DISTRIBUTED COMPUTING

Jan van Leeuwen

RUU-CS-82-8
June 1982

e 7R AN

Rijksuniversiteit Utrecht

Vakgroep informatica

" Princetonplein 5

Postbus 80.002

3508 TA Utrecht
Telefoon 030-5631454
The Netherlands

DISTRIBUTED COMPUTING

Jan van Leeuwen

Technical Report RUU-CS-82-8
June 1982

Department of Computer Science
University of Utrecht
P.O. Box 80.002
3508 TA Utrecht
the Netherlands

DISTRIBUTED COMPUTING*

Jan van Leeuwen

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands.

1. Introduction. Distributed architectures are steadily advancing and will

eventually replace conventional computer designs built around a single central
processor. In these notes I shall attempt to describe the trends in the theo-
retical investigation of the problems that arise in distributed information
processing. The subject is by no means new. Most computer systems today can
be regarded as distributed systems in certain respects. Only in recent years
the impetus from VLSI-technology (in the small) and local and wide area net-
works (in the large) has added further to the significance of distributed
processing, as a viable alternative to the physical limitations of even the
largest single processor systems and the inordinate investments that they
require. With hardware costs declining and commercially supported intercon-
nection technologies now available it might be more economical indeed to
achieve high performance by utilizing dedicated computing units working in-
dependently in parallel, rather than through the use of extremely complex
high speed single components. In many ways though, distribution seems to
create more problems than it solves. As we go along I shall try to point

out some of the insights in distributed computing that have emerged in the
past decade or so, in a brief but comprehensive survey of the area. For ref-

erences see also [1].

* Notes for the opening presentation of the 4th Advanced Course on Foundations

of Computer Science, held June 14-25 (1982) in Amsterdam.

2. Early developments in hardware. The earliest computers consisted of a

central memory and a single CPU to execute a stored program of instructions
from a limited repertoire. No concurrency of operation was provided for be-
tween computations by the CPU and I/O, resulting in an unnecessary idling
of the CPU while a data transfer was taking place on much slower hardware.
Subsequent introduction of separate I/0 processors (channels, peripheral
processing units) into all architectures enabled the CPU to delegate I/0

commands and switch to another computation in the meantime. I/0 processors

cpyM--"-~"— - """ T o TS - TS TSmTToTs T |

—————————————— i |

i |

! I

| I

|

]

) [

memory \ |

controller ;) il

IO IO

memory processoxr processor
device device

would report by sending an interrupt. The separation of computation and 1/0
processing made it possible to load and execute a number of jobs simultane-
ously with obvious advantages of mixing compute-bound and I/0-bounds jobs

in a suitable manner. The need to schedule and service interrupts for optimal
performance is one of the earliest problems in distributed computing. Buffer-
ing (and the ultimate form of it, virtual devices) led to typical producer-
consumer problems.

Likewise, early computers exhibited no concurrency of operation between
computations by the CPU (i.e., instruction execution) and instruction fetching.
Later CPUs were pipelined, which allowed for the initiation of a next instruc-
tion while others were still progressing through the circuitry. To facilitate
a rapid transfer of information to and from the CPU, memory got decomposed
into fast parts (small and expensive) and slower parts (larger and cheaper).

A typical memory hierarchy consists of the following parts:

m————— - CPU

unit

cache memory

main memory

» .
unit
<
extended store L_ ‘
ey ——— = -———————— = -»
i [
IO 10
processor processor ces
secondary store ; %
device device

Program code was split and distributed over the hierarchy (blocks, segments,
pages, caches) with the most immediately needed instructions highest in the
"pyramid". Assumptions of locality led to a great variety of fetch/replacement
strategies for units in the hierarchy, all aimed at minimizing the chance

of unit faults throughout the hierarchy. Manual and automatic techniques for
program restructuring (to improve locality) were proposed to allow for smooth

transmissions up and down the hierarchy.

3. Multiprogramming. The variety of programs processed by a general purpose

computer system is such that (with a suitable admission policy or job sched-
uling) every job requires only a small portion of the available resources
and different jobs can do with different portions. A system configured to
meet or exceed the joint resource demands of many jobs simultaneously is
likely to yield a greater throughput (and thus, a greater cost-effectiveness)
as long as the overhead in managing the resources by the operating system
does not annihilate the expected gain. Multiprogramming is a technique (or

rather, a set of techniques) to execute a number of programs “simultaneously"

provided their total resource requirements at any time are not greater than
the total available on the system. Multiprogramming in particular allows

for the interleaved or concurrent execution of a set of (usually independent)
user programs and (highly dependent) standard routines for system management
on a single CPU.

Multiprogramming implies the need to share resources (CPU, memory, devices)
and thus to distribute their availability to programs over time. To coordinate
the sharing, mechanisms are required by which the programs can communicate
their needs. The system may have to communicate back to the programs, as in

present day interactive and real-time applications.

4. Concurrency. User jobs and system routines generally are independent units
(tasks) that could proceed in parallel if sufficiently many processors were
available. In industrial applications, in fact, several jobs may have to

be performed at the same time, with critical developments in one job perhaps
affecting (interrupting) the work in others. Any implementation of concurrency
requires mechanisms that permit the sharing of common resources and mechanisms
that enable concurrently executing units to exchange information (communication,
cooperation) or to coordinate their action (synchronization). No implementation
can be proved sound unless there is an adequate underlying model of concurrent

processing.

5. Processes. Each independent unit of execution (task) in a system may be
called a process. In the sixties E.W. Dijkstra and others promoted the view
that concurrent activity can best be modelled by a set of cooperating proces-
ses which alternate between independent activity and periods of communication.
The process thus became the "unit" of concurrency. Much research has focused
on the issues of interprocess communication and synchronization.

Processes may be activated by (i) calling a static copy, (ii) resuming
it (as a coroutine), (iii) "forking" in a sequential program, or (iv) dynamic
creation, with an implicit hierarchical (parent-child) ordering. Processes
may be de-activated by (i) termination, (ii) blocking or voluntary transfer

of control, (iii) "joining", or (iv) destruction and transfer of control.

Processes communicate by signals (wait/post, lock/unlock), shared variables
{e.g. semaphores) or messages (mailboxes, interprocess queues). To obtain

exclusive access to shared resources more transparent and structured primitives

have been provided (critical regions, monitors).

Processes requiring exclusive access to a shared variable or resource
must compete for it. Any mechanisms used for it must guarantee mutual exclusion
and (normally) bounded waiting. In addition resources should be given out
wisely to prevent deadlock. Instead of competing among each other, processes
could simply submit their requests to a manager or monitor that is put in
charge of (i.e., encapsulates) the shared resource.

The process notion has had a tremendous impact on system structuring.
Given an implementation of suitable primitives for process creation/destruc-
tion and interprocess communication (in a nucleus or kernel of the system)
higher level processes can be conceived that use (share!) the facilities
provided by lower level processes and managers, which eventually lead to
executable code on the available hardware processor. Every level thus provides
a virtual multiprocessor for the processes at the next level. The approach

has become dogmatic for all modular system design.

6. Semantics of processes. Any sySfem of concurrently computing units is

obtained by connecting processes (explicitly of implicitly), and insisting

on a protocol for interprocess communication. Petri nets (see e.g. [2]) are
among the earliest frameworks that were introduced to model the distributed
flow of control among multiple processes occurring concurrently. A Petri net
consists of places (which can hold tokens) and transitions (requiring tokens
for control transfers), connected by arcs. A transition "fires" by taking one
token from every place at the origin of its incoming arcs (provided every

one holds at least one token) and sending one token to every place at the end
"of its outgoing arcs. Petri nets feature many properties of concurrent compu-
tation including (i) nondeterminism (if at any time more than one transition
is enabled, then any choice of them may fire), (ii) conflict (transitions
mayvconnect to common places and firing some may disable others) and (iii)
asynchronism (there is no notion of time and thus no unique ordering of events).
Deadlock~-freeness (also called liveness) can be formulated as the requirement

that in all reachable markings every transition is potentially firable. Hack

[3] proved that the liveness problem is recursively equivalent to the reach-
ability problem and (thus) the problem is decidable, given the recent solution
of the latter by Mayr [4] (see also Kosaraju [5]).

To adequately model the flow of data in a concurrent computation many
different frameworks have been proposed. In a model due to Kahn [6] processes
are viewed as sequential programs (procedures) with in-ports and out-ports
that communicate data over fixed lines. It is assumed that this is the only
way in which processes communicate, and that data sent always arrives in
a finite but unpredictable time. The communication lines can be thought of
as pipes or queues between processes. The possibly infinite sequence of data
items passing any observer on a given line is called the history of the line.
Kahn's theory is based on the view that processes are functions from histories
(of the input lines) to histories {of the output lines) and that the behaviour
of the net is described once all histories are known. Let sequences be defined
over a domain D and partially ordered by the prefix relation. Processes
£ : ﬂnx ces p°x ... must be (i) monotone (i.e., more input only leads to
additional output, or usv %-f(u)ﬁf(v)) and (ii) continuous (no output after
an infinite amount of input is received, or £(lim ui) = lim f(ui)). Histories
can now be defined by a system of equations of the form (Y,...) = £(X,...)
where X,... are the histories of f's incoming lines and Y,... the histories
of f's outgoing lines, and f ranges over all processes in the net. Given
(monotone and) continuous f over cpo's like ﬁwx ... Kleene's theorem asserts
that such systems have a unique minimal solution, obtained by iterating the
f's from (A,A,...). As a result, properties of nets that can be phrased in
terms of histories may be proved by induction over their construction.

Intuitively Kahn's model fails to capture the nondeterminism inherent
to concurrent computation, resulting e.g. when exclusive communication lines
are absent. At some abstract level one could say that processes merely "act"
(by changing state and sending messages) and that "events" take place at
their ports (receipts of messages). Messages sent (as the result of an event)
must eventually be received at their destination, i.e., turn up as some later
event. In Hewitt's actor model (see e.g. [7]) parallel computation is thus
modeled as a partial ordering of events, where events are said to be concurrent
if there is no ordering relation between them. The following "laws" are believed

essential to meaningful actor computation: (i) existence of a least element.

(initial event), (ii) discreteness (the number of events between any two
events is finite) and (iii) finite immediate successors (any single event
can have only finitely many immediate SuUCCessors).

In recent years many other attempts have been made to describe the composi-
tion of processes into nets and to reason about their composite behaviour
with formalisms from logic (e.g. [8] and [9]), semantics (e.g. [10]) or language
theory (e.g. [11]). Very recently Pratt [12] described composition as a closed
operator on processes and (thus) elegantly solved the problem of defining
the meaning of a compositidn of processes by specifying exactly what process
is obtained by connecting processes together. Composition thus allows an
algebraic study. All formalisms attempt at providing a sound (consistent)
and/or complete proof system for reasoning about the corporate behaviour

of processes such as fairness, deadlockfreeness and termination.

7. Languages for concurrent programming. Control of concurrent activity appears

to be more difficult to achieve than control of sequential activity. Humans
find it very hard, in general, to comprehend the combined effect of a number
of activities which evolve simultaneously with independent speeds. For years
programmers thought sequential,as suitable concepts and tools for parallel

programming were lacking. Early primitives like the cobegin ... coend ([13D),

the and ([t4]) and the fork/join/quit statements have attempted to remedy

this. More recently, the use of sets of guarded commands ([15]) was proposed
as perhaps the most natural means for expressing concurrency. As processes
were recognized as the unit of concurrency various communication primitives
were proposed, initially to operate on shared variables. More structured
notions like critical regions ([13], [16]) and conditional critical regions
([17]) and monitors ([18]) were introduced to replace low level synchronization
commands of the P/V or receive/send variety. Pilot languages like MODULA
([19]), Concurrent Pascal ([20]) and Pascal Plus ([21]) incorporated suitable
constructs for programming processes, monitors and queues of waiting processes.
The requirements of mutual exclusion and fair scheduling were major problems
to solve in an efficient manner.

More recently there is a trend in concurrent programming languages away from

communication and synchronization through shared variables, and towards direct

communication between modules or processes. The former approach requires
a common store and the latter does not, which thus seems more supporting
for a view of processes as net-connected individual processors. Language
designs like DP (Distributed Processes, [22]) and CSP (Communicating Sequen-
tial Processes, [23]) provided a testbed for several programming constructs.
A CSP-program consists of a fixed and named set of disjoint parallel processes.
Communication occurs by exchanging data in matching input/output commands.
To this end processes P may contain statements of the form Q?<variable> (re-
questing an input from Q, to be assigned to <variable>) or Q!<expression>
(send the value of <expression> to Q). Execution proceeds only after a valid
rendez-vous has taken place. The use of guarded commands adds a tremendous
flexibility to processes, but leads to every imaginable problem of nondeter-
minism and non-functionality.

MODULA-2 ([24]) has adopted similar views of communication by exchanging
(importing and exporting) data, and simply lists in the specification of
a module or process which identifiers must be "passed” to aid the linking
of processes. The process concept is kept extremely simple (essentially that
of coroutines) and is built on a system kernel that provides the type PROCESS
and primitives NEWPROCESS (turns a procedure and its workspace into a named
process), TRANSFER (suspends the current process and transfers control to
another) and IOTRANSFER (like the former, but with an implicit transfer of
control back to the suspended process upon an IO-complete interrupt). The
programming language ADA (see e.g. [25]), again, is not tied to a single
processor environment and offers a sophisticated facility for describing

parallel activities (tasks) very much in the spirit of CSP.

8. Semantics of concurrent programs. Proving properties of concurrent programs

is generally considered hard. Correctness, termination and other properties
of interest for a system of parallel processes that are cooperating towards
some goal do not immediately follow by straight application of the techniques
of e.g. Hoare [26] known for sequential programs. New issues to cope with
are partial ordering and communication between distinct units. Proof methods
may.be obtained when a suitable, algebraic notion of composition of processes

is used (see 6). An important step forward in understanding parallelism has

resulted from the work of Owicki [27]. She proposed to proceed in two steps:
(i) prove the properties of each process as a sequential program disregarding
completely parallel execution and (ii) show that the execution of one process
does not interfere with (i.e., does not destroy) the proof of the properties
of another. The rationale is that if parallel execution does not invalidate
the proofs, it cannot destroy the desired properties. An interesting applica-
tion is given in [28]. More general, cooperating processes require some form
of cooperating proofs. This has been expounded in the axiomatic proof theory

now developed for CSP [29]'and continues to be tested in other systems (see

e.g. [30]).

9. Distributed systems. Breaking up programs or tasks into processes is a

start toward multiple processor systems. Each process is a natural unit to
allocate to an available processor. It is generally agreed that a distributed
system exhibits the following characteristics (cf. [31]:

(i) it includes an arbitrary number of system and/or user processes,

(ii) the architecture is modular and consists of a possibly varying number
of processing elements (PE's),

(iii) communication is achieved via some form of message passing over

a shared communication structure (including perhaps shared memory),

(iv) some system-wide control is performed so as to provide for dynamic
interprocess cooperation and runtime management,

(v) interprocess message transit delays are variable and some non-zero
time always exists between the production of an event by a process (viz.
a processing element) and the materialization of it at some intended destina-
tion.

Among the criteria used to compare distributed systems are their size

or scale (viz. the distances over which messages are sent), the rates of
data transfer and their degree of coupling. Coupling is said to be (i) strong
if data transfer between the PE's is about as fast (say, 210 Mbps) as access
of a PE to its own data, (ii) loose if PE's communicate through a channel
comparable in speed to the transfer rate of secondary storage devices (say,
.1-10 Mbps) and (iii) weak if PE's communicate through a channel of only

a few Kbs (like a long distance telephone line). The distinction roughly

corresponds to (i) multi-processor systems, (ii) local area networks and

(iii) wide area networks. We shall later see that there is a variety of inter-

connection structures (topologies) possible in each case.

10. VLSI systems (chips). Switching circuits are a natural model of distributed

computing in the small, featuring many forms of parallelism and pipelining.
With the advent of VLSI technology (see e.g. [32]) it has become possible

to embed ("integrate") circﬁits of tens of thousands of components in the
surface of a single chip. Special IO-pads (ports) along the boundary of the
rectangular chip allow for data/signal transports to and from the environment,
usually over a limited number of (multiplexed) pins into the hardwiring of
some PC board. Rigorously simplifying the practical aspects of wiring and
timing, Thompson [33] formulated a grid model of the chip surface to study

the actual complexity of VLSI-circuits. Each cell may contain a single PE
(another simplification!) or up to two orthogonal, crossing wires. The model

has facilitated the study of a novel measure for circuits, its area A.

Definition. Given a connected graph G = <V,E> the minimum bisection width
w of a set S €V is the smallest number of edges that must be cut to split

S into two isolated, equal halves.

The following result of Leighton [34] improves on an earlier theorem of Thompson.

For the notion of crossing number, see [35].

Theorem. Let an n-node graph G have crossing number c and contain a set with

minimum bisection width w. Then A 2 c+n 2 0.w2 for some fixed constant «&.

Any embedding of G must contain n nodes and 2c crossings, thus A 2 c+n.
Consider any drawing of G with ¢ crossings. Turn every crossing into a "point"
to obtain a planar graph G' with c+n points. The planar separator theorem
([36]) implies the existence of a constant B such that the original set can
be bisected by dropping $B.VEIH edges, thus by cutting at most this many
edges in the original graph. Thus w S B.VEIH and A 2 c+n 2 awz, for a = 1/62. a

Definition. Given an embedded circuit (a graph) G = <V,E> the minimum informa-
tion flow I for a set S € V is the minimum number of bits that must be exchanged

between two halves of S, the minimum taken over all possible bisections of S.

Let the time T of a computation on a chip be measured in some reasonable

way (e.g. the time between input of the first bit and output of the last).

. 2 2 .
Theorem. For any VLSI-circuit AT~ 2 oI, with & as before.

2 ;
Let S € V have minimum bisection width w, thus A 2 0.w . The computation
requires the transfer of 2I bits of information over the cut of w edges which

2 2 2
takes 2I/w time. Hence AT2 2aw . (I/w)" =01". 0O

Note that the results given are quite independent of the actual form of the
chip. As I can often be estimated in a circuit-independent manner, thé latter
result suggests an "area-time" trade-off for VLSI-design. It can be shown
e.g. that for DFT's of n b-bit integers AT2 = Q(bznz). Useful techniques

to prove it follow from [37]. Brent and Kung [38] have presented a detailed
study of binary addition and multiplication in VLSI. For recent results,

see e.g. [39]. Kramer and van Leeuwen [40, 41] have shown that wire routing
and even deciding the embeddability of routable circuits in a given amount
of area are NP-complete problems.

With the advent of techniques to produce multi-layered chips, it is of
interest to explore the possible gains with a extra dimension to the layout
problem. Thompson [33] (see also [42]) proved that a v-layered chip of area
A can be embedded in the plane in O(sz) area, thus making "planar" techniques
of analysis applicable.

Chazelle and Monier [43, 44) have argued that under a more realistic assump-
tion about communication times on a chip (linearity in distance traversed)
much of the general theory for Thompson's model evaporates. In particular,
asymptotically time and area notions are polynomially related to ordinary

Turing machine time and space.

11. Systolic algorithms. Given the current technology it has become feasible

to design chips for every imaginable special-purpose function in a system,
an approach advocated by Kung [45] (see also [46]). The chip design must
begin with a distributed algorithm design, conceptually specifying the overal
structure of the PE's on the chip. The algorithm is a level of abstraction
at which two aspects of the design can be contemplated: (i) the pattern of
information flow between the PE's (including the number of cells needed,
their placement and the movement of data between them) and (ii) the types
of PE's and their timing. There are many similarities between modular program-
ming and modular chip design: the design task must be broken into manageable
subtasks with a well defined flow of information between them. Foster and
Kung [46] identify the following properties for a "good" VLSI-algorithm:
(i) it can be implemented by means of only a few types of simple cells,
(ii) the data and control flow of the algorithm is simple and regular,

allowing cells to be connected by a network with local and regular intexcon-

nections (like grids or hexagonal arrays),
(iii) the algorithm extensively employs pipelining and parallel processing.
Typically, the designs have several data streams move at constant velocity

over fixed paths in the network, interacting at cells where they meet. In

this way many cells are kept active simultaneously and the computation hardly
slows the data rate. Algorithms of this sort have been called systolic. Kung
and Leiserson [47] and Kung [48] (see also [32]) offer many examples, usually
for numeric computations, showing the versatility of the approach. See also
[49].

Communication costs are a crucial factor that make systolic algorithms
attractive. At every tick of some periodic clock communication can occur
between a PE and its neighbors according to the communication graph only.
Signals do not ripple on and are not broadcasted beyond the neighbors. In
general, let the edges of a communication graph carry integer weights 20
indicating the time delay of signals along the corresponding line. To avoid
race conditions we require.of a "synchronous" system that every cycle in
its communication graph haé weight >0. Let G-1 be the graph obtained by re-
ducing the weight of every edge in G by 1. Leiserson and Saxe [50] recently
proved the fbllowing "systolic conversion theorem": if the G-1 of the communi-
cation graph G of a synchronous system S has no negative cycles, then there
exists a systolic system S' equivalent to S of essentially the same structure.
It be noted that equivalence is defined with regard to the input/output be—

haviour to a single host node to which the system is presumed to be connected.

12. Multiprocessors. In the sixties a powerful line of architectures was

initiated based the connection of many full-fledged processors and memory
modules into one organised scheme, with a suitable hardwired communication
structure (e.g. [51]). The machines heavily use parallelism, pipelining and
vector-processing. Flynn [52] suggested the often used distinction between
SIMD-machines (single instruction/multiple data streaming) and MIMD-machines
(multiple instruction/multiple data streaming). The latter hold promises

for truly parallel processing of a single task, but the communications over-
head and interference among the processors tend to spoil part of the gains

of simultaneous execution.

13. Interconnection networks. Memory of an N-processor SIMD-machine is normally

divided into N banks to allow for rapid parallel access. A problem of much

concern has been to determine suitable networks that provide all necessary

processor-to-bank connections (and back). A crossbar switch would do, but

2
it needs O(N) switches.

Theorem. Any network that realizes all connections between N processors and

N banks must have (N log N) switches.

The network must be able to distinguish 2N! internal settings. If it has

s ..
s switches that can be in (say) 2 states each, it can have at most 2~ different

states. Thus 2° 2.N!, and s 2 log N! = Q(N log N). O

Every network requires a routing algorithm for directing signals through
the net from sourcevto destination. We only present some results for routable
and fully rearrangeable networks (see also [53]).

A useful mapping to start from is the perfect shuffle function s with

{O,...,N—l} - {0,...,N—1} defined by S(lM M- 1...io) = iM_l...lolM when

phrased in terms of binary number notation. An omega-network (Lawrie [54])
consists of log N (identical) s-~stages, with lines at every level leading
pairwise into N/2 switches that pass the data on or "exchange" it on the
outgoing pair of lines. Effectively, a switch either applies the identity
mapping or the exchange E defined By E(i ...i) = 1 ...1110 Rout%ﬁg from
i to j is easy: slide a window over the blnary expression L M...10JJ ...30
and "shuffle-exchange" i into j. Unfortunately the omega-network is not re-
arrangeable (in fact it isn't even non-blocking) but it can route many useful
permutations correctly according to this algorithm. Parker [55] gives a neat
proof that 3log N s-stages (thus, 3 passes through an omega-network) are
sufficient to be able to route every permutation.

The study of rearrangeable networks has a long history in telephone systems.
Let N = p.r. A starting point for much of the theory is the analysis of the

"three stage" Clos networks C(p,q,r) defined as follows (each box is a suitable

crossbar switch):

pxq rxr qxp

p T 14 : RN : Op»
p T X [¢ laq - |9 P

Theorem (Slepian-Duguid). A Clos network Cc(p,q,r) is rearrangeable if and

only if gzp.

Necessity of g2p is clear, or else routings would block already in the
first stage; Let g2p and let 11 : {1,...,N} » {1,...,N} be an arbitrary permuta-
tion. For p=1 it is trivial to realize I1: route all N incoming messages to
the first intermediate box (which indeed has N=r inlets) and spread them
according to I from here in the second stage. For p>1 let K. = {j|11(k) € 0j
for some k € I, } be the set of indices of out-boxes that must be reached
from I . Con51der any collection {Klm}1< <s” As the s.p elements of UIlm are
mapped to as many outputs and each outbox can route at most p elements, they
must jointly lead into 2s outboxes. Hence IUKl | 2 s, which is Hall's condition
([56]) for the existence of a set of distinct representatives. Let jm be
the representative of Km (1Smsr) and km an input of Im with ﬂ(km) € ij
Route every km to the first immediate box and switch them there into the
right permuted order. Fixing this assignment we are left to route the re-
maining pairs, which can be handled as if we had a C(p-1,q-1,r) net. This

completes the argument by induction. O

Note that we haven't used that each box is a crossbar, but merely that it

is rearrangeable. This allows a recursive construction of rearrangeable net-
works. In particular, a Benes network B(n) is a Clos network C(2,2,2n_1)
with two B(n-1)'s as intermediate crossbars. The network has size O(N log N)
for N=2". The routing problem has been studied in e.g. [57]. Many other net-

works are reviewed in [53].

14. Multiprocessor ("parallel") algorithms. Networks clearly are important

for connecting processors themselves, but the objectives for the nets are
slightly different. There is a need for fast exchange of information and
broadcasting of signals. Stone [58] has shown that N processors connected

in a perfect shuffle allow for extremely efficient execution of several
standard algorithms (e.g. polynomial evaluation, sorting, the FFT). In some
formulations processors are also paired in blocks of two, leading to the
pattern of the shuffle-exchange graph. At some level of abstraction algorithm
design could specify both the processor tasks and the assumed interconnection

pattern, leaving the scheduling on the actual multiprocessor for a second

"pass". See e.g. [48].

Theorem. A linear array of N suitably instructed processors can sort N numbers

in O(N) time.

The method is based on odd-even transposition sorting. Put N keys in
N processors, numbered odd and even alternately. Assume the even processors
are activated first. In each cycle the following takes place: the key in
every activated processor is compgred with the key in its right neighbor
and exchanged when the latter is smaller. Odd and even processors are acti-
" vated alternately. One can prove by induction that the algorithm sorts the
keys within N cycles. Note that the largest key 1 always wins and moves
across to the right (it hesitates in the first cycle if it is stored in

an odd processor):

Its path separates the computation in two triangular areas. Imagine 1 is

dropped. Then the right upper computation can be moved down and left one

step, to merge with the left lower past to an odd-even transposition sort
on N-1 keys. To top row left of 1 does no harm and can be excluded for its

effect. By induction N-1 cycles do the job in the remaining sort, hence N

are sufficient for the original set of keys. O

Baudet and Stevenson [59] have investigated the effect of giving each processor
some memory to hold a sorted subsequence rather than just a single key. The
comparison-exchange operation becomes a merge-split operation on sequences.
They show that N keys may be sorted on an array of p processors in

O(—-log gv+ N) time, provided that each processor can hold E-keys The sorting
problem was addressed also in e.g. [60] and [61], where a feasible algorithm
was proposed to sort N keys in O(N) time by log N processors, one corresponding
to each level of the familiar merge-sort routine. Batcher's bitonic sort
method needs only o(log2 N) time but uses N procéssors with a very specific
interconnection pattern (see [58]).

In a variety of studies detailed considerations about processor structure
and interconnection have been de-emphasized. Processors are assumed available
in unlimited quantity, with any form of desired signaling (broadcasting)
and shared memory. A rule is required to resolve conflicts in simultaneous

reads or writes of a same memory location. The assumption of unlimited pro-

cessors can be justified from a simple observation due to Brent [62]:

Theorem. If a computation can be performed in time t with sufficiently many
processors that perform q operations total (with each operation requiring
one time unit), then the computation can be performed in time t + (g-t)/p

with p such processors.

Suppose s, operations are performed in parallel during step i (1sist),
with g = Es Using p processors we can stimulate step i in time [si/p]
The entlre computation is thus rescheduled and requires a number of steps

of about %[s /p | <}E(s+—1)/ = (1- —1-)t+-1-§s =t + (g-t)/p. O
1 i =157 P P P11 d P

As an example of a computation with unbounded parallelism and simultaneous

memory access, we note the following result of Ku¥era [63].

o . . . 2
Theorem. The minimum of N keys can be computed in O(1) time using N processors,

allowing "weak" memory conflicts.

Let the keys be stored in a[1] to a[N] and use additional (shared) locations
b[1] to b[N]. The processors Pij (1£i,3SN) execute the following 4 cycles.
In cycle 1 every P,, (15iSN) writes O into b[i] for initialization and the
other processors are silent. In cycle 2 the Pij write 1 into b{j] if alil<aljl.
As a result, b[i] = 0 iff a[i] = min{a[1],....,a[N]}. To find (say) the smallest
index of a minimal key, cycle 3 lets the'Pij write 1 into b[j] when i<j and
b[i] = 0. In cycle 4 Piy (1$iSN) inspects b[i] and outputs a[i] as smallest

key when its value is 0. O

Parallel computation of ranks was studied (with different assumptions on
memory use) in e.g. [64] and [65].

The use of many processors distorts the view of the actual computational
gains over a single processor. Let Tp (p21) be the computation time for a

problem using p processors. The "speedup" of a parallel algorithm may be

defined as Sp Tl/Tp' (Using Brent's theorem it follows that SpSp.) The
efficiency of a parallel algorithm\can be defined as Ep = Sp/p (= TI/P'Tp)'
The Amdahl effect ([66]) asserts that for many practical architectures the
efficiency does not rise with an increased number of processors, for reasons
of housekeeping and communicétions chores and the lack of a sufficient and
regular form of parallelism in the problem solved.

Techniques for designing parallel algorithms include (i) recursive doubling,

(ii) broadcasting, (iii) decomposition into weakly dependent parts and (iv)

simultaneous building.

N =1
Theorem. % ai (and Ng ai) can be computed in O(log N) time, using N/2 proces-—

sSOors.

Use the processors to compute as; + a5i41 (osisg -1) in the first step.
Recursively double the extent of the partial sums using %N, %N, ... of the
processors until we have aO + ... + aN and aN + ...+ aN 1 and one proces-

__1 -—
2 2

sor can compute the final result in one more step. (We assumed that N=2r,

some r.) O

Compared to the sequential algorithm for g ai recursive doubling gives a
speedup of O(N/log N) but an efficiency of only 0(1/log N). Two NxN matrices
can be multiplied in O(log N) time as well, using N3 processors. Use a cluster
of N processors for each of the N2 elements of the product matrix. In one
step they compute (multiply) the summands, and O(log N) steps of recursive
doubling suffice to accumulate the sums. A few years ago Csanky [67] proved
that NxN matrices can be inverted in O(log2 N) time, still using a polynomial
number of processors.

The idea of broadcasting is illustrated in the parallel solution of a
linear system x = Ax+tb (x€n¥q) with A lower triangular. All multiterm linear
recurrences can be put in this form. Clearly x1=b and the straight computa-

1

tion of x_,x.,... would take about N2 steps on a single processor.

273

Theorem. A linear system x = Ax+b with A an NxXN lower triangular matrix can

be solved in O(N) time, using N-1 processors.

Use processors Pi (ZSiSNi. After eliminating xj_ (j22) assume that the

1

Pi with i2j have ai X, + ... + a,_, in store. In the next cycle Pj can

1*1 ij-1%5-1
compute xj. It subsequently broadcasts the value to all Pi with i>j, which

compute aij'xj and add it to the partial sum they hold. O

The algorithm, known as the "column sweep method", yields a speed-up of O(N)
and an efficiency of about N2/(N-1)x2N Z‘% (a constaht, anyway). By increasing
the number of processors one can lower the time bound to O(l-og2 N), as one
might expect from Csanky's result. The simple proof though illustrates another

useful technique (from [68]).

Theorem. A linear system x = Ax+b with A an NXN lower trangular matrix can

be solved in O(log2 N) time, using O(N3) processors.

-1
As x = (I-A) b we are done if we prove that a lower triangular matrix

can be inverted within the bounds stated. Decompose (split) the matrix as

, with B and D lower triangular, and observe the (recursive) structure of
the inverse. If B -1 and D -1 are found, only O(log N) steps and O(N) processors
are required to “"finalize" A 1. Alltogether this yields an algorithm of the

desired complexity. O

Schendel [68] gives a readable account of "parallel (numerical) mathematics".
An example of simultaneous building is provided by Sollin's algorithm

for determining a minimum spanning tree of a graph. The graph is given by

an adjacency matrix, which lists the weight of edges vivj in entry (i,3)

(with o denoting the absence of an edge).

Theorem. A minimum spanning tree of a weighted N-node graph can be computed

in O(log N) time, using 0(N3) processors.

Sollin's algorithm relies on maintaining a global invariant that at any
stage the disjoint subtrees obtained are subtrees of one minimum spanning
tree. Use N processors Pi, with Pi corresponding to Qi (1£isSN). Each Pi will
hold some label uniquely identifying the tree to which vi cur;ently belongs.
The algorithm does the following:

(i) in a first cycle, each Pi determines a lightest,edge';:;; incident
to v, (1SiSN). To prevent cycles, the lightest edge with minimum j is taken.
The computation, and subsequent administration, needs only O(1) time if suffi-
ciently many auxiliary processors are on hand.

(ii) as long as there still are >1 subtrees, do the following next cycle.

1
Tm' To prevent cycles again, the edge with lexicographically smallest i,j is

For each subtree T, determine a lightest edge vivj connecting to a different

taken. Tl and Tm are subsequently connected and relabeled. The step is more
involved, but can be done in O(l) time with auxiliary processors.
In each cycle the number of disjoint subtrees is halved, and the algorithm

terminates after log N cycles of O(1) time each.

The timing of Sollin's algorithm is different depending on the memory model
used (we allowed "unambiguous" access conflicts). Bentley and Ottmann [70]
proved that the algorithm can run in O(N log N) time on a linear array of

N processors.

15. Dataflow computing. The earlier development suggests an entirely different

approach to programming, based on clusters (nodes) and information transfer
through communication lines rather than through variables in some memory.

At the level of individual instructions this leads to Dennis' dataflow concept
([71]) which holds the view that an instruction is ready for execution when
its operands are available. To support and implement this concept a very
different form of computer is required to realize the intrinsic parallelism
of execution for many ‘'simultaneously active instructions. The idea of data-
driven computation itself is not new, but.only in recent years have architec-
tural schemes with an attractive e#pected performance been developed and

in some cases experimented with (see [72] for an extensive survey).

In its most primitive form, a data flow program is a directed graph in
which the nodes represent processing elements of some sort and the edges
represent datapaths. There is no global memory and (hence) there are no vari-
ables, but data (tokens) is transmitted directly froﬁ node to node over existing
datapaths. Processing elements digest tokens from their incoming edges and
emit new tokens over their outgoing edges, presumably after some internally
specified computation. The execution of one "cycle" is very similar to a
firing in the terminology of Petri-nets. Processing elements are operators,
i.e., fixed token-mappings of some variety. Except that cycles and token-
transports take finite time, no further assumptions are made about the speeds
or relative speeds of the processing elements or when processing elements
choose to take in a next batch of input. Dataflow computation is completely

asynchronous. As a consequence, tokens may have to queue along a datapath

if the node "at the other end" is not processing fast enough. A processing
element must "wait" whenever it wants a token from an empty input line or

some rule prevents it from further sending on a congested output-line. Jaffe
[73] and B6hm and van Leeuwen [74] present approaches for a fundamental anal-
ysis of the underlying computational model. Algorithms can be designed in
dataflow that achieve the tight bounds of many known multiprocessor algorithms,

without the need for global control (see [75]).

Dataflow machines are designed for rapid execution of dataflow programs.

The basic instruction execution mechanism used in virtually all machines

is the circular pipeline or "ring":

processing
elements
r--"1 {' 'j
Ifetcﬂ ‘match:
! |
Lo L
e = }l Lf' -4
node
store

Using program information from the node store, the fetch unit assembles acti-
vated instructions to tokens and feeds them to a pool of processors. Result
tokens are received by the match unit which checks, according to some policy,
what instructions now have a fully set of operands. Any one that has is queued
to the fetch unit. Ultimately, the level of concurrency achieved by an archi-
tecture of this type is limited by the capacity of the datapaths in the ring.
Nevertheless, it is a radical departure from the classical "von Neumann"
architecture and a bold attempt to exploit concurrency of computation truly

and at a large scale. Dennis [75] describes a possible extension of the approach
to dataflow multiprocessors. Several languages (see e.g. [76]) have been

designed to support dataflow programming.

16. Models of parallel computation. Models of computation enable one to analyse

and prove fundamental results about the power and limitations of a real or
proposed machine architecture. As modern technology is moving towards highly
integrated circuitry and novel architectures, we need to revise our ideas
about computation and the way it is performed accordingly. As we have seen,
there appears to be a distinction between models based on a fixed connection
network of processors and models based on the existence of global or shared
memoiy. In the former category there are linear-, mesh- and tree-connected
arrangements of processors. Wittie [77] surveysbmany other patterns that

are of somé practical importance. Galil and Paul {78] have taken a broad

view and modeled a parallel machine as an infinite recursive graph, with

some recursive assignment of nodes to processors. The processors may be finite
automata, RAM's or limited RAM's of some sort and at every step each processor
consults thé processors on adjacent nodes before going through its compute
cycle. Every determinsitic multitape Turing machine with time bound T can

be simulated by a tree-connected parallel machine of finite automata in

O(T log log T/log T) time. Many other complexity questions are explored.

See also [79], [80]. Alternation has been another fundamental notion (e.g.
[81]) that proved useful in clarifying the connections between sequential

and parallel time and space measures.

Fortune and Wyllie [82] proposea a very general and flexible model of
parallel computation (the P-RAM) based on random access machines that operate
in parallel. The machines have unbounded local memory but can communicate
only through a shared (and unbounded) global memory. Simultaneous reads of
a location are allowed, but simultaneous writes block the P-RAM. The random
access machines act synchronized, executing one instruction (in parallel)
per time unit. The most powerful instruction is the FORK, which enables a
processor to activate a next free processor and start it off at some entry
point of the parallel program. It is shown that deterministic P-RAMs can
accept in polynomial time precisely the sets accepted by (sequential) Turing
machines in polynomial space. Nondeterministic P-RAMsS accept in polynomial
time precisely the sets by nondeterministic Turing machines in exponential

time.

17. Buses. Processors and memory modules of different sorts and uses may

be tied into one system, as in the machine room of a computation centre.

It is usually done to off-load the central processor and to provide for access
to specialized devices or back-up store. The communication between the different
processors is usually realized by a transport circuit, called a "bus". Buses
differ by the speed and form of transport (bit-serial or bit-parallel). Also,
all processors connected to the bus see the same signals. It is therefore
impoitant that some discipline is enforced (called the bus access protocol)"

for conflict-free, yet expedient sharing of the bus. There are two approaches

to the sharing problem.vOne is to have a central bus controller, which polls
processors and schedules bus use. Another is to distribute control and implement
a suitable protocol in every processor. When several processors try to write

on the bus contention occurs. It is usually detected by hardware means, and
solved by some form of recovery and a retry. In the case of transports over
longer distances, the propagation delay of signals over the bus cannot be
neglected and becomes a factor in deciding an efficient multiplexing or sharing

algorithm.

18. Remote access. The use of terminals has been a first step to distribute

a system over a wider area. Terminals connect to a shared (multiplexed) port

of the central computer or to a local concentrator, which attempts to optimize
the transports to and from the central site. Terminal handling has contributed
to much of the essential understandings about data communication (see e.g. [83])

on the one hand, and parallel processing of jobs on the other.

19. Computer networking. To access different sites from ‘one host, networks

have been designed of ever increasing complexity. The reason is usually the
desire to communicate information, access data or use some specialized facility.
There are two essential principles for realizing computer-to-computer communi-
cation: (i) circuit switching, (ii) message switching. Tanenbaum [84] gives

a detailed description and explains many more of the problems in transfering
data from one computer to another. Martin [85] gives a good overall account

of the objectives of computer networks.

20. Distributed processing. As the potential of computer networks was recog-

nized, it became an end in itself to provide all the required facilities

for users somewhere on the network. It gives the luxury of a large system

at shared expenses. Bochmann [86] recognizes the following three principles
of distributed processing: (i) processing can be done where the data is,

(ii) redundancy (back-up if one processing unit goes down) and (iii) economy
(dedicated units need not be available everywhere). Local system versus com-
muniéatiop costs will determine the optimal topology and policies of the

network.

21. Local area networks. Networks have different policies depending on their

scale (and, of course, their architecture). Local area networks allow for
high-speed transmissions at a very low error rate. Given these considerations,
local area networks can afford to have a simple topology (one node will
never be far away from another) which, again, keeps the added communications
overhead for routing very small. One wellknown design is Ethernet ([87]),
which has the properties of a contention bus. An Ethernet consists of a single
(or split) co-ax cable with taps that provide the points to which processors
can be connected..A processor only transmits when the Ethernet appears quiet.
Its packets essentially make a round trip over the cable and (thus) certainiy
pass their intended destination. It is left to the individual stations to
recoénize and intercept the packets for their use. The Ethernet thus effective-
ly realizes a broadcast medium (or "ether"). While transmitting a processor
listens whether another processor has perhaps begun transmitting too, in
which case an "audible" collision occurs. If so, both processors immediately
stop transmitting, pause a random period and try to transmit again. A processor
can never be ‘sure its packet reached its destination without interference
until after the time for a full round trip (only a few microseconds!). The
Ethernet is engineered on the assumption that collisions happen rarely. It
is an example of a CSMA (“"Carrier Sense Multiple Access") network. Greenberg
[88] has given an interesting analysis of the expected time of some simple
distributed control tasks over an Ethernet-like medium.

Rings are another topology applied in local area networks. The operation
of a ring network hinges upon three main ingredients: (i) the transmission

policy used by nodes to place packets on the ring, (ii) the reception policy

used to decide if a packet is to be received, and (iii) the packet erase
policy (to use in case a packet appears to circulate indefinitely). There are
three major types of ring architectures in use, which differ largely by the
transmission policy that is used: (i) slotted rings, (ii) token rings and

(iii) insertion rings. See [84] or [89] for further details.

22. Protocols. A network consists of a collection of interconnected processors
(nodes) that exchange data and messages over some nontrivial distance. The
orderly exéhange of information requireé that the nodes conform to some pre-
established agreements or rules which constitute a protocol. A protocol speci-
fies both the format of the information packages transmitted and the actions

to be taken for sending and receiving, as the communication ("control") between
the nodes to set up or maintain a cbnnection. A protocol thus embodies all

the necessary actions to let the network function. To incorporate it, the
network carries both data and control messages, in separate or combined packets.
Most networks use some form of send/acknowledge protocol to set up connections,
to check packet arrival and/or the error-freeness of a transmission. In case
an error occurred (e.g. by parity control) the packet must be send again.

For straight péint—to—poiﬁt connections over a half-duplex line there is

a classical observation of Bartlett, Scantlebury and Wilkinson [90]:

Theorem. One bit suffices for error control when transmitting over a half-

duplex line.

The technique is known as the "alternating bit" protocol. Imagine two
hosts A and B communicating over a half-duplex line, taking turns in sending
data and control information. Let A0 (and so on) mean that A sends a packet
with control bit 0. Let A0 (and so on, not underlined) mean that a packet
from A with control bit O is received (by B). The protocol for A and B is

best described by the following two communicating finite state diagrams:

The diagrams should be read thus that when e.g. B receives a damaged packet
with control bit 0, then it sends a control bit 1 back to A and A responds

by transmitting the same packet with control bit O again. O

Clearly more involved protocols are needed (and have been designed!) in net-
works where nodes would waste time for acknowledgements of every separate

, packet'and like té use the medium continuously. This opens the way_for ex—
tremely complicated communications with control messages, packets and re-
transmitted packets in one stream that should eventually carry all data to
correct arrival. Sunshine [91] gives an account of the problems in this di-
rection. Protocol validation has been attacked by methods derived from the

correctness theory of parallel programs (e.gd. [92]).

23. Routing. In a packet-switching network some strategy is required for
directing packets from source to destination through the transmission medium.
An optimal strategy should deliver a largest possible number of packets in

a shortest possible time. Packets of a message are sent ("hop") from node

to node to reach their destination, but need not all follow the same path.
Thus sequence numbers are needed and the receiving host may have some diffi-
culties in assembling the message that is coming in. The routing algorithm
of the network must avoid congestion of the imp's on the net and be proof

against failures of some parts of the net. All routing algorithms are based

on maintaining routing tables either at a central node or distributed over

all nodes. The routing tables contain information about connections, distances
and delays to be expected along various lines. By now there is an extensive
and non-trivial litterature concerning non-adaptive and adaptive routing

(see e.g. [93]). Santoro and kKhatib [94] show that in simple cases no routing

tables are needed.

The design of network wide systems leads to many problems about distributed
algorithms‘and computing that can now be envisaged. Timing (and the notion
of time itseif), event drdering, synchronization, data integrity, enc:yption
and compression are only the beginning of an endless list of issues that
can be brought to bear on distributed computing in this wide sense. A unique
account of the design and inplementation problems for distributed systems

is given in [1].

References.

{1]. D.W. Davies et.al., Distributed systems - arch{tecture and implementa-
tion, LN-CS vol. 105, Springer Verlag, Heidelberg, 1981.

[2] J.L. Peterson, Petri nets, Comp. Surv. 9 (1977) 223-252.

[3] M. Hack, The recursive equivalence of the reachability problem and
the liveness problem for Petri nets and vector addition systems,
Project MAC, Memo 107, MIT, Cambridge, Mass., 1974.

[4] E.W. Mayr, An algorithm for the general Petri net reachability problem,
Proc. 13th Ann. ACM Symposium on Theory of Computing, pp. 238-246,

1981.

[5] S.R. Kosaraju, Decidability of reachability in vector addition systems,
Proc. 14th Ann. ACM Symposium on Theory of Computing, pp. 267-281,
1982,

el G. Kahn, The semantics of a simple language for parallel programming,
in: J. Rosenfeld (ed.), IFIP 74, North-Holland Publ. Comp.,
Amsterdam, pp. 471-475, 1974.

(7] C. Hewitt and H. Baker, Laws for communicating parallel processes,
in: B. Gilchrist (ed.), IFIP 77, North-Holland Publ. Comp.,
Amsterdam, pp. 987-992, 1977.

[8]
[9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Milner, 4 calculus of communicating systems, LN-CS vol. 92, Springer
Verlag, Heidelberg, 1980.

V.R. Pratt, Process logic, Proc. 6th Ann. ACM Symposium on Principles
of Programming Languages, pp. 93-100, 1979.

J.W. de Bakker and J.I. Zucker, Denotational semantics of concurrency,
Proc. 14th Ann. ACM Symposium on Theory of Computing, pp. 153-158,
1982.

M. Nivat, On the synchronization of processes, Rapp. No. 3, INRIA,
Rocquencourt, 1980.

V.R. Pratt, On the composition of processes, Proc. 9th Ann. ACM Symposium
on Principles of Programming Languages, Pp. 213-223, 1982.

E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys (ed.),
Programming Languages, Acad. Press, New York, pp. 43-112, 1968.

N. Wirth, 4 note on "Program structures for parallel processing”,

CACM 9 (1966) 320-321.

E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation
of programs, CACM 18 (1975) 453-458.

P. Brinch Haﬁsen, Structured multiprogramming, CACM 15 (1972) 574-578.

C.A.R. Hoare, Towards a theory of parallel programming, Int. Sem.
onFOPerating System Techniques, Belfast, 1971 (see also: P. Brinch
Hansen, Operating systém principles, Prentice Hall, Englewood
Cliffs, NJ, 1973).

C.A.R. Hoare, Monitors: an operating system structuring concept, CACM
17 (1974) 549-557.

N. Wirth, Modula: a language for modular multiprogramming, Software:
Pract. & Exper. 7 (1977) 3-35.

P. Brinch Hansen, The architecture of concurrent programs, Prentice-
Hall, Englewood Cliffs, NJ, 1977.

J. Welsh and D.W. Bustard, Pascal-Plus: another language for modular
multiprogramming, Software: Pract. & Exper. 9 (1979) 947-958.

P. Brinch Hansen, Distributed processes: a concurrent programming
concept, CACM 21 (1978) 934-941.

C.A.R. Hoare, Communicating sequential processes, CACM 21 (1978)
666-667.

N. Wirth, MODULA-2, Rep. 36, Institut f. Informatik, ETH, 2Zirich,

1980.

[25]
[26]
(27]

[28]
[29]
[30]

[31]
[32]

[33]

[34]
[35]
[36]

[37]

[38]

J.G.P. Barnes, Programming in ADA, Addison Wesley Publ. Comp., London,
1982,

C.A.R. Hoare, An axiomatic basis for computer programming, CACM 12
(1969) 576-583. »

S. Owicki, Axiomatic proof techniques for parallel programs, TR-75-251,
Dept. of Computer -Science, Cornell University, Ithaca, NY, 1975.

D. Gries, An exercise in proving parallel programs correct, in: Language
hierarchies and interfaces, LN-CS vol; 46, Springer Verlag, Heidel-
berg, pp. 57-81, 1976.

K.R.'Apt, N. Francez and W.P. de Roever, A proof system for Communi-
cating sequential processes, ACM Trans. Progr. Lang. & Syst. 2
(1980) 359-385.

R.T. Gerth, A sound and complete Hoare axiomatization of the ADA
rendezvous, Techn. Rep. RUU-CS-82-5, Dept. of Computer Science,
University of Utrecht, Utrecht, 1982.

G. Lelann, Mbtivationé, objectives and characterizations of distributed
systeme, in: [1], pp. 1-9.

C. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley
Publ. Comp., Reading, Mass., 1980.

C.D. Thompson, A complexity theory for VLSI, Techn. Rep. CMU-C5-80-140,
Dept. of Computer Scieﬁce, Carnegie-Mellon University, Pittsburgh,
1980.

F.T. Leighton, New lower bound techniques for VLSI, Proc. 22" ann. IEEE
Symposium on Found. of Computer Science, pp. 1-12, 1981.

F. Harary, Graph theory, Addison Wesley Publ. Comp., Reading, Mass.,
1969.

R.J. Lipton and R.E. Tarjan, 4 separator theorem for planar graphs, SIAM
J. Appl. Math. 36 (1979) 177-189.

J. Vuillemin, 4 combinatorial limit to the computing power of VLSI
ctrcuits, Proc. 215t Ann. IEEE Symposium on Found. of Computer
Science, pp. 294-300, 1980.

R.P. Brent and H.T. Kung, The chip complexity of binary arithmetic,
Proc. 12th Ann. ACM Symposium on Theory of Computing, pp. 190-200,
1980.

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

H.T.

M.R.

Kung, B. Sproull and G. Steele (eds.), VLSI systems and computa-
tions, Proc. CMU Conf., Computer Science Press, Rockville, Md.,
1982.

Kramer and J. van Leeuwen, Wire-routing is NP-complete, Techn. Rep.
RUU-CS-82-4, Dept. of Computer Science, University of Utrecht,
Utrecht, 1982.

kramer and J. van Leeuwen, The NP-completeness of finding minimum
area layouts for VLSI-circuits, Techn. Rep. RUU-CS5-82-6, Dept. of
Computer Science, University of Utrecht, Utrecht, 1982.

H. Bodlaender, M.'Kramer, J. van Leeuwen, M.H. Overmars, A.A. Schoone,

R. Tan and H. Wijshoff, Plane realisation of 3-dimensional VLSI-

designs, to appear.

B. Chazelle and L. Monier, A model of computation for VLSI with related

complexity results, Techn. Rep. CMU-CS-81-107, Dept. of Computer
Sci., Carnegie-Mellon University, Pittsburgh, 1981.

B. Chazelle and L. Monier, Unbounded hardware is equivalent to determi-

nistie Turing machines, Techn. Rep. CMU-CS-81-143, Dept. of Computer
Sci., Carnegie-Mellon University, Pittsburgh, 1979.

Kung, Let's design algorithms for VLSI systems, Techn. Rep. CMU-
CS-79-151, Dept. of Computer Sci., Carnegie-Mellon University,
Pittsburgh, 1979.

Foster and H.T. Kung, Design of special purpose VLSI chips:
examples and opinions, Techn. Rep. CMU-CS-79-147, Dept. of Computer
Science, Carnegie Mellon University, Pittsburgh, 1979.

Kung and C.E. Leiserson, Systolic arrays for (VLSI), Techn. Rep.
CMU-CS-79-103, Dept. of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, 1979.

Kung, The structure of parallel aZgorithms, Techn. Rep. CMU-CS-
79-143, Dept. of Computer Sci., Carnegie-Mellon University,
Pittsburgh, 1979.

Ahmed, J.M. Delosme and M. Dorf, Highly concurrent computing struc-
tures for matrix arithmetic and signal processing, Computer (1982)
65-82. |

Leiserson and J.B. Saxe, Optimizing synchronous systems, Techn. Rep.
CMU-CS-82-101, Dept. of Computer Science, Carnegie-Mellon University,
Pittsburgh, 1982. |

[e68]

[69]

[70]

{71]

[72]
[73]
[74]

[75]
[76]

(771

[78]

[79]

[s80]

[81]

D. Heller, A survey of parallel algorithms in numerical linear algebra,
Techn. Rep., Dept. of Computer Science, Carnegie-Mellon University,
Pittsburgh, 1976. .

U. Schendel, Einfihrung in die parallele Numerik, oldenbourg Verlag,
Minchen, 1981.

J. Bentley and Th. ottmann, The power of a one-dunenswnal vector of
processors, Bericht 89, Inst. f..Angew. Informatik u. formale
Beschrelbungsverf., Univ. Karlsruhe, Karlsruhe, 1980.

J.B. Dennis, First version of a dataflow procedure Zanguage, in:
Programming Symposium, LN-CS vol. 19, Springer Verlag, Heidelbergqg,
1974, pp. 362-376.

P.C. Treleaven, D.R. Brownbridge and R.P. Hopkins, Data-driven and
demand-driven computer architecture, Comp. Surv. 14 (1982) 93-143.

J.M. Jaffe, The equivalence of r.e. program schemes and dataflow
schemes, J. Comput. Syst. Sci. 21 (1980) 92-109.

A.P.W. BShm and J. van Leeuwen, 4 basis for dataflow computing, Techn.
Rep,. RUU-CS- 81 6. Dept. of Computer Science, University of Utrecht,
Utrecht, 1981.

J.B. Dennis, Data flow supercomputers, Computer (1980) 48-56.

W.B. Ackerman and J.B. Dennis, VAL: a value oriented algorithmic
language (prelim. ref. manual), TR-218, Lab. for Computer Sci.,
MIT, Cambridge, Mass., 1979.

L.D. Wittie, Communication structures for large networks of micro-
computers, I1EEE Trans. Comp. C-29 (1980).

2. Galil and W.J. Paul, A theory of complexity of parallel computation,
preprint, 1980 (also: An efficient general purpose parallel computer,
Proc. 13th Ann. ACM Symposium on Theory of Computing, pp. 247-256,
1981).

F. Meyer auf der Heide, Time-processor trade-offs for universal
parallel computers, preprint, Fac. of Mathematics, Univ. Bielefeld,
Bielefeld, 1981.

F. Meyer auf der Heide, Efficiency of universal parallel computers,

Int. Bericht 1/82, Fachber. Informatik, Uniw. Frankfurt, Frankfurt,
1982.
A. Chandra and L. Stockmeyer, Alternation, Proc. 17th Ann. IEEE Symposium

on Found. of Computer Science, pp. 98-108, 1976.

[82] s. Fortune and J. Wyllie, Parallelism in random access machines, Proc.
1oth Ann. ACM Symposium on Theory of Computing, pp.'114—118, 1978.

[83] J.E. McNamara, Technical aspects of data communication, 2"d ed., Digital
Press, Bedford, Mass., 1982. ‘

[84] A.S. Tanenbaum, Computer networks, Prentice Hall, Englewood Cliffs,

, NJ, 1982. ,

(85] g. Martin,'Computer networks and distributed processing: software,
techniques and architecture, Prentice/Hall, Englewood Cliffs, NJ,
1982,

(86] G. v. Bochmann, Architecture of ditributed computer systems, LN-CS.
vol. 77, Springer Verlag, Heidelberg, 1979.

[87] R.M. Metcalfe and D.R. Boggs, Ethernet: distributed packet switching
for local computer networks, CACM 19 (1976) 395-404.

[88] A.G. Greenberg, On the time complexity of broadecast communication

th ann. acm Symposium on Theory of Computing,

schemes, Proc. 14
pp.- 354-364, 1982,

[89] R.P. Lee, The architecture of a dynamically reconfigurable insertion
ring network, Rep. RJ 2485 (32434), IBM Research Lab., San Jose,
ca., 1979.

[90] K.A. Baitlett, R.A. Scantlebury'and P.T. Wilkinson, 4 note on reliable
full—-duplex transmission over half-duplex links, CACM 12 (1969)
260-261.

f91] c.a. sunshine, Formal techniques for protocol specification and verifi-
cation, Computer 12 (1979) 20-27.

[92] B. Hailpern and S. Owicki, Modular verification of computer communica-
tion protocols, Rep. RC 8726 (#38174), IBM T.J. Watson Research
Center, Yorktown Heighﬁs, Ny, 1981.

[93] M. schwartz, Routing and flow control in data networks, Rep. RC 8353
(#36329), IBM T.J. Watson Research Center, Yorktown Heights,
NY, 1980. |

[94] N. santoro and R. Khatib, Routing without routing tables, Rep. SCS-TR-6,
School of Computer Science, Carleton University, Ottawa, Canada,

1982.

