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Causal Dynamical Triangulations in four dimensions provide a background-independent definition of
the sum over geometries in nonperturbative quantum gravity, with a positive cosmological constant. We
present evidence that a macroscopic four-dimensional world emerges from this theory dynamically.
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Introduction.—String theory has highlighted the fact
that the notion of ‘‘dimension’’ in a quantum theory of all
fundamental interactions has a very different status from
that in any classical field theory or any perturbative
quantum field theory on a fixed background, where the
dimension of spacetime remains fixed throughout. This
may be seen as a particular case of the more general truth,
not always appreciated, that in any nonperturbative the-
ory of quantum gravity dimension will become a dynami-
cal quantity, along with other aspects of geometry. (By
dimension we mean an effective dimension observed at
macroscopic scales).

This Letter deals with an approach to quantum gravity
in which the dynamical property of spacetime dimension
is particularly transparent [1]. The approach is that of
‘‘nonperturbative quantum gravity from Lorentzian dy-
namical triangulations’’ or, for short,‘‘Causal Dynamical
Triangulations’’. In it, the sum over all spacetime geome-
tries takes the form of a sum over four-geometries con-
structed from discrete building blocks [12]. Each collec-
tion of building blocks, glued together according to a set
of rules, represents a geometry contributing to the path
integral. To extract its physical geometric properties one
has to perform the path integral, renormalize, and evalu-
ate the expectation values of appropriate observables,
including the effective (or Hausdorff) dimension dh.

Note that the dynamical nature of ‘‘dimensionality’’
implies that the Hausdorff dimension of the quantum
geometry is not a priori determined by the dimension-
ality at the cut-off scale a, which is simply the fixed
dimensionality d of the building blocks of the regularized
version of the theory. An example in point are the at-
tempts to define theories of quantum geometry via
‘‘Euclidean Dynamical Triangulations’’, much-studied
during the 1980s and ‘‘90s. In these models, if the di-
mension d is larger than 2, and if all geometries contrib-
ute to the path integral with equal weight, a geometry
with no linear extension and dh � 1 is created with
probability one. If instead—as is natural for a gravity-
inspired theory—the Boltzmann weight of each geome-
try is taken to be the exponential of (minus) the Euclidean
Einstein-Hilbert action, one finds for small values of the
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bare gravitational coupling constant a first-order phase
transition to a phase of the opposite extreme, namely, one
in which the quantum geometry satisfies dh � 2. This is
indicative of a different type of degeneracy, where typical
(i.e. probability one) configurations are so-called
branched polymers or trees (see [13–19] for details of
the phase structure and geometric properties of the four-
dimensional Euclidean theory). Unfortunately, this geo-
metric degeneracy is also reflected in the expectation
values of other geometric quantities, and makes
Euclidean Dynamical Triangulations an unlikely candi-
date for a theory of four-dimensional quantum gravity.

The requirement that a background-independent quan-
tum gravity theory possess the correct semiclassical
limit, given by a macroscopically four-dimensional
spacetime with microscopic quantum fluctuations, is
highly nontrivial. The apparent failure of higher-
dimensional Euclidean nonperturbative quantum gravity
to do so (not limited to this particular approach [20]),
together with a desire to formulate a quantum gravity
with the correct Lorentzian signature and causal proper-
ties [21] were our main reasons for suggesting a radically
different approach to the sampling of geometries in the
path integral [22–25]. A further motivation was to con-
struct a path integral more closely related to canonical
formulations of quantum gravity. Starting from
Lorentzian simplicial spacetimes with d � 4 we insist
that only causally well-behaved geometries appear in
the (regularized) path integral, as described in detail in
[25]. A further crucial property of our explicit construc-
tion is that each configuration allows for a rotation to
Euclidean signature, a necessary prerequisite for discus-
sing the convergence properties of the sum over geome-
tries, as well as for using Monte Carlo techniques.

In what follows we will report on the outcome of the
first ever Monte Carlo simulations of four-dimensional
causal dynamical triangulations. It differs radically from
what was found in previous simulations of four-
dimensional Euclidean dynamical triangulations. We
will present strong evidence that the Lorentzian frame-
work produces a quantum geometry which is both ex-
tended and effectively four-dimensional. This is to our
2004 The American Physical Society 131301-1
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FIG. 1 (color online). Snapshot of a ‘‘typical universe’’ of
volume 91.1 k from the Monte Carlo simulations. The total
time extent (vertical direction) is t � 40 as indicated. The
circumference at integer-t is the spatial three-volume V3�t� 

0:02 (in units where as � 1). The surface represents an inter-
polation between adjacent ‘‘spatial volumes’’. No attempt has
been made to capture the actual 4d connectivity between
neighboring spatial slices.
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knowledge the first example of a theory of quantum
gravity that generates a quantum spacetime with such
properties dynamically.

The emergent macroscopic 4d geometries.—All causal
simplicial spacetimes contributing to the path integral are
foliated by an integer-valued ‘‘proper-time’’ t, and each
geometry can be obtained by gluing together four-
simplices in a way that respects this foliation. Each
four-simplex has timelike links of length-squared a2t
and spacelike links of length-squared a2s , with all of the
latter being located in spatial slices of constant integer-t.
These slices consist of purely spacelike tetrahedra, form-
ing a three-dimensional piecewise flat manifold, whose
topology we choose to be that of a three-sphere S3.

Each spatial tetrahedron at time t is shared by two four-
simplices [said to be of type (1,4) and (4,1)] whose fifth
vertex lies in the neighboring slice of time t� 1 and t�
1, respectively. In addition we need four-simplices of type
(2,3) and (3,2) which share one link and one triangle with
two adjacent spatial slices [25]. Let us assume the link
lengths are related by

a2t � ��a2s : (1)

All choices �> 0 correspond to Lorentzian and all
choices �<�7=12 to Euclidean signature, and a
Euclideanization of geometry amounts to a suitable ana-
lytic continuation in �. Setting � � �1 leads to a par-
ticularly simple expression for the (Euclidean) Einstein-
Hilbert action of a given triangulation T (since all four-
simplices are identical geometrically), namely,

S�T� � �k0N0�T� � k4N4�T�; (2)

with Ni�T� denoting the number of i-dimensional simpli-
ces in T. In (2), k0 is proportional to the inverse (bare)
gravitational coupling constant, k0 � 1=G, while k4 is a
linear combination of the cosmological and inverse gravi-
tational coupling constants. The action (2) has been cal-
culated from Regge’s prescription for piecewise linear
geometries. If we take � � �1 the Euclidean four-
simplices of type (1,4) and type (2,3) will be different
and thus appear with different weights in the Einstein-
Hilbert action [25]. For our present purposes it is conve-
nient to use the equivalent parameterization

S�T���k0N0�T��k4N4�T����2N14�T��N23�T�	; (3)

where N14�T� and N23�T� denote the combined numbers in
T of four-simplices of types (1,4) and (4,1) and of types
(2,3) and (3,2), respectively. The explicit map between the
parameter � in Eq. (3) and � can be readily worked out.
For the simulations reported here we have used �’s in the
range 0.4–0.6.

The quantum-gravitational proper-time propagator is
defined by
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Gk0;k4;��T
�3��0�; T�3��t�	 �

X

Tt

1

CTt

e�S�Tt�: (4)

where the summation is over all four-dimensional trian-
gulations Tt of topology S3 
 �0; 1	 and t proper-time
steps, whose spatial boundary geometries at proper times
0 and t are T�3��0� and T�3��t�. The order of the automor-
phism group of the triangulation Tt is denoted by CTt

. The
propagator can be related to the quantum Hamiltonian
conjugate to t, and in turn to the transfer matrix of the
(Euclidean) statistical theory [25].

While it may be difficult to find an explicit analytic
expression for the full propagator (4) of the four-
dimensional theory, Monte Carlo simulations are readily
available, employing standard techniques from Euclidean
dynamically triangulated quantum gravity [26]. Ideally
one would like to keep the renormalized cosmological
constant � fixed in the simulation [27]. The presence of
the cosmological term �

R ���
g

p
in the action then implies

that the four-volume V4 fluctuates around hV4i ���1.
However, for simulation-technical reasons one fixes in-
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stead the average number hN4i of four-simplices, or hV4i,
from the outset [28], effectively working with a cosmo-
logical constant �� hV4i

�1.
Figure 1 shows a snapshot of a configuration with N4 �

91100 four-simplices as it appears in the Monte Carlo
simulations. Important information is contained in how
the volume V3 of spatial slices and the time extent � of the
observed universe [29] behave in relation to the total
spacetime volume V4. To good approximation we find
that the spatially extended parts of the spacetimes for
various four-volumes V4 can be mapped onto each other
by rescaling the spatial volumes and the proper times
according to

V3 ! V3=V
3=4
4 ; � ! �=V1=4

4 : (5)

This is illustrated in Fig. 2, displaying the so-called
volume-volume correlator

hV3�0�V3���i �
1

t2
Xt

j�1

V3�j�V3�j� �� (6)

measured for three different spacetime volumes V4, using
the rescaling (5), and where we have periodically identi-
fied T3�t� � T3�0�. The detailed statistical analysis lead-
ing to (5), (6) and the measurement of the spatial
Hausdorff dimension below will be published elsewhere
[30] (see also [23] for an analogous treatment in three
dimensions).

Relation (5) strongly suggests that what we ‘‘observe’’
in the simulations are genuine four-dimensional universes
whose spatial hypersurfaces are three-dimensional. To
test this we have recorded the average geodesic distance
hriV3

between points in the spatial three-volumes V3. If
the spatial geometry is indeed three-dimensional one
expects a leading behavior

hriV3
� V1=3

3 : (7)

Figure3 shows the results of measuring hriV3
in the macro-
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FIG. 2 (color online). Measurement of spatial volume-
volume correlators for spacetimes with N4 � 45:5, 91.1, and
184.4 k, and after performing the rescaling (5).
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scopic spatial slices of our quantum universes [31]. It
combines the data for universes with total N4 � 45:5,
91.1, 184.4 and 371.2 k. The straight line in Fig. 3 has
merely been drawn to guide the eye; it corresponds to the
three-dimensional behavior (7). From these combined
measurements, the evidence for three-dimensional slices
is rather compelling. A best fit for the spatial Hausdorff
dimension dh in the relation hriV3

� V1=dh
3 yields dh �

3:10� 0:15. As should be clear from the Introduction,
reproducing this ‘‘classical’’ dimensionality dynamically
from a fully nonperturbative formulation of quantum
gravity constitutes a highly nontrivial result. However,
it should be kept in mind that a property like hriV3

� V1=3
3

provides only a crude characterization of the spatial
geometry, and by no means implies that the space ‘‘ob-
served’’ in the computer simulations is a nice smooth 3d
space at short distances. Further details about the simu-
lations, measurements, fits, and the complete phase dia-
gram of the model will be published shortly [30].

Discussion.—Causal dynamical triangulations are a
framework for defining quantum gravity nonperturba-
tively as the continuum limit of a well-defined regular-
ized sum over geometries. Interestingly, and in complete
agreement with current observational data is the fact that
the physical cosmological constant � in dynamical tri-
angulations is necessarily positive [33].

Recall that the effective cosmological constant in our
simulation is 1=hV4i. Since, according to (5), both the
spatial three-volumes and the time extension of our quan-
tum universe relate to � canonically (that is, in a way
expected from their classical dimensionality), it is appro-
priate to call this universe macroscopic.

This leads us to conclude that we have observed the
emergence of a four-dimensional macroscopic world with
three-dimensional spatial geometries. Judging from the
computer simulations, this dynamically generated quan-
tum geometry acts as a background geometry around
which small quantum fluctuations take place. Further
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FIG. 3 (color online). The log-log plot of the average geodesic
distance hriV3

versus V3. It combines data from universes where
N4 � 45:5, 91.1, 184.4 and 371.2 k.
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numerical studies will be needed to make this into a
quantitative statement. The situation is really rather re-
markable: we started out from an explicitly background-
independent formalism and have rederived a particular
stable background geometry. Obviously, questions about
the nonrenormalizability of perturbative gravity will
have to be readdressed in this new context (maybe along
the lines outlined in [34]), with the benefit of having an
explicit microscopic model of quantum spacetime and its
quantum fluctuations. We hope future simulations and
analytic studies of the model will teach us how to recon-
cile these aspects. The final picture may be that of an
asymptotically safe theory in the sense of Weinberg [35],
or turn out to require a completely new theoretical
framework.
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