finally we add p to L,.

This obviously takes time O(logn’) because we have walk along two lists of size
at most logn’.

Toincrement the value v of an object p we first remove pfrom L,. If L, becomes
empty we remove it from its list L;. If L4, exitsts we add p to it. Otherwise we
first create L, either in L; or Lit1. This might lead to the creation of L;;,. If L;
is now empty we remove it. Because L, can be found in time O(1) an increment
takes time O(1). (The same result applies for a decrement.)

Finding an object with maximal value can be done by taking the last list in
L and in it finding the last entry. Obviously this can be done in O(1) and the
element can be deleted in O(1) as well. [

Lemma 3.3 Let V be a set of between no/2 and 2ng keys, there ezists a structure
to store.V, using O(ng) storage such that insertions can be carried out in 0(1)
worst-case tme when the position of the key is known and neighbor gqueries can be
carried out in time O(logn,).

Proof. As stated above we split the set in a number of bags. Initially, each
bag contains one key. We structure the bags as a list of lists, as described in the
proof of Lemma 3.1. The bags we store in the leaves of a balanced binary search
tree T'.

To perform a query we first search in T to locate the appropriate bag. This
clearly takes O(logn,) time because there are O(no) bags. Next we search in the
bag. This will take time O(+/n’) where n' is the number of points in the bag. As
we will guarantee that the bag size is bounded by O(log? ng) the query time will
be bounded by O(log n,).

To guarantee that bags do not get too large, we use the result from the previous
section. Every log n insertions we split the largest bag in two equal halves. Hence,
the bag size will be bounded by O((log no) x (logn)) = O(log?ng). (Note that
logng is constant and, hence, the results from the previous section are applicable.)
Splitting a bag can easily be done in O(log no) time. The new bag has to be
inserted in the tree T which takes another O(log ng). This work we can divide
over the next log ng insertions at which no bag is split. This makes for O(1) work
per insertion.

There is a problem left. To be able to determine which bag to split we have
to maintain sizes of bags. To this end, every key has to know in which bag it is.
We cannot maintain this information for each key because it would take too much
time to split the bag. To solve this problem we keep with each list L; in the bag
a pointer to the bag. As each key can know in which list it is in O(1) time, it can
find this pointer in O(1) time and, hence, knows its bag in O(1) time. These bags
with their sizes we maintain in a structure as described in Lemma, 3.2. Updating
this structure takes O(1) per insertion of a key. Determining the largest bag now
takes time O(1). Inserting the two new bags of half the size takes time O(log ng)
which can be spread over the next insertions.

So the insertion procedure looks as follows: First we insert the key in its bag.
Next we update the size of the bag. When it is time to start a split (log no insertions

8

have taken place) we locate the largest bag and initiate the split. Otherwise we
spend O(1) work on the splitting that is taking place. It is easy to see that in this
way insertions take O(1) time and bags will never become larger than O(log? no).

The storge bound follows in a trivial way. [J

It remains to show that we can maintain the structure when n grows arbitrary
and when we perform deletions. To this end we use a general technique called
global rebuilding by Overmars[6] (see also [7]). We won’t describe the method in
detail. See [6] for more information.

To delete a key we just remove it from the list L; it is in. When the list L;
is empty we remove it from the bag. When the bag is empty, we remove the
corresponding leaf from the tree T. We do not change any information about
sizes and do not rebalance the tree when removing a leaf. Hence, the insertion
procedure is in no way disturbed. Such a deletion takes O(1) time and does not
increase the query time or insertion time. Hence, it is weak (see [6]). To restore
the balance we will sometimes rebuilt the whole structure.

Assume we construct the whole structure for |V| = no. Now we insert or delete
keys in the ways described above, in time O(1) each, as long as (1—1/3)ng <n <
(1 +1/3)no. At the moment this relation no longer holds, we start constructing
a new structure with no = n. We will spread the work for rebuilding over the
next n/6 updates. This will guarantee that the structure will be ready before
n < ng/2 or n > 2ny. Unfortunately, these n /6 updates will have to be performed
on the new structure as well. To this end, we speed up the construction of the
new structure and take care that it is ready within n/12 updates. With the next
n/12 updates, we perform two updates on the new structure. In this way, the
new structure will be up to date after n/6 updates and can take over from the old
structure. Because on the new structure at most n/6 updates have been performed
by the time it takes over we do not have to start constructing a new new structure

earlier. Hence, we are always busy constructing at most one new structure. (For
details of this method see [6].)

Theorem 3.4 Let V be a set of keys, there ezists a structure to store V, using
O(n) storage, such that insertions and deletions can be carried out in O(1) worst-
case time when the position of the key is known and neighbor queries can be carried
out sn time O(logn), where n is the current number of keys in V.

Proof. In our new method, an update consists of an update on the current
structure and some work on the new structure. The update in the current structure
takes time O(1). The work in the new structure either consists of two updates
which clearly takes O(1) as well, or some work on the construction. It is easy to
see that the structure can be constructed in time O(n) when the old structure
is available (i.e., when the keys are ordered). As this work is spread over n/12
updates, it makes for O(1) per update.

The storage bound follows from the previous lemma and the fact that we always
have at most one current structure and one structure under construction. [J

9

(8] van der Erf, J., Een datastructuur met zoektijd O(logn) en constante update-
tijd (in Dutch), Techn. Rep. RUU-CS-87-19, Dept of Computer Science, Uni-
versity of Utrecht, 1987.

11

