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Synopsis 

A systematic method of successive approximations is described, of which the first 

step is the WKB approximation. The higher corrections consist of successive recombi- 

nations of the two WKB waves, rather than a perturbation expansion in their in- 

teraction. At the same time the local wave number (or refractive index) undergoes 

successive corrections. Using this method it is shown that the quantummechanical 

reflection by a potential barrier is a small quantity of order Zoo, provided that the 

barrier is smooth, and so low that there is no classical turning point. 

1. Introduction. The Schrbdinger equation for a spinless particle in one 

dimension is 

d2P 
2 + $ {E - V(x)} a) = o. 

We shall suppose throughout that E > V(x) for all x, which means that 

classical turning points are excluded. We may then use the abbreviation 

p(x) = J2mE - 2mv(x) > 0; 

p(x) is the momentum that the particle should have at the point x according 

to classical mechanics. It is convenient to define two components 

dv (4 
241(x) = y(x), 242(x) = fi -___ 

dx ’ 

and to write the Schrbdinger equation in the matrix forml) 

3:;) = ;(“,,, i)(::) = ; A(x) u”. 

For any fixed value of x the matrix A can be diagonalized, i.e., a non- 
singular matrix P(x) and a diagonal matrix ,4(x) can be found such that 

P(x)-1 A(x) P(X) = Ll(x), n diagonal. 

(Our condition p2 > 0 guarantees that there are two different eigenvalues.) 
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The explicit matrices LI and P are 

A =c Yp)> P =(fp _lp). 
If the vector ZJ is transformed accordingly 

u = Pv, 

the new vector v obeys the equation 

(1) 

The second term on the right is small compared to the first one, since it 

does not have an A in the denominator. If this term would be neglected 

altogether the solution for vi(x) would be 

(and the same for Do with 4 instead of i). However, this is not a good 

approximation because the neglected term is of order 1. It can be improved 

with little additional labor by including the diagonal elements; the result 

is the familiar WKB approximation 

vdx) = &l(*) -exp[+fp(x’)dx’]vl(O) o (3) 

(and the same for vs(x) with --i instead of i). 

The non-diagonal terms in (1) represent interactions between the modu- 

lated waves (3). It is true that they are ostensibly of order 1 since they do 

not contain a factor ti. Actually, however, they add to the solution only 

corrections which are of order fi. In fact, the next correction to Q(X) is easily 
seen to involve the integral 

(4 

This integral is small owing to the rapidly oscillating exponential factor in 
the integrand. Asymptotic evaluation of this integral by means of the 
stationary phase method immediately shows that it is of order ti. Thus the 
contribution of the non-diagonal elements is one order of ~3 higher than is indi- 
cated by the ea+licitly appearing factors &. The same remark does not apply 
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to the diagonal terms, which is the reason why these must be included, so 
as to obtain (3) rather than (2). 

It is possible to take the non-diagonal terms in (1) into account by the 
usual iterative method of perturbation theory, as was done by Bremmers) 
and others3). The result is a series, in which each term contains a factor h 
more than the previous one, but also an additional integration. This suggests 
that this perturbation expansion is an expansion in powers of hL, where L 
is the length of the interval under consideration. Actually the integrals 
again involve rapidly oscillating factors and are therefore very small. In 
fact, we shall find in sec. 5 that the reflection by a smoothly varying potential 
barrier is of infinite order in fi. 

2. The next approximation. In the proposed method the non-diagonal 
terms in (1) are not taken into account by means of a series expansion. 
Rather, we write (1) in the form 

dv 
---zzz 
dx 

.; B(x) v 

and again apply a transformation, 

v = Qw, 

which is chosen such as to diagonalize B 

Q-1BQ = M, M = diagonal. 

The resulting equation for w will then be 

dw _=_ 
dt 

; Mw - Q-rQ’w, 

(5) 

in complete analogy with (1). 
In order to show that (6) actually leads to a better approximation than 

(l), we note that B is diagonal apart from terms of order ti. Hence Q differs 
from the unit matrix only by terms of order ti*), 

Q = 1 + hQ1. 
Consequently the matrix 

Q-IQ’ = fiQ-IQ; = hQi + O(ti)s 

is of order ti, which is one order higher than the last term in (1). 
The matrix B has the form 

Bc4 = 
ip - fip’/2$ hP’l2P 
fip,pp -iP - tip’/29 > 

*) Strictly speaking this needs not be true since Q is not uniquely determined by (5) : but Q may 

be so chosen as to differ from unity only in order fi. 
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It is convenient to use temporarily the abbreviation 

fiP’ ~ = sin tc, 
2P2 

so that U(X) is a small quantity of order 
is found to be 

Al= ( ip eta 

0 

and the diagonalizing matrix Q is 

Q=( 
COS +a 

--i sin ia 

fi. Then the diagonalized matrix M 

0 
-ip e-i@ ) 

i sin &,a 

COS $a > ’ 
(7) 

It follows that 
Q_lQ, _ -a’ sin a --i 

2 COS a ( i sin a > ’ 

so that the equation (6) for ze! becomes 

~(~l)=t(~~~“s~~a”“na I;~i~@a,tana)(;:). 

Suppose one stops the process after this step and determines the solution 
in this approximation. Omitting again the non-diagonal terms, which 
represent the interaction between wi and ws, one finds 

Z 

We = zol(O) exp 
Si 

iP T eia + &a’tan a dx 

0 

For ZUZ(X) one finds the same expression with --i instead of i. It appears that 
this first correction to the WKB approximation has three effects. 

(i) It modifies the local wave vector: 

The local amplitude is modified accordingly*). 
(ii) The components ~1 and ~2 are recombined in a definite way, de- 

termined by the transformation matrix Q given by (7). 

*) Using a different method Bailey 4) found the same modification of the wave number, but not 

the corresponding modification of the amplitude. 
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(iii) The non-diagonal terms, which were neglected, contain a factor #i, 
but are of order @ since they also contain an integral with a rapidly oscillating 

integrand, similar to (4). 

3. The general method. It is clear that instead of discontinuing the approxi- 

mation process after (6) one may continue by diagonalizing the matrix in (6) 

and transforming the vector w accordingly. In this way one can continue 

step by step, as long as the derivatives exist. After the m-th step the equation 

has the form 

dz 
---ZZ 
dx (8) 

where Q is diagonal and Z-12’ is of order W-1. Each step transforms away 

a part of the interaction between the components and incorporates it in the 

modulation of the two waves. Suppose one stops after the m-th step and 

determines the solution in the approximation obtained. The result is 

z 

21(x) = exp ;Q&‘) - .&1(x’) dx’ 21(O). 
1 1 (9) 

0 

Again the diagonal term has been included in the exponent, but the factor 

Z-1 has been omitted since its difference from unity is of higher order. The 

non-diagonal terms in (8) have been neglected; at first sight this gives rise 
to an error of order tim-IL, but actually the error is only of order Am, owing 

to the rapid oscillations of the function which has to be integrated to find 

the interaction between both components. 

Note that the separate steps do not require any integration; only in the 

final result (9) an integral occurs. The successive transformations of U(X) 

are determined by the local behaviour of the potential, i.e., by V and its 

derivatives at the same pod x. The calculation will be done more explicitly 

in the next section, but we here want to add some comments. 

Each step in the process introduces a next higher derivative. It is easily 
seen that the matrix elements of P are polynomials of the matrix elements 

of A and of the eigenvalues of A. The eigenvalues of A are themselves 
algebraic functions of the elements of A and no branch points occur in the 

region considered, owing to the condition p2 > 0. Hence P(x) and A(x) have 
as many derivatives as A (x). In this way one sees that the successive transfor- 
mations can be carried through the m-th step, when A has m derivatives. 

When A has derivatives of all orders the process can be continued indefinite- 
ly. The resulting series of transformations will not in general converge, but 

constitutes an asymptotic expansion (in the sense of Poincark). 
The transformation matrix P is not uniquely defined by the requirement 

that it diagonalizes A. For let r be any matrix that commutes with (1, 
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which means that I’ is diagonal. Then Pr = p also transforms A to the 
diagonal form A. Setting zt = PC one obtains an alternative transformed 
vector C, which is related to the previously used v by 

v = rfi, or vy = r$i&. (aJ = 1, 2) 

Thus this transformation multiplies the separate components with arbitrary 
factors, but does not mutually combine them. Yet it is not just a change of 
normalization, because the arbitrary factors r, may depend on x. It follows 
that the decomposition into separate components vy is not unique and has 
therefore no physical meaning, as emphasized by Groene welds). Never- 
theless, all physical consequences are of course unique, since they can 
be expressed in the original vector u itself. 

The equation governing the time-dependence of v” is 

f A _ r-lp-1 pfr _ r-i rf fi, 

This shows that the arbitrary diagonal matrix r can be utilized to cancel 
the diagonal elements of P-l P’; one merely has to find the functions TV(x) 
from 

r: = - (p-lpyw r,. 
This would have the effect that the correction which we have previously 
added to (2) to obtain (3) is now incorporated in the definition of v”. Yet we 
need not make use of this possibility, because on the present method this 
correction is automatically taken care of in the next step of the approxi- 
mation. 

4. Higher corrections. In order to study the higher approximations we 
first rewrite the work in sec. 2 in a more sophisticated way. With the aid 
of the Pauli matrices 

one may write (1) in the form 

dv ip P’ P’ p= -0ogv +~a.$ --v. 
dx A 2P 2P 

The last term can be removed by setting 

v(x) = p-G(x), 

which is the transformation described in sec. 3. Then 

(10) 
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The diagonalisation of the matrix now amounts to a (complex) rotation in 
the (5, C) plane such that the new [ axis lies along the vector with components 

(15’/2fi, 0, Wh). T o prepare for this transformation we write (10) in the form 

dv” PZ PI2 --= 
dx 732 4p2 

(iog cash yr + of sinh yr) E, 

where yr is determined by 

&P’ tanh yr = ~ 
2P2 

and is a small quantity of order ti. The square root is absorbed in the coor- 
dinate x by defining a new variable 

Then (10) takes the form 

ds 
__ = i (iuc cash yr + 06 sinh ~$6. 
drr 

(‘1) 

The diagonalisation is now achieved by the transformation 

,ij = ,-&Yl% W; 

the resulting equation for w is 

dze, i dYl 

drr -( 
p_ - 

A 
05 + t F&j w. 

drr > 

The idea is to cast this equation in the same form as (11). First we change 
(TV into ag by means of a rotation over &c about the 5 axis, 

w = ,-WC 6, 

which only changes the phases of both components. Then d obeys the 
equation 

dzi? 1 

=-( 

fi dyr 

drr #i 
iac+- ~ 

2 drr 
05 6. 

> 

Next we define ys and 7s by 

tanh ys = - __ “2 z:, 72= j7l --T($>“drl. (12) 

0 

Note that ys is of order @. The equation for eZ may then be written 

deZ 
~ = i (i~c cash ys + CQ sinh ~2) 6. 
dn 
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This differs from (11) only by the fact that the function yi(~i) has been 
replaced with ys(~s). 

Clearly the process can now be repeated step by step, and we only have 
to study the relation between the successive pairs of quantities ym, rm. The 
recursion relations expressing ynz+r and rm+r in terms of ynL and rm are accord- 
ing to (12) 

im 
h dym 

tanh ym+l = z d, 

7112 
Trn+l =s1/1 -T(e)” dTm. (13) 

0 

Note that these relations are valid even for m = 0, if one defines 

2, 

y. = log #, 7. = j$ dx. 
0 

It appears that each step has the same three effects as mentioned in sec. 
viz., 
(i) It modifies the local wave number according to (13). 
(ii) The two components are recombined by the transformation matrix 

e- fnioc e-&n% 

(iii) An additional factor fi appears in the non-diagonal terms that 
describe the remaining interaction between both components. 

5. The reflection problem. As mentioned before there is no unique way 
of decomposing the solution into a wave travelling to the right and a wave 
to the left, unless the potential is a constant. In order to define reflection 
and transmission by a potential barrier we therefore suppose 

p(x) = const. = $0 > 0 for X < 0; 

P(X) = const. = pi > 0 for x > Xl. 

In these regions one has 

y0 = const., yi = ys = . . . = 0; 

7-a = 71 = 72 = . . . = pox or pi% respectively. 

The exact solution in these regions is therefore found after the first step: 

(14) 

The last line imposes the condition that there is no incident wave from the 
right (see figure). 
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w ae ipoxlh ce iP,xh 

- ip,x/R 
w be, 

0 x1 
Fig. 1 

Reflection and transmission are determined by b/a and c/a. More precisely, 
the number of particles passing through any point x per unit time is giben 
by the probability current 

For x > Xl this is equal to Sl = @1/m) /cl29 for x<o it is 

SO = @o/@(la12- lb12). H ence the reflection and transmission coefficients are 

R = Ib/aj2, T = (fill!4 lc/a12- 

Now take the m-th order solution (zi(x), 24x)) for -co < x < 00, specified 
by the boundary condition at x = xl: 

21(x1) = cl eiplzll*, zs(xr) = 0. 

For x > xi it coincides with the desired solution (15). For x < xi the 
functions zr(x) and 22(x) can be found by the method in the previous section. 
Without explicit calculation, however, it is already clear that 22(x) =O(Rm) 
for all x. Consequently for x < 0 

74x) = 22(x) = O(#P). (x < 0) 

Hence b = O(W) so that R = O(@m). It follows that when p(x) does not 
vaksh and has derivatives of all orders in -CO < x < co (including x = 0 
and x = xi) the reflection is small of infinite order in ti. 

It also follows that T differs from unity only by terms of infinite order in ti. 
The main effect of the potential on observations in the external regions is 
therefore the phase shift due to the modification of the optical path. One 
has 

J&~(Q) = J?o exp[~~&d/~l.@), 

so that the phase shift is given by 

J&c . 
Jpoa 

= exp $ {Tm(Xr) - *1X1> + O(fi”). 

Another consequence is that the energy densities on both sides of the 
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barrier are equal, apart from terms of order ti”. The energy density is 

& = g %I2 + uPI = E(Iv112 + Ivzl2) + I I ( J v - 2fFl (v;v2 + v&J. 

The last term oscillates rapidly, and may therefore be omitted to obtain .c, 
the energy density averaged over space. Since in the external regions vs is 
of order ?F’, one finds 

E(x < 0) = E /ajs, E[X > Xl) = E lc/2. 

The fact that T = 1 may be expressed by 

po+V < 0) = p1qx > Xl) + O(+q. 

This is simular to K uls r u d ‘s result 6) concerning the adiabatic invariance 
of the quantity E/o for an harmonic oscillator with slowly varying frequency 
o and with energy E. The reason why in our case one has to mdtiply the 
energy by # rather than divide by it, is that the expression for the energy 
of a Schrodinger particle is different than for the classical harmonic oscillator. 

In the case of an electromagnetic wave in a layered medium the same 
equations hold, when the refractive index is identified with p(z), and the 
frequency UI is substituted for &i-l. Hence the reflection by a slab of such a 
medium is of order w-O”, provided that the refractive index is an infinitely 
differentiable function of x (no discontinuous boundaries!) and nowhere 
zero. The energy density is E = #2(Ivr12 + jv#‘), so that the adiabatic in- 
variant is E/P. However, these statements presuppose that the refractive 
index is independent of CO, which is rather unrealistic. 
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