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We derive equations of motion for a point particle with spin in an external electromagnetic and 
in an external scalar field. The derivation is based on the ten conservation laws of linear and 
angular momentum and on a general expression for the current by which the particle interacts 
with the external fields. 

1. Introduction and summary 

In this paper we want to discuss the old problem of how a classical, but 
relativistic particle with spin moves through an inhomogeneous external field. 

Our motivation for studying this problem is not to prepare the stage for 
quantization-after all, the Dirac equation is good enough-bu t  rather to 
derive the most general equations of motion, which are consistent with a 
number of "reasonable" conditions. The belief that such equations exist is 
based on the assumption that a classical particle with a macroscopic spin is a 
valid concept and need not be related to a quantum theory. A large number of 
authors sharing this belief is quoted in ref. 1-3. To be complete we must, 
however, mention that Bohr showed that a classical description can only be 
correct if the magnetic moment of the particle is large compared with eh/mc4). 
We also want to mention explicitly the experimental use of the Bargmann- 
Michel-Telegdi equation 5) in determining the g factors of the electron and 
muon. These equations, however, neglect gradients of the electromagnetic 
field and do not include the Stern-Gerlach effect, as we shall see later. There 
have been arguments that the Stern-Gerlach effect is not observable for 
electrons6), as distinguished from atoms. This may be true because the mass 
of the electrons is small. Here, however, we consider particles with arbitrary 
mass and then it is legitimate to ask for a relativistic description which 
includes the effects of field gradients. 
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We now discuss the conditions on our equations which we consider 
reasonable, as well as some questions of notation. We shall use the metric 
-0o00 ----- 0oil = 0o22 ~ 0033 = 1 ,  and choose the velocity of light, c, to be 1. As the 
parameter along the worldline we shall use proper time, % although, in order 
to prevent inconsistencies, it is necessary to do this with care. In particular 
one must make this choice only after obtaining the equations of motion by 
varying, for instance, an action, as we shall see in an example in section 2. 
Defining 

u~ = d X~(~), we have w i t h ,  the proper time: 

u 2 = u~'u~, = - 1. (1.1) 

For spinless particles, in which case we have a Lagrangian available, p~ is 
parallel to u" because in the particle part of the Lagrangian Poincar6 
invariance allows ~2 as the only scalar available. By p" we mean the 
particle momentum which e.g. for a point particle without spin in an elec- 
tromagnetic field is given by 

0~ 
p~, = a X e ,  eA~,.  

For particles with spin, however, ~ = u can be contracted into a scalar with 
the internal variables related to the spin. Thus, assuming we had a Lagran- 
gian, then p and u will in general not be parallel for a particle with spin. 

Calling (1.1) our first condition, our second condition is that p and u must 
be parallel in regions where the external fields are zero. This second condition 
excludes helical motions which free particles may have in some theoriesS). As 
p is constant in field free regions, condition number two implies that the 
world line is straight in these regions. 

Our third condition is related to the spin, ~ra~(~ ") =-crO~(~'). We know that 
for free particles one should have 

~r~(~')u ~('r) = 0, (1.2a) 

i.e. the spin is purely spacelike in the rest frame of the particle. It is natural to 
assume (l.2a) also in regions where the external field is not zeroS). This 
assumption, however, leads to theories which do not satisfy our second 
condition, therefore we consider an alternative possibility 9) 

tr~(~')p~(T) = O. (1.2b) 

With our second condition (1.2b) reduces to (1.2a) in regions with zero 
external field. In section 2 we shall investigate both possibilities (1.2a) and 
(1.2b) for a scalar field. We then show that (1.2a) combined with our fourth 
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and main condition leads to inacceptable theories of the type found by 
FrenkelS). 

Our fourth condition is that the equation of motion be compatible with the 
ten conservation laws of linear momentum and of angular momentum (both in 
the four-dimensional Minkowski sense) of particle plus field. 

As our fifth condition we ask that the equation of motion contain time 
derivatives of the position of no higher than second order, and time deriva- 
tives of the spin of no higher than first order. 

In sections 2 and 3, proceeding on the basis of the first four conditions, we 
shall find that two more desirable conditions are satisfied: condition six 

d p2 = 0, or p2 = _ m z = constant (1.3) 
dz 

and condition seven 

d ( t ~ r ~ )  = 0. (1.4) 
dq" 

For the scalar field, and for the electromagnetic field with zero gyromagnetic 
interaction (1.3) and (1.4) are satisfied exactly. For the general electromag- 
netic field (1.4) holds again but the condition (1.3) is only satisfied up to 
second order in the external fields. We will therefore restrict ourselves to 
equations which only linearly depend on the fields and their derivatives, so 
that no particles with quadrupole moments are admitted. 

To be complete, let us mention the alternative description of spin by a four 
vector W ~, the so-called "Paul-Lubafiski" vector. In order that this vector 
W ~ contains the same information as ~,~", its definition depends on whether 
one has (1.2a) or (1.2b). In the first case one has 

and 

W p, l_tLvXo'~ ,, = 2~ o~.~, (1.Sa) 

In the second case one needs instead 

1 ~ .A~ 
W p' = ~ E o'v~tpo., 

(1.6a) 

(1.5b) 

1 
~ = m e ~ t ~ W ~ P  v. (1.6b) 

The Lagrangian description, which is available for spinless particles, is used 
in what follows as a heuristic tool. Actually several examples of Lagrangians 
for spinning particles are availableT), but they all seem to have disadvantages, 
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as discussed by Grassbergert°). One thing which we take over from the 
Lagrangian description is the requirement of "chronometric invariance"7). 
This requirement stipulates that the theory be invariant under a change in the 
parameter labelling the events along the world line of the particle. This 
parameter can then afterwards be chosen in such a way that the acceleration 
in the direction of the velocity vanishes: fi • u = 0, i.e. this insures our first 
condition. This chronometric invariance is helpful in the case of the scalar 
field and also in finding the correct gyromagnetic interaction with the Maxwell 
field. 

We will assume that there is a Lagrangian density for the external fields 
including the source terms describing the actions of the particle on the field. 
Thus, we can derive that part of the energy-momentum tensor which contains 
contributions from the field and from the interaction with the particle, but not 
from the particle alone. We will then impose the conservation laws, which 
then provide the equations of motion for the particle and its spin, after we 
have decided what the relation is between the momentum and the velocity. 
This relation is fixed by the "reasonable" conditions, which we mentioned 
before. 

In the next section we derive the equations for a particle with spin moving 
in a scalar external field. The result we obtain is a generalization of the 
equations given by Schwinger xl) in that also derivatives of the field now 
occur. In section 3 the method is applied to the electromagnetic field. Our final 
equations are the same as those given by Suttorp and de Groot t) (eqs. (61) and 
(62) of ref. 1). They have an extra term as compared to the equations of 
Good12). For a homogeneous field our equations reduce to those of BMTS), but 
for an inhomogeneous field we also find a so-called Stern-Gerlach term. 

Despite the fact that our final equations are identical to those of Suttorp 
and de Groot, our derivation of these equations has a number of advantages. 
These will be discussed at the end of section 3. 

Our approach, further, is of great generality and avoids, among other 
things, difficulties in the Lagrangian method connected with the difference in 
center of energy and center of charge. 

2. Spinning particle in a scalar field 

In this section we want to discuss the derivation of the equations of motion 
for a particle with spin, moving in an external scalar field qb(x). We will first 
obtain the equations for a spinless particle from a Lagrangian formulation and 
then show how the same equations can be derived from the conservation law 
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for energy-momentum. This second method is then applied to the case of a 
particle with spin. 

Consider the action functional of the field th(x) and of the world line X(~-) 
of the particle 

A = f d4xX/~ ,  (2.1) 

where 

= - d e t l l g . ~ l l  = + 1 (2.2) 

and the Lagrangian density is given by 

~Y = -12g~VE~E~ - f d'r~-l/2(m - edp(x))~4(x - X (~'))~v/-g,#3u"u ¢3. (2.3) 

We have introduced the vector field and the 4-velocity by 

dX ~ 
E~ = 0~b and u ~ - . (2.4) 

dr 
From this action the field equations and the equation of motion for the 
particle are derived in the usual way and we obtain 

O~E" = - S and O,E~ - OvE~ = 0 (2.5) 

with 

S ( x )  = e f d7 ~4(x - X(~)) (2.6) 
J 

and 

[m - ecb(X ('r))](g "~ + u~uV)it~ = e (g  ~ + u~u~)Ev. (2.7) 

In the derivation of this last equation it was important to keep the factor 
X / - g ~ u ~ u  ~ in the chronometrically invariant Lagrangian (2.3) and only in the 
very end replace it by X/-~2= 1. 

The same equation can be derived from the energy-momentum tensor T ~, 
as we will now demonstrate. We define the (symmetric) T "v with the method 
of variation of the chronometric invariant action A of eq. (2.1) with respect to 
the metric tensor. [See e.g. ref. 14), p. 360.] 

~gA=~g f d4x~/~=~ f T~g~v~/~d,x. (2.8) 

In this method it is important to have all indices in their "natural" positions, 
i.e., lower indices for g,~ and E~ and upper indices for XU(~ ") and u ~. Keeping 
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this in mind and using ~4) 

6g ~" = - g ~ g ~ 6 g ~  and 6~ = ~,g~"6g~,, (2.9) 

the energy-momentum tensor becomes 

= E ~ E "  - ~g~"E~EA + f dT 64(x - X(~)) (m0-  T ~ ( x )  ec~(X(.r)))u~u ~. (2.10) 

We now consider the field-plus-interaction part of this tensor 

T~" - E ~ E  ~ -12g~EAE~ - e f d~- 64(x - X ( ' r ) ) 6 ( X O ' ) ) u ~ u  ~ (2.11) 

and show how it can be used to derive the equation of motion. A simple 
calculation gives 

O j  "~  = - S E  ~ - e f d7 64(x - X(~'))[ti ~ - E~u~u~]. (2.12) 

Since the momentum of the field is given by f d3xT°~(x, t) we can calculate 
the change in the momentum of the particle f rom the conservation of 
momentum and obtain 

dp"  = _ f d3xO~,~v" dt = f d3xO°]'°" (2.13) 

Substitution of (2.12) gives after performing the integrations over  x and ~-: 

dP~ e4~il ~ = e(g  ~" + u~uV)E, .  (2.14) 
d': 

By choosing the relation between p~ and u ~ as 

p~ = m u  ~ (2.15) 

it is seen that (2.14) and (2.7) are equivalent, since the equations are consistent 
with u 2= - 1 .  In the spin case we will get consistency only if terms O(e 2) in 
(2.14) can be neglected, i.e., for weak fields. Omitting the same terms here too 
we obtain for the spinless case as final equation of motion 

mfi ~ = e(g  ~v + u~u")Ev.  (2.16) 

At this point we want to observe that, although this equation looks rather 
innocent, it should not be taken too seriously for strong fields or for  too long 
times. This becomes clear by considering the case where a particle is 
accelerated by a constant field E0 = 0, E = (0, 0, E). The solution of eq. (2.16) 
is then given by u v = (v ' i  + u 2, 0, 0, u) with 
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t leE TX u(,)= g -k- ]' (2.17) 

which shows that after a finite eigentime the particle would reach the velocity 
of light as seen from a fixed frame. This effect is even stronger when 4~(X('r)) 
in eq. (2.14) is not neglected. This nonsensical result should eventually be 
removed by taking radiation damping into account. In the present paper, 
however, we will not try to do this. 

We will now apply the same method to the case where the spin is not zero. 
The derivation of eq. (2.14) is still valid, but the relation (2.15) between 
momentum and velocity will have to be modified. Also, we will show that one 
has to take the constraint p~cr,~ = 0 and not u~tr~ = 0. The spin equation is 
derived from the conservation of angular momentum in the following way. 

The density of angular momentum residing in the field plus interaction is 
equal to 

J~ (x )  = x~]P~ - x~]~ ~, (2.18) 

where ]P~ is given by eq. (2.11). Now consider two spacelike three-dimen- 
sional surfaces S1 and $2 (see fig. 1), which enclose a four-dimensional volume 
~. Let ~ and ~- + d~" be the times at which the worldline pierces these surfaces. 
The increase in the total field-angular momentum J~a = f d3xJ, o during this 
time interval is equal to 

dL~=f d3rd° - f d3rd° = f d4xOoJ%= f d4xOfi o. 
S 2 S 1 ~] J] 

Substituting eq. (2.18) and using the symmetry of I ~  then gives 

d J~o = [ d4x[x~O.7"~ - xoO~T~]. (2.19) 
n 

The integration can be performed using the expression (2.12). From the 
conservation of angular momentum we can now calculate the change in the 

Fig. 1. Worldline for the calculation of dJ.~. 
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angular momentum Joe of the particle and obtain 

dp~ 
dJ~°d~- = X~(r) - X~(r) dt , (2.20) 

where eq. (2.14) has been used. Taking the orbital angular momentum of the 
particle as 

l ~  = X ~ p ~  - X~p~ ,  (2.21) 

the internal angular momentum becomes S~ = j~a-  1~. Since we have no 
electric dipole moment  we can identify this S~ with the spin tensor tr~. The 
equation for this spin tensor can now be derived from (2.20) and (2.21) and 
becomes 

( r ~  = u~p~ - u~p~. (2.22) 

This equation, together with the one obtained from (2.14) by neglecting the 
term eSti ~, i.e., 

p ~  = e ( g  ~v + u ~ u v ) E v ,  (2.23) 

determines the motion of the particle with its spin, as soon as we have 
established a relation between the momentum of the particle and its velocity. 

If we had a Lagrangian it would contain scalars formed by contracting u 
with internal variables related to the spin. Then, p would no longer be 
proportional to u. We anticipate this by writing 

p~' = m o ( ~ ) u  ~' + v ~', (2.24) 

and solve for v" and for m0(r). We demand that in regions where the external 
field is zero v must be zero and m0 must be m, where p2= _ m 2. 

In solving for v there are two distinct ways to proceed. In regions where 
the external field is nonzero we may require either 

tr~u ~ = 0, or (1.2a) 

~#p  t3 = 0. (1.2b) 

In regions with no external field (1.2b) reduces to (1.2a) as v is to be zero in 
such regions. Let  us investigate both possibilities (1.2a) and (1.2b). We shall 
see that the former  leads to undesirable equations after which we proceed 
with the latter. 

Assuming (1.2a), the vector  v can be determined uniquely from (2.22), the 
result is 

v~ = ~r~ti # = - tY~u ~. (2.25) 

Substituting into (2.22) and (2.23) gives the equations 
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( r~  = cr~vf~ Vu~ - o'~(~ Vu~, (2.26) 

(rnou '~ + mou  '~ + o'"~ii~) = e ( g  ~ + u'~u~)E~. (2.27) 

Equations (2.26), (2.27) have third order derivatives of the coordinates. Also v 
given by (2.25) is not zero outside the region of interaction. Setting E~ = 0 and 
m0 = m in (2.27) gives Frenkel 's equation s) for a free particle. These equations 
have solutions which give a helical motion for a free particle13). The equations 
are, however, consistent with the conservation laws as is also obvious from 
the fact that they can be derived from a LagrangianS). We conclude that the 
equations (2.26), (2.27) are undesirable and from here on we shall work with 
(1.2b), also in the case of the electromagnetic field. One could limit oneself to 
solutions which originally have a radius zero for the helical motion. This 
radius would not be disturbed much by a weak external field and similarly v ~ 
would be small in such a field. However, v ~ will not always return to zero 
when the particle leaves the field and a transit through a strong field will 
sometimes lead to a free particle with a large helical motion. 

We now demand that 

p ~cr~v = 0 (2.28) 

for all times. From this follows 

/~ ~cr~v + p ~6-~v = O. (2.29) 

Writing (2.22) as 

6-~,~ = 1___ (v,,p~ - v~p,,) (2.30) 
mo 

and substituting this into (2.29) gives 

1 
D"o',,~ + ~ p~(v~p~  - v~p~) = O. (2.31) 

Without loss of generality we may assume v to be perpendicular to p, as a 
component in the direction of p can be taken care of via m0 in (2.24). Hence 
we set 

p~v~ = 0 (2.32) 

and find 

_ m 0  . V~ -- ~-~ p acr~v. 

From the anti-symmetry of 0% then follows that 

v~p ~ = O. 

(2.33) 

(2.34) 
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Combining this with 

u~p ~ = 0, (2.35) 

which is der ived f rom (2.23), we immedia te ly  obtain p~/~ = 0, so that  p 2 =  
- m 2 is indeed a constant .  Also 

tr 2 = tr~Vtr~ = cons tant ,  (2.36) 

because  of  (2.30) and (2.28). Eq.  (2.33) can now be wri t ten as 

emo 
v~ = ----rot (g~,A + u~,u~)E~,o. (2.37) 

and we obse rve  that  this is of  first order  in e. Since 

1 ~ 1 
u ~ ° ~  = m00 (p - v~)tr~ - m0- v~tr~ = O(e),  (2.38) 

we can write (2.37) 

v~ - ~-r2 ° E~o-,~ + O(e2). (2.39) 

The  funct ion  m0(r) can be de te rmined  by  taking the square of  p~ and using 
(2.24). We find 

m0: = m 2 -  v 2. (2.40) 

On subst i tut ion of  (2.39) we can solve for  m0: 

m0(~) = m[1--~m4(E~'tr ,~: , )(E~tr~ ') l+O(e3),  (2.41) 

so that  eq. (2.39) becomes  

e v~ = - - -  E~tr~v + O(e2). (2.42) 
m 

This can now be used in the equat ions  (2.23) and (2.30) to give 

f ~  = e (g,~V + u~uV)E~ + _ ~  u~,O~,E~trV,, (2.43) 
m 

and 

t~'~v e = m (tr~u~ - tr~Au~)E ~. (2.44) 

In both  equat ions  terms of  order  e 2 have been  neglected.  Using the definit ion 
(1.5b) fo r  the sp invec tor  the last two equat ions  can also be wri t ten as 
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and 

(2.45) 

(V~ = e_ (W~E~)u~,. (2.46) 
//1 

They are consistent with U 2= --1,  W 2= constant and u~W~ = 0. Note also 
that these equations differ from those given by Schwinger") in the term in 
(2.45) containing the derivatives of the field. This term, however, is necessary 
in order to satisfy the conservation laws. 

3. Spinning particle in an electromagnetic field 

First, consider a particle without spin, interacting with the electromagnetic 
field. The Lagrange density is 

= - ~ F ~ v ( x ) F ~ ( x ) g ~ g  v~ + e f d ' r  g - l /2 t$ (x  - X (~))A~ ( X  ('r))u ~, (3.1) 

where we have omitted the part describing the free particle. With the action 
given by (3.1) one can repeat the analysis of the beginning of section 2. We 
limit ourselves to giving some of the formulae needed in the remainder of this 
section. The Maxwell equations with source are 

c~F~V(x ) = - j V(x ) (3.2) 

~ F ~  + O~F~ + O~F~ = 0, (3.3) 

where 

j~(x) = j(o)(X) = e f dr 8(x - X(z))u"(¢). (3.4) 

The field F ~ and its dual P~v= 21e~a~Fa~ are related to the electric and 
magnetic fields in the usual way 

F °k = E~ ; F kl = ~-k lmBm ; fTOk = Bk ; ,~l  = _ E k l m E m .  

As j~ has its index up and A~ its index down, there is-no interaction 
contribution to the energy momentum tensor. For this tensor of Maxwell field 
(+ interaction) one finds 

~'~d(x) = F ~ F  ~ - ] F ~ F ~ g  ~.  (3.5) 

With (3.2), (3.3), one has 

a,,T ~(x) = - F ~j~ (x). (3.6) 
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Next,  consider a particle with spin. Although we do not have a Lagrangian 
density for the entire system, we assume a Lagrangian density for the 
Maxwell field interacting with its sources. In this Lagrangian density we now 
expect  a possible gyromagnetic interaction term of the form 

--4meg f dr  ~_,/28(x _ X (,r))X/_u,~utJg,~ ~ (F  . or), (3.7) 

where F . t r  = tr~(~')G~(X(~')). Because of symmetry arguments such a 
coupling was not possible to the scalar field of section 2. We have used g to 
denote the gyromagnetic ratio. The factor involving the square root  is neces- 
sary in order to maintain chronometric  invariance, which will eventually 
ensure that p2 is a constant. The indices in (3.7) have been put in their natural 
places, or "~ being an angular momentum, has both indices up. The term (3.7) 
gives a contribution to the energy momentum tensor t ~ for  Maxwell field 
plus interaction. We get 

l"~V(x) = F~(x)F"~(x)  - Jg~"F~F"a(x) 

+ -~m f d'r ~(x - X(T))~t3(z)F~t3(X(r))u~O')u'(~.).  (3.8) 

It is useful to note that, via a partial integration, the interaction term (3.7) is 
equivalent to a modification of the current (3.4): 

J " ( x ) = e  f d~{ u " ( r ) ~ ( x - X ( ' ) ) +  g v ' - u 2 ° ~ ( ' O o ~ 3 ( x - X ( ~ ) )  . (3.9) 

With (3.9) the Maxwell equations can be maintained in the form (3.2), (3.3). 
Thus, one finds 

aj ' s , , (x )  = - F~'j~(x) 

+ df (3.10) 

From the conservation laws of total linear four momentum and four angular 
momentum, one obtains in a way analogous to that explained in detail in 
section 2 

~mm e__g_g {ti~(F " tr) + u~(F " . tr) + u~'(F • 6-)}. D ~ = e F~ut j  + tr~t3O~F~ - 4m 

With (3.3) the second term on the right-hand side of this last equation can be 
written as ( - eg /4m)O"(F  • or). It can then be combined with the fourth term 
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giving 

[9" = e F ~ u ~  - 4meg ,~,~°~ + u,'ut3)(gt3(F • or) - -~m i t ~ ( F  " or) - -~m u " ( F  . 6"). 

(3.11) 
The last two terms are  O(e  2) and will be omitted in what follows. 

For the spin equation we obtain, again from the conservation law of total 
angular four momentum: 

eg ( F f o r ~  - F~or~v) .  (3.12) 6",~v = p,,uv - pvu,~ + 

There is a difference with the spin zero field in that the current (3.9) 
contains derivatives of the delta function. These derivatives act on the x~ and 
x~ on the right-hand side of (2.19) and produce the last term on the right-hand 
side of (3.12). 

Before proceeding with our derivation let us point out that (3.11) and (3.12) 
follow uniquely from the conservation laws and from the expression (3.9) for 
j " ( x ) .  All what follows is unique once j " ( x )  is given. Therefore it is a natural 
question to ask what is the most general expression for j~. Because of (3.2) 
the general j~ must satisfy ~d ~ = 0 as an identity. Also we want it to be local 
and not to contain derivatives of the delta function of order higher than one. 
Furthermore, it should be constructed out of u and cr and should not contain 
the fields. We have u 2 = - 1, or2 = constant and or~p v = 0, which implies with 
(2.24) and with v linear in the fields, that also u~o-~ may be regarded as zero 
in constructing j~. Using all this information one can show that (3.9) is the 
most general expression for j". For the scalar field the source term ( S ( x )  of 
eq. (2.6) also had to be a scalar quantity and could therefore not be generalized to 
include the spin variables. 

For the same reasons as in section 2 we do not expect p and u to be 
parallel. We therefore write again 

p "  = mo( 'r )u  ~ + v".  (2.24) 

Demanding (1.2b), i.e., or • p = 0, then gives 

mo{ + eg ~ ,~vor } = O(e) ' (3.13) v ~ = ~  p~or~ 2 m V ~  v~ 

so that 

V/3/J/3 = O(e2). (3.14) 

Therefore 

d_~p2= 2p~i0~ = 2(m0u~ + v~)lO ~ = O ( e 2 ) ,  (3.15) 
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where the last equality sign follows from (3.14) and from u0/~ ~ = 0, which is 
obvious from (3.11). 

So we obtain again that 

p 2 = _ m 2 = constant + O(e:). (3.16) 

The O(e 2) terms are zero for g = 0. The square of the spin is constant,  even 
for g ~  0. This is so because from (3.12) it follows that 

d-~tr 2 = o'~Ft3~.v~ = 0. (3.17) 
2eg 

m 

The last equality is a consequence of the anti-symmetry of F and tr. As in 
(2.41) we find again that m0 = m + O(e:). From (3.13) and (3.11) v~ becomes 

e = - ~ (g - 2)u~F~cr~ + ~ (g~ + u ~u ~)~FApo'~Po'~ (3.18) v~ 

and its derivative 

e 2)u,u~O ~F""~,o, 
~ = - T - ~ ( g  - 

(3.19) 

in which not only terms O(eZ), but also terms containing second derivatives of 
the fields are neglected. 

The expressions (3.18) and (3.19) for v~ and ~ are now substituted into 
(3.1 l) and (3.12) and in this way we find the most general equations satisfying 
our original conditions: 

f~, = e F~,~u~ eg e 2)u~u~a~F,,~o.~ , m - 4 - m  2(g~'"+ u~'u")O~F~tjcr~O +2-m 2(g - 

(3.20) 

and 

6-~ = ~mm ( F ~ ~  - F~'Y~ 

+~m I ( g -  2)u~F~' - g' O~'FA°°%] [u'~°~'~- (3.21) 

Using eqs. (1.5b) and (1.6b) the spin tensor in these equations can be replaced 
by the spin vector and the equations then become 

f~,, = e F~,Vu ~ _ ~ m 2  (g~,~ + u~,u~)a~pXWpuA 
rtl 

+ e _ ~  
2m 2 (g - 2)(g~ v + u~u ~)u~B~P,~W ~ (3.22) 
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and 

e 
fV~ = -~m F~'"W" +2--re(g- 2)(u~F"t3Wt3)u~" --~m ~ (W'O"pt3vw~uv)u~'" 

(3.23) 

Also these equations are consistent with u s= - 1 ,  W 2= constant and u • W = 
0. If we disregard for a moment the ( g -  2) term in (3.22), the last two 
equations are identical with eqs. (15) and (16) of the paper by Goodn), when 
his quadrupole terms are omitted. 

The existence of the (g - 2 )  term in (3.22) was pointed out before in ref. 1. 
In the instantaneous rest system it is equal to 

e aE 
2m 2 (g - 2)S ^ -~-. (3.24) 

Although this term is small compared to the Lorentz force, its presence is 
dictated by the conservation laws and it would be nice if it could be 
observed. 

Neglecting in (3.22) and (3.23) all terms which contain derivatives of F~,, 
one obtains 

mfi ~" = eF~'"u, (3.25) 

and 

e 
W~' = ~m F""Wv + ~ (g - 2)(u"F"t~Wt3)u~" (3.26) 

which are the equations postulated by Bargmann et al)). These equations are, 
up to the order considered, consistent with the conservation laws as we have 
shown. However,  by neglecting derivatives of the field these equations do not 
contain the Stern-Gerlach effect. 

Note, that similar to what happened in section 2 for the scalar field, the 
V - u  2 term in (3.9), to which we were guided by chronometric invariance, is 
essential to ensure (1.3) up to order e ~. in this respect our work differs from 
that of ref. 1. 

Let  us also remark that we could have made assumption (1.2a) instead of 
(1.2b) also for the interaction with the Maxwell field. This is essentially what 
was done by Frenkel 8) and leads to his equations. These equations, however, 
contain third derivatives of the position coordinates and do not satisfy the 
condition that p and u always be parallel outside the fields (helical motion). 
One could take solutions were initially p and u are parallel. Weak fields would 
not disturb this much, but v, the difference between p and u, would in general 
not return to zero, but be of first order in the fields which the particle has 
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traversed. However after going through a strong field one would, in general, 
obtain particles with a large v and with a large helical motion. 

Finally, our eqns. (3.20) and (3.21) are identical to (61) and (62) of ref. l, 
when substituting m for their M*. The derivation which leads to the final 
equation is, however, somewhat different. Just like in the scalar case we did 
see to it that chronometric invariance is satisfied at all stages. Because of this 
chronometric invariance there is a difference in the equation for/J.  Compare 
their equation (52) to our (3.11), which contains a projection operator, just as 
it occurred in our equation (2.23) for the scalar field. Thus, for us it is possible 
to maintain p2 = _ m E at all stages, with m E constant (up to second order in e). 
The authors of ref. 1 had, however,  p2 = _ M 2 not constant, and had to switch 
to the quantity M*, which is then also conserved (up to second order in e). 

4. Conclusions 

Assuming that there is an action and a Lagrangian density describing the 
external field including the particle as a source, we use the overall con- 
servation laws of linear and of angular momentum to derive the equations of 
motion of spinning particles. In this derivation the only assumptions made are 
the following. First one makes an assumption about the source term by which 
the particle acts back on the fields. By arguments of Poincar6 invariance, by 
demanding that the source terms do not include the fields and by requiring 
chronometric invariance (invariance for reparametrizing the worldline of the 
particle) we find essentially unique expressions for these source or interaction 
terms. Second, one makes the assumption (1.2b) that p . ( y - - 0 .  This differs 
from u • or = 0 only in regions where the external field does not vanish. This 
follows from our third assumption, which is that p and u be parallel outside the 
fields. This third assumption can be checked after our derivation, as was done in 
sections 2 and 3. We also obtain dp2/dl - = 0, dtr2/d~ = 0 and du2/d~ = 0. 

The final equations obtained are unique. They differ somewhat from those 
of Good12), which were derived without explicit consideration of conservation 
laws. The final equations agree with those of Suttorp and de Groot. There is, 
however, an essential difference in the derivation, which was discussed at the 
end of section 3. 
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