Designing a BSP version of ScaLAPACK*

Guy Horvitz! Rob H. Bisseling?

Abstract

The ScaLAPACK library for parallel dense matrix computations is built on top of
the BLACS communications layer. In this work, we investigate the use of BSPlib as the
basis for a communications layer. We examine the LU decomposition from ScaLAPACK
and develop a bulk synchronous parallel (BSP) version. For small problems, where
communication dominates, the BSP version is about 10% faster compared to the native
BLACS version and 50% compared to the MPI BLACS version. For large problems,
where computation dominates, the differences are less pronounced, but the BSP version
1s still slightly faster. We present the main features of a new library, BSP2D, which we
propose to develop for porting the whole of ScaLAPACK.

1 Introduction

To obtain the highest performance in parallel computation both computation and commu-
nication must be optimised. LAPACK [1] has provided us with highly optimised implemen-
tations of state-of-the-art algorithms in the field of numerical linear algebra, in particular
for the solution of dense linear systems and eigensystems. Many years of effort have gone
into optimising LAPACK, and much of its success is due to the encapsulation of system-
dependent optimisations into the Basic Linear Algebra Subprograms (BLAS). LAPACK
is available for sequential computers, vector supercomputers, and parallel computers with
shared memory.

The ScaLAPACK [3] project aims to provide a scalable version of LAPACK for parallel
computers with distributed memory. Portability is ensured by building ScaLAPACK on top
of the Basic Linear Algebra Communication Subprograms (BLACS). The parallel efficiency
depends critically on the communication performance achieved by this library and thus it
is natural to ask whether the performance can be further improved.

The bulk synchronous parallel (BSP) model [9] views a parallel algorithm as a sequence
of supersteps, each containing computation and/or communication, followed by a global
synchronisation of all the processors. This imposes a discipline on the user, thus making
parallel programming simpler, but it also provides possibilities for system-level optimisation
such as combining and rescheduling of messages. This can be done because the superstep
provides a natural context for communication optimisation by the system; the user need
not be concerned about this.

*This work was supported in part by NCF, which provided computer time on the Cray T3E of the High
Performance Applied Computing centre at the Technical University of Delft.

"Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904, Israel,
guyh@fh.huji.ac.il

{Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands,
Rob.Bisseling@math.uu.nl

A BSP computer can be characterised by four global parameters: p, the number of
processors; s, the computing speed in flop/s; g, the communication time per data element
sent or received, measured in flop time units; and [/, the synchronisation time, also measured
in flops. Algorithms can be analysed by using the parameters p, g, and [; the parameter s
just scales the time. The time of a superstep with both computation and communication
is w+ hg + [, where w denotes the maximum amount of work (in flops) of a processor,
and h is the maximum number of data elements sent or received by a processor. The total
execution time of an algorithm (in flops) can be obtained by adding the times of the separate
supersteps. This yields an expression of the form a4 bg+ ¢l. In the following presentation,
we consider the architecture as an abstract BSP computer, and therefore we use the term
‘processes’ instead of ‘processors’. In our experiments, only one process executes on each
processor, so these terms may be used interchangeably.

BSPIlib [7] is a proposed standard which makes it possible to program directly in BSP
style. BSPIlib is an alternative to PVM [8] and MPI [5]. It provides both direct remote
memory access (i.e., one-sided communications such as put and get), and bulk synchronous
message passing.

BSPPACK [2] is a prototype application package built on top of BSPlib. It is a research
and educational library which contains parallel implementations of algorithms for sparse
and dense linear system solution, fast Fourier transforms, and other scientific computations.

The aim of the present work is to answer the question: can ScaLAPACK be ported
to BSPlib and does this improve performance? This may indeed be the case, because we
expect ScaLAPACK to benefit from ideas developed within the context of BSPPACK and
from the excellent implementation of BSPlib available as the Oxford BSP toolset [6]. Here,
we limit ourselves to investigating the ScaLAPACK LU decomposition subroutine PSGETRF.

The design philosophy of ScaLAPACK is to use a hierarchy of software layers. The
top of the pyramid is ScaLAPACK itself, which calls the Parallel BLAS (PBLAS). The
PBLAS use the BLAS for single-process linear algebra computations and the BLACS for
communication. The BLACS can be built on top of a basic communications layer such as
MPI or PVM. The BLACS perform communication at a higher level: they send complete
matrices of all types and they allow us to view the processes as a two-dimensional grid and
to perform operations within the scope of a process row or column, or the complete grid.

The data distribution of ScaLAPACK is the two-dimensional block-cyclic distribution
with a user determined block size nb. Another parameter is the algorithmic block size
nb’. The algorithms in the sequential package LAPACK handle complete blocks of size nb’.
ScalLAPACK structures its algorithms in the same way, but it imposes nb’ = nb. We make
the same choice for reasons of convenience, but in our case it is straightforward to relax
this constraint to nbd’ > nb; we shall discuss this later.

Since the communication in ScaLAPACK is isolated in the BLACS it would be the
most natural choice to construct a BLACS version based on BSPlib. A straightforward
BSPIlib implementation of the BLACS, however, would be impossible for different reasons;
one important reason is the following. The BLACS include pair-wise message passing for
communication where the receiver has to wait for the data to arrive in order to continue.
The sender can continue as soon as the message is sent off. In BSPIlib, a message transfer is
completed only after the next global synchronisation. Suppose there is exactly one message
to be communicated and hence in the program there is one call to a BLACS send and
one to a BLACS receive. The processes that do not send or receive are not aware of
this communication and hence do not synchronise, thus violating the principle of global
synchronisation.

Forcing the user to synchronise globally between a send and a receive requires drastic
changes in both the syntax and the semantics of the BLACS subroutines. This would turn
the BLACS into a different library, which could be called BSP2D; section 4 outlines how
such a library could be constructed in the future. The present work simply removes the
BLACS and adapts ScaLAPACK and the PBLAS using direct calls to BSPlib. This alone
is not sufficient: it is also necessary to restructure ScaLAPACK and the PBLAS on the
basis of supersteps.

2 BSP version of ScaLAPACK LU decomposition

Programming in BSPlib requires global synchronisation. For this reason, every process
should know when a global synchronisation is needed to perform a certain task. Sometimes,
a process also needs to know about resources (such as buffers) provided by remote processes.
Such knowledge can be transferred by communication, but this would be inefficient.
Another approach would be to let all the processes call subroutines together and with
the same values for the scalar input parameters. This way, each process can deduce the
behaviour of the other processes. We adopted this approach for the PBLAS. For example,
consider the PBLAS subroutine PSSWAP which swaps two rows or columns of distributed
matrices. If the swap is local and no communication is needed, the processes do not
synchronise. Otherwise, all the processes perform one synchronisation, even if they do not
hold any of the related data and do not actively participate in the operation. All processes
can distinguish between the two situations, because they have the necessary information.

2.1 Unblocked LU decomposition and pivot search subroutines

An example of how a ScaLAPACK subroutine and a PBLAS should be altered, is shown in
the case of the ScaLAPACK subroutine PSGETF2, which performs an unblocked parallel LU
decomposition on a block of consecutive columns; it is called by the main LU decomposition
subroutine PSGETRF. The main part of the PSGETF2 code is given in Fig. 1.

In the original subroutine, the main loop (DO 10 ... 10 CONTINUE) is executed only by
the process column IACOL that holds the block to be decomposed. After the decomposition,
the pivot indices IPIV(IIA..IIA+MN-1) of that block are broadcast to the other process
columns by the sending subroutine IGEBS2D and the receiving subroutine IGEBR2D. This
structure is inherited from the PBLAS. Since the PBLAS subroutine PSAMAX, which finds
the pivot of matrix column J, returns the result only to the processes of the process column
TACOL that holds J, the other processes cannot evaluate the singularity test GMAX.NE.ZERO.

We mentioned earlier that BSP based PBLAS should be called by all processes with
the same values for the scalar input parameters. The example of PSGETF2 makes it clear
that scalar output parameters must be returned to all processes too. This way, GMAX and
the pivot index become available to all the processes so they can participate in the main
loop, and can call subsequent PBLAS together, as required. Inevitably, sending the output
scalars to all processes costs extra communication and synchronisation time.

An advantage of the changes in PSAMAX and PSGETF2 is the ability to choose an
algorithmic block size that differs from the distribution block size. This is impossible
in the current version of ScaLAPACK; e.g. if nb’ = 2nb, then two process columns should
participate in the decomposition of one algorithmic block of columns. The subroutine
PSAMAX, however, returns its results only to the process column that holds matrix column J.

IF(MYCOL.EQ.IACOL) THEN DEL
DO 10 J = JA, JA+MN-1
I=IA+J-JA

Find pivot and test for singularity.

CALL PSAMAX(M-J+JA, GMAX, IPIV(IIA+J-JA), A, I, J,
$ DESCA, 1)

IF(GMAX.NE.ZERO) THEN

Apply the row interchanges to columns JA:JA+N-1
CALL PSSWAP(N, A, I, JA, DESCA, DESCA(M_), A,
$ IPIV(IIA+J-JA), JA, DESCA, DESCA(M_))

Compute elements I+1:IA+M-1 of J-th column.
IF(J-JA+1.LT.M)
$ CALL PSSCAL(M-J+JA-1, ONE / GMAX, A, I+1, J,
$ DESCA, 1)
ELSE IF(INFO.EQ.0) THEN
INFO=J - JA+ 1
END IF

Update trailing submatrix
IF(J-JA+1.LT.MN) THEN
CALL PSGER(M-J+JA-1, N-J+JA-1, -ONE, A, I+1, J, DESCA,
$ 1, A, I, J+1, DESCA, DESCA(M_), A, I+1,
$ J+1, DESCA)
END IF
10 CONTINUE

CALL IGEBS2D(ICTXT, ’Rowwise’, ROWBTOP, MN, 1, IPIV(II4&), DEL
$ MN) DEL
ELSE DEL
CALL IGEBR2D(ICTXT, ’Rowwise’, ROWBTOP, MN, 1, IPIV(IIA&), DEL
$ MN, MYROW, IACOL) DEL
END IF DEL

Fia. 1. Main part of PSGETF2 source code. Lines marked by DEL are deleted in the BSP version.

2.2 Collective communication subroutines

Sometimes, we need subroutines to perform collective communications such as broadcasts
or reductions. In our case, we need to broadcast data within a process row (or column),
and perform this operation for all process rows simultaneously. The method adopted for
the PBLAS, global replication of scalar parameters, is not suitable here. The reason is that
the size of the broadcast may differ between the process rows. We must allow different
sizes, but the number of synchronisations should not depend on them.

The simplest solution is always to use a broadcast with two synchronisations, except
when the broadcast is in the scope of one or two processes. For one process no
synchronisation is needed, and for two processes a single synchronisation suffices. All
processes can take the same decision because the number of participants in the broadcast
is the same and known to all of them. The choice of performing two synchronisations in
the general case is based on the efficiency of the so-called two-phase broadcast, which first

scatters the elements of a data vector across all the processes, and then lets each process

broadcast the data it received. This was shown to be efficient in the LU decomposition
program from BSPPACK, see [2].

2.3 Multiple row swap subroutine

The ScaLAPACK subroutine PSLASWP applies a series of row exchanges in a matrix
prescribed by a given vector of pivoting indices. This is originally done by pairwise row
swaps, each time using the PBLAS subroutine PSSWAP. A direct translation into BSP would
imply one superstep for each swap. We change the method so that all the swaps are done
in one superstep, in good BSP style. The changes are as follows.

First we translate the representation of the permutation from swaps into cycles. For
example, suppose the swap vector is (4, 10) (3, 10) (2, 10) (1, 10), which means: first swap
rows 1 and 10, then 2 and 10, etc. In this example, rows 1, 2, 3, 4 are on the same process
A and row 10 resides on a different process B. The cycle representation of this permutation
is (10, 4, 3, 2, 1), which means: 1 goes to 2, 2 goes to 3, ..., 10 goes to 1. The operations
performed by A and B in this case are:

Process A Process B
Put row 4 in buffer on process B Put row 10 in buffer on process A
For i =3 to 1 step —1
copy row ¢ into row ¢ + 1
Syne Syne
Copy buffer into row 1 Copy buffer into row 10

In this way, only one row is exchanged between A and B. In the original algorithm, which
performs the swaps sequentially, four rows are exchanged. In the general case, the different
cycles are handled separately, but with one global synchronisation for all of them.

2.4 Registered buffers

Often, we have to communicate noncontiguous data like e.g. a matrix row, which in
ScalLAPACK is stored as a strided subarray. The data elements can of course be sent
separately, but even though BSPlib automatically combines small messages, there is still a
notable overhead for extremely small messages such as single words. If the access pattern
is based on a stride, the overhead can be avoided by packing messages in buffers.

Put operations are the most efficient means of communication on many architectures,
including our test machine. When we use puts for communications, the locations of the
buffers in which we put the packed data must have been registered previously. The purpose
of registration is to link the name of a remote variable with its local address; this enables
putting into dynamically allocated memory. Since registration incurs communication and
synchronisation costs, it is more efficient to register the locations only once, at the beginning
of the computation. The locations should then be passed to the PBLAS.

For this purpose, we implemented a management system for registered buffers. At
the start of the program, we allocate and register buffers of appropriate sizes. When a
PBLAS requests a buffer of a certain size, it calls a subroutine which returns a pointer to
the smallest buffer of at least the requested size. Similar to the registration procedure of
BSPlib, buffers are requested in lock step. All processes participate in all requests, and
they ask for a buffer of the same size.

To achieve the ultimate in efficiency, we use the high performance put primitive
bsp_hpput which is unbuffered on source and unbuffered on destination, instead of bsp_put

TABLE 1
Computing rate in Gflop/s of LU decomposition on a CRAY T3E for three different communi-
cation layers. The process grid has size 8 x 8; the block size is 32.

Size BSPlib native MPI
BLACS BLACS

500 0.37 0.33 0.22
1000 1.22 1.11 0.81
2000 3.19 3.04 2.42
3000 5.34 4.96 4.15
4000 6.79 6.57 5.61
6000 9.63 9.24 8.56
8000 10.47 10.55 10.04
10000 12.73 12.48 12.20

which is doubly buffered. In the case of the high performance primitives, responsibility for
buffering rests on the user instead of on the BSPlib system. On our test machine, we found
that the improvement in performance was significant.

3 Experimental results

We performed numerical experiments on a CRAY T3E computer with p = 64 processors,
each with a theoretical peak performance of 600 Mflop/s. We measured a sequential speed
of s = 250 Mflop/s for the matrix multiplication part of the LU decomposition. Normalised
for this value of s, we found ¢ ~ 14 and [~16000-80000. (We measured these values within
the context of the program, not in a separate benchmark. This explains the variation in
l.) The aim was to compare the ScaLAPACK performance of three communication layers:
BSPlib, a Cray-specific native version of the BLACS, and an MPI version. We ran tests
for three different process grids (with size 8 x 8, 16 x 4, 4 x 16) and four different block
sizes (nb = 16, 32, 48, 64). The optimal grid size for all three communication layers was
8 x 8, and the optimal block size was 32. We used single precision, which is 64 bits on this
machine. We ran a test program which generates a square matrix with random elements.

The measured computing rate is given in Table 1. The rate is based on the overall
execution time, including all overheads. For small problems, where communication
dominates, the table shows a considerable gain in speed obtained by using BSPlib: about
10% compared to the native BLACS and 50% compared to the MPI BLACS, for n = 1000.
For large problems, where computation dominates, the differences are less pronounced:
about 2% compared to the native BLACS and 4% compared to the MPI BLACS, for
n = 10000. The BSPIib version is faster than the others, except for n = 8000.

To understand the savings in execution time, we measured the time used by each part
of the program. Using BSPlib we can measure the communication/synchronisation time
separately from the local computation time. We then separated the communication time
from the synchronisation time by using a BSP-provided estimate of the synchronisation
time. We also measured the packing time, which includes the time spent in packing and
unpacking data, and in local swaps. Finally, we could estimate the idle time of each
process, which we define as the average time a process waits for the others to finish their
computation. The resulting breakdown of the costs is presented in Fig. 2. As expected,

60
idle
40
comp
1%}
=}
c
o
(5]
Q
1]
20
pack
comm
04 - = sync
0 2000 4000 6000 8000 10000

matrix size

Fia. 2. Breakdown of the total execution time for BSP based LU decomposition. The
components are: synchronisation, communication, packing, computation, and idling. The process
grid has size 8 x 8; the block size i1s 32.

10 I MPI
-~ |BLACS
/
vl ~| native
gl 7 {BLACS
7 -|BsP
/ Ve comm
‘ - +sync
+ pack
6 I
(%)
S BSP
8 comm
Q +sync
2
4+
2+
O I I I I
0 2000 4000 6000 8000 10000

matrix size

Fic. 3. Communication time (including packing and synchronisation) during LU decompo-
sition for three communication layers: BSPlib, native BLACS and MPI BLACS. For BSPLib, the

time without packing s also given. The process grid has size 8 x 8; the block size 1s 32.

the computation time of 2n>/3p flops dominates for large n. Note that the synchronisation
time, although only linear in n, is still significant compared to the computation time.

The computation and idling time is identical for all three versions, because they differ
only in the communication part. By subtracting the computation and idling time from the
measured total time, we can obtain the time of the communication part, which is presented
in Fig. 3. It is clear that the communication time for BSP is significantly less than for the

ScalL APACK

A T S

‘LAPACP;‘ /| PBLAS

/l

Fia. 4. Hierarchical view of a possible BSP based ScaLAPACK, adapted from [}]. The double

bozes contain the parts affected by moving to BSP. Solid arrows represent major dependencies and

dashed ones minor dependencies. The solid bold arrows represent the main structure of ScaLAPACK.

other two versions. For large n, the typical savings compared to the native BLACS are
10-15%. The exception is again the case n = 8000, for which the native BLACS are slightly
faster. We found that the cause of this exception is the poor performance on the Cray T3E
of the vendor-provided BLAS SCOPY and SSWAP, which we used for packing and local swaps
in PSSWAP and PSLASWP. They reduced the performance of our program considerably, and
more than that of the native and MPI BLACS versions. Improving the copying would
reduce the communication time for BSPlib to that depicted in the lower line of Fig. 3.

4 Proposal for a BSP2D library

When developing a BSP implementation of the whole ScaLAPACK, it would be most
convenient to have available a high level BSP based communication layer, called BSP2D.
This would save much effort and would also improve modularity. The position of the BSP2D
layer in the ScaLAPACK hierarchy is shown in Fig. 4. BSP2D has the functionality of the
BLACS, i.e., communicating complete matrices (or vectors) of different types. Like the
BLACS it views the processes as a two-dimensional grid. It can be built on top of BSPlib
or another suitable BSP library.

There are two types of communication operation in BSP2D: pair-wise communications
and collective communications. Pair-wise communications should be done by bulk
synchronous message passing (using bsp_send) and not by direct remote memory access
(using bsp_put, bsp_get, or their high performance equivalents).

Direct remote memory access cannot be used for the following reason. The communi-
cation of noncontiguous data structures involves packing of the data in buffers. Communi-
cating by direct remote memory access requires previous registration of these buffers. Since
the size of data each process sends is not always known to the other processes we cannot
use the global management system for registered buffers described in Subsection 2.4. (For
a general library such as BSP2D we cannot adopt the same solution as for the PBLAS,
namely calling each subroutine with the same global parameters. This would render the
library hard to use.) An alternative would be to register a buffer for each put operation, but
this would be inefficient. A third possibility would be to use static pre-registered buffers,
where each process makes p — 1 buffers available for use by the other processes; this wastes
too much memory. Therefore, none of these methods is satisfactory.

As a consequence, pair-wise communication should be done by bulk synchronous
message passing. This means that data are sent, and after global synchronisation the
destination process moves the data from its receive queue. Messages consist of a payload
and a tag. The payload contains the matrix to be communicated, packed in a suitable
form. The tag consists of type information, the identity of the sending process, and the
number of messages that were already sent by that process to the receiving process in the
current superstep. This number represents the order in which the send operations occur
in the program text, and not the actual order in which BSPlib sends them. BSPlib is still
allowed to optimise communication by rescheduling messages within a superstep. (This is
the main advantage over traditional message passing.)

In BSP2D, messages originating in the same process must be moved in the order those
messages were sent; this is similar to the requirement for receives in the BLACS. The
messages of the receive queue of BSPlib, however, are in arbitrary order and the queue can
only be accessed in this order. Still, this poses no problem since the high performance move
operation bsp_hpmove can be used to create a list of the message positions in the queue. This
operation is done as part of the BSP2D synchronisation subroutine. In an implementation,
the list can be sorted in linear time by source process and message number. The use of
bsp_hpmove instead of bsp.move also enables BSP2D to unpack data straight from the
receive buffer, thus saving the time of local copying. (Performance could be improved even
more if a high performance send bsp_hpsend were available, so the data could be sent
straight from the source memory.)

Collective communications such as broadcasts and reductions involve synchronisation,
so they should be called by all processes at the same time. They can be performed in the
scope of a process row, a process column, or the whole process grid. To ensure that all the
processes perform the same number of synchronisations, these subroutines always have two
supersteps, except when the number of processes in the scope is one or two. As already
observed in our study of LU decomposition, the decision on the number of synchronisations
cannot rely on the number of data to be communicated, since it may vary between different
process rows or columns.

We already described the two-phase broadcast in Subsection 2.2. Two-phase reduction
is similar. Suppose the scope of the operation has ¢ processes. In the reduction, each process
has a vector of the same size n. Associative and commutative component-wise operations
such as additions have to be performed on these ¢ vectors. This is done as follows. The
data on each process are divided into ¢ blocks of size n/q, numbered 0, ..., ¢ — 1, and each
block is sent to a different process, so that process ¢ gets all the blocks numbered ¢. Then
each process performs a local reduction of the blocks, and sends the result to all the other
processes. The total communication/synchronisation cost is about 2ng + 21.

In summary, BSP2D will include subroutines for pair-wise and collective communica-
tions, for global synchronisation with additional housekeeping, for the creation, initialisa-
tion, and destruction of the process grid, and for retrieving the grid dimensions and process
coordinates.

5 Conclusions and future work

In this work, we have demonstrated that it is feasible to produce, with a relatively
minor effort, an efficient bulk synchronous parallel version of an important ScaLAPACK
subroutine. We expect that the same can be done for most subroutines from ScaLAPACK.
The BSP version outperforms two other versions, one based on a vendor-built BLACS

10

communication layer, and the other on MPI BLACS. The performance gains were entirely
due to a reduction of the communication time; the computation part was left unchanged.

For large problems, e.g. n = 10000, communication time was reduced by up to 15%
compared to the vendor-built BLACS version and even more compared to the MPI version.
Because our test machine has relatively fast communications the reduction in total execution
time is less pronounced. For machines with slower communication relative to computation,
the influence of communication on the total time will be larger, and hence the gain we
expect to achieve by using BSPlib would be proportionally larger. Of course, in future
work this prediction should be tested in practice. For small problems, communication is
dominant and the savings in total time are considerable. These results demonstrate that a
public-domain software layer such as BSPlib can outperform a vendor-supplied layer. (We
would expect a vendor-supplied version of BSPlib to improve performance even more.)

Our practical experience in porting one major ScaLAPACK subroutine led to the
formulation of the BSP2D library. Whereas we could build one single routine (and the
required PBLAS) directly on top of BSPlib and we could manage the registered buffers
within the subroutine, this would not be a feasible solution for the whole of ScaLAPACK.
Instead, using an intermediate BSP2D layer would increase modularity and software reuse,
at only a slight increase in cost due to copying and other overheads.

The approach of BSPIlib, based on global synchronisation, can be carried over to the
PBLAS, and this gives the additional advantage that the algorithmic and distribution
block sizes can be decoupled. This enables a better trade-off between load balance, speed
of BLAS operations in the unblocked part of the algorithm, and speed in the blocked part,
thus providing further opportunities for improving the performance of ScaLAPACK.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guude,
Release 2.0, STAM, Philadelphia, PA, second ed., 1995.

[2] R. H. Bisseling, Basic techniques for numerical linear algebra on bulk synchronous parallel
computers, in vol. 1196 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1997,
pp. 46-57.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK
Users’ Guide, STAM | Philadelphia, PA, 1997.

[4] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley, The
design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines,
Scientific Programming, 5 (1996), pp. 173-184.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable programming with the Message-
Passing Interface, MIT Press, Cambridge, MA, 1994.

[6] J. M. D. Hill, S. R. Donaldson, and A. McEwan, Installation and user guide for the Ozford
BSP toolset (v1.3) implementation of BSPlib, technical report, Oxford University Computing
Laboratory, Oxford, UK, Nov. 1997.

[7] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling, BSPlib: The BSP programming library, Parallel Computing,
24 (1998), pp. 1947-1980.

[8] V. S. Sunderam, PVM: A framework for parallel distributed computing, Concurrency: Practice
and Experience, 2 (1990), pp. 315-339.

[9] L. G. Valiant, A bridging model for parallel computation, Communications of the ACM, 33
(1990), pp. 103-111.

