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A lateral inhibition neural network that emulates a
winner-takes-all algorithm

B. Krekelberg* & J.N. Kok!

Abstract. We determine the conditions under which a lateral inhibition type network with
binary neurons selects a unit which receives the mazimal input. It is shown that the lateral
interaction between two neurons needs to be tuned to a critical value. The resulting neural
network is a local implementation of the first phase of the Kohonen learning algorithm.

The Kohonen algorithm [Koh82] (which picks the unit with the highest activation and lets a
cluster of neurons around it change their weights adaptively) cannot be a neurobiological
mechanism for self-organisation. However, it is clear that having a single ‘winner’ and
a surrounding region of neurons change their weights is needed in the context of self-
organisation. Usually it is assumed that ‘some kind of lateral inhibition phase’ can emulate
the winner-takes-all algorithm. However a thorough analysis of such networks has not
been given for the general case. In [RMS91] a network without inputs and with step-like
neighbourhood function is shown to have at most one stable active region. In this paper we
extend this work using techniques from [Ama77, Ama80, Ama88] to the case with inputs
and in which binary neurons are connected through weights that have the typical Mexican
hat or difference-of-gaussians (dog) shaped position dependence. This function is formed
by adding three functions: a positive gaussian with a maximum m, and a half-width
04+, a gaussian with a negative minimum m_ and half-width ¢_ and a negative constant
We. We consider one-dimensional networks with a neuron at every position z of the real
axis. These networks are called neural fields, and are characterised by u (the input to the
neuron), 7 (the time scale), A (the bias), w (the weights between neurons in the output
layer), s (the input a neuron receives from the input layer) and the general differential
equation is given by:

Tau(azt, t) = —u(m,t) + /:: w(:c — y)H[u(y’ t)]dy+ h + S(E,t),

where H is the Heaviside or step function. Because the weight matrix w is symmetric it
is well-known that the network converges to a stable point if it is updated asynchronously
[Hop84]. We determine the stationary states in the absence of inputs first. In the absence
of inputs the differential equation reduces to:

du(z,t) _

T = —u(z,t) + /R[u] w(z — y)dy + h where R[u] = {z|u(z) > 0}.
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Furthermore define W(z) = [5 w(y)dy, Wo = limgoo W(z), W,,, = max W(z), let a,,
be such that W(a,,) = W,, and let ap > 0 be such that W(ap) = 0. Stable, stationary
solutions of the differential equation have %‘t‘ = 0 and are therefore functions of position
z only. We distinguish three types of stable solutions u(z): co-solutions if all neurons in
the field are active, @-solutions if there is no activity in the field, a-solutions or local
excitations if activity in the field extends over a region of length a. Amari has proven
the following Theorem [Ama77):

Theorem 1 For the differential equation of the lateral interaction neural field in the ab-
sence of inputs, an oco-solution exists if and only if 2W,, > —h, an @-solution ezists if and
only if h < 0, an a-solution ezists if and only if h < 0 and W(a) + h = 0.

The condition for an a-solution or local ezcitation to exist determines the length a of this
solution as follows. For every negative h two solutions with lengths respectively a; and
ay exist. It can be shown, however, that only the larger one a2 > a,, is stable [Ama77].
Furthermore, because h < 0, stable a-solutions only occur for W(a) > 0 and therefore
a < ag. Concluding, the length a of a stable region satisfies: a,, < a < ao.

Now suppose exactly one bubble of length a has formed at the interval (—a,0) and gives
a lateral input to all neurons in the field. This input is given by 3(z) = ffa w(z — y)dy =
W(z + a) — W(z). The shape of 3(z) can be determined from figure 1. The neural field

Figure 1: W(z) and the shifted W (z 4 a) are sketched to determine 3(z). The position z at
which W(z) = W(z + a) is called ay.

can be split in two parts: the far field for which §(z) < 0 (that is z > ay ) and the near

field for which 3(z) > 0. In the far field the effect of 3 is to give a negative input to all the
neurons. This input can be treated as an addition to the negative bias h. We have a new
bias h’(z) = h + 3(z). Following Theorem 1 the condition for a local excitation of length
a’ to occur in the far field now becomes: W(a') = —h'(z) = —(h + 3(z)). We visualise this
condition in figure 2. From this figure it is clear that if A is chosen close enough to W,,

any negative addition to the bias will prevent the formation of a new excitation in the far
field.

Lemma 2 If h = —W,, two local ezcitations in each others far field are not stable.



Figure 2: Shifting of the bias by the lateral input

Proof Assume there are two local excitations, one at the origin of length a,,, and the other
in the far field and of length b: R[u] = {z| — am < £ < 0} U Ry[u] where Rg[u] = {z|ai_ <
(z5—b) < = < z¢}. The active neuron at the largest distance from the origin is at z = zy,
because of the continuity condition this neuron should receive a total input equal to zero:

ue) = [ @~ VR =3z W)~ W =0,

This can be rewritten to obtain a demand on W(b): W(b) = —3(z4) + W,,. Furthermore,
we know that W is bounded by W,,: W(b) = —5(z5)+ Wy < W,,, and therefore 3(z¢) > 0.
Contradiction. o

In contrast to the situation in the far field, in the near field the extra input effectively
decreases —h to —h/(z). In this case another excitation might be possible. However:

Lemma 38 Ifh = ~W,, a local ezcitation of length a,, is at (—a,,0), the near field is too
small to accommodate a stable local excitation of non-zero length.

Proof Assume there are two local excitations: one at the origin of non-zero length a,, and
another of length a’ in the near field: R{u] = {z| - a,, < < 0} U R,;[u] where R,[u] =
{z]0 < z < ay A u(z) > 0}. We already know that to be stable a,, < a’ < ag. The
length of the near field (a 1 ), can be derived form the shape of the lateral interaction. The
function W is a decreasing function for @ > a,, and increasing for 0 < a < a,,. Therefore
a function W’ = W(z + a,,,) is decreasing on the positive axis and always smaller than the
decreasing part of W. From this it follows that the intersection ay of W and W' lies in
the region where W is increasing and therefore a 1 < m. Combining these two facts gives
a1 < am < d@'. Contradiction. a

Theorem 4 If the bias h of a lateral interaction type neural field without inputs is chosen

to be equal to —W,,, only one local ezxcitation can erist and if it exists it will have a length
-

This theorem is a generalisation of a result in [RMS91) where it is shown that in the absence
of inputs and with a sufficiently strong step-like lateral inhibition, a neural network can



have only one active region. Here the interaction is no longer step-like but dog shaped
and therefore closer to neurobiological reality.

Now we generalise further to the case where inputs are present. First we define the sets of
inputs we are going to consider. The inputs are bounded by a threshold and the height is
coupled to the width of a pattern. The latter condition is imposed to circumvent a problem
caused by the use of the Heaviside function as an activation function. The step-function
sets the activation of a neuron to one if the stimulus is above some threshold and thereby
part of the information in the input is lost. By restricting ourselves to scale-invariant
patterns we attain a situation where the width of the excitated region carries information
about the height of the stimulus.

Definition 5 A set of continuous inputs s; is called scale-invariant with respect to a
threshold h if each input s; has only one mazimum at z;, Vi,j : si(z;) < s;j(z;) = Ve :
si(zi +z) < sj(zj+ ), and Vz : T, 8:(z) < |A.

Furthermore we will use the following lemma from [Ama80]:

Lemma 6 The active region of a lateral interaction output layer contains the neuron that
receives mazimal input from the input layer.

Proof First, consider a neural field with one local excitation extending from z; to z,.
Stable equilibrium (%‘ti = 0) requires from the general differential equation (with inputs)
that u(z) satisfies: u(z) = [ w(z — y)dy + s(z) + h and because of continuity of u we
have: u(z;) = u(z2) = 0. This gives: W(z1 — z3) + s(z1) = —W(z2 — z1) + s(z2), which
reduces to s(x;) = s(z2). This shows that an excited region surrounds an extremum of
s(z). Secondly, we give an informal argument that a region surrounding a minimum of
s(z) is not stable. Consider neurons which are close to neurons which receive a large
input s. These neurons have a tendency to become active because they are excitated by
nearby neurons. Neurons that are further away will have a lower and even negative lateral
input and can be de-activated. This explains the lability of a minimum: a region of active
neurons which contains a minimum of the input. is perturbed: some neurons on one side
of the region are activated and some on the other side are de-activated. As a consequence
more neurons close to high inputvalues become active and through lateral inhibition they
de-activate the neurons with lower inputvalues. This looks as if the region moves towards
a maximum of the input. m]

We can now formulate the main theorem:

Theorem 7 If the parameters of the difference-of-gaussians lateral interaction strength
of a neural field with binary neurons are chosen such that

‘W(2am + a%) - W(a% + ag) + W(an) < 0 and h = —W(a,,)

the neural field emulates a winner-takes-all algorithm for scale-invariant inputs.



Proof Assume there is one local excitation covering the interval [—lp,0] due to an input
s0. We investigate the condition for the formation of a stable local excitation of length [;
in the far field and due to an input sy : R[u] = {z| — lp < z < 0} U Ry{u] where Rgfu] =
{z|zy — I, £ = < z4}. The active neuron at the largest distance from the origin is at
z = z; it receives a total input equal to:

It

u(zys) /R[u] w(zy —y)dy + b+ so(zf) + s1(z¢)

Wz +1lo)— W(zys)+ /;i:l[)uzf — y)dy — W(am) + so(zy) + s1(zy)
W(zs +1lo) = W(zs) + W(h) - W(am) + so(z1) + s1(zy).

We determine an upper bound to this expression by taking Ry[u] to be the region of
neurons that gets the highest lateral input. This is the region closest to the origin but
still in the far field. In this case the critical neuron is a distance /; away from the near
field 2y = ay + [;. All neurons at the far-end of an active region which lies further into

the far field will receive less lateral input. Furthermore we use one of the conditions for
scale invariant inputs: Vz : }; s;(z) < |h| = W(a,,). The bound is:

'U,(il)f) S W(lo + ai_ + ll) - W(a% + ll) + W(ll)

Further simplification is obtained by using the fact that stable solutions always have
tm <1< ag:
u(zy) < W(2am + a%) - W(a% + ag) + W(anm),

and therefore u(z;) < 0 which shows that no neuron in the far field can be active. Just
as is the case without inputs, the near field is too small to accommodate a second local
excitation of length @ > a,,. This shows that there can never be more than one region
active in the neural field. Together with Lemma 6 this shows that there is a single active
region and it surrounds a neuron receiving maximal input. To show that this maximum
is a global one, we note that the highest scale-invariant input is also the broadest. This
means that in the course of an asynchronous, random and fair updating process the region
receiving the globally maximal input will be the first to become active and thereby prevent
others from becoming active. o

The demand on W(z) of Theorem 7 states a relation between the excitatory and inhibitory
part of the interaction function w. This demand can always be met by a dog-shaped
function by tuning the five parameters. Concluding one can say that we have shown that
it is possible, but by no means trivial, to build a neural net with binary neurons that can
select a ‘winner’. To achieve this result with a Heaviside activation function we had to
resort to scale-invariant input patterns to obtain an implicit relation between excitatory
and inhibitory lateral weights. In further work we would like to extend the above analysis
to a neural field with continuous activation values to make the demands on the interaction
function more explicit and to be able to use more general input patterns. Secondly, we
want to study the effect of the lateral inhibition phase on the ordering of the self-organising
network. It is hoped that some kind of ordering proof along the lines of [CF87, E0S92]
can be given.



References

[Ama77]

[Ama80]

[Ama88]

[CF87]

[E0S92]

[Hop84)

[Koh82]

[RMS91]

Shun-Ichi Amari. Dynamics of pattern formation in lateral-inhibition type neural
fields. Biological Cybernetics, 27:77-87, 1977.

Shun-Ichi Amari. Topographic organization of nerve fields. Bulletin of Mathe-
matical Biology, 42:339-364, 1980.

Shun-Ichi Amari. Dynamic stability of formation of cortical maps, volume 1 of
Research notes in neural computing, chapter 1, pages 15-34. Springer-Verlag,
1988.

Marie Cottrell and Jean-Claude Fort. Etude d‘un processus d’auto-organisation.
Annales de Uinstitute Henri Poincaré, 23(1):1-20, 1987.

E.Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, con-
vergence properties an energy functions. Biological Cybernetics, 67:47-55, 1992.

J.J. Hopfield. Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proceedings of the National Academy of
Science of the United States of America, 81:3088-3092, 1984.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59-69, 1982.

H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-
Organizing Maps. Addison-Wesley, 1991.



