RUU-CS-80-11
November 1980

h}.ﬁ\

Jan van Leeuwen and Anneke A. Schoone

UNTANGLING A TRAVELING SALESMAN TOUR IN THE PLANE

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030—531454
The Netherlands

4——'-

[S o S UR S ;
g 2] : e
e N :\er--!. [O

UNTANGLING A TRAVELING SALESMAN TOUR IN THE PLANE

Jan van Leeuwen and Anneke A. Schoone

Technical Report RUU-CS-80-11

November 1980

Department of Computer Science
University of Utrecht
P.0. Box 80.002
3508 TA Utrecht, the Netherlands

UNTANGLING A TRAVELING SALESMAN TOUR IN THE PLANE

Jan van Leeuwen and Anneke A. Schoone

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. Known approximation algorithms for the traveling salesman problem
in the plane deliver tours which can still contain intersecting edges. We
prove that the common procédure to remove all intersections from a tour

without increasing its length, is guaranteed to terminate within polynomially

many steps.

1. Introduction.

Given a set of n points (cities) in the plane, the traveling salesman
problem asks for the shortest tour that visits all points exactly once and
returns in the point of departure. There are many different versions of the
problem. In our case (the "euclidean traveling salesman problem" or ETSP) an
edge between two points is the connecting straightline segment in the plane.
An edge between two points may "pass through" a third point on the way, but
this is not counted as a visit.

The ETSP was proved NP-complete by Papadimitriou [5]. The computational
intractability had been observed earlier from experiments, though, and several
heuristics have been developed that will normally lead to good tours. Karp
(see e.g. [2]) analyzed some methods probabilistically, to assess the expected
quality of the tours. Rosenkrantz, Stearns and Lewis [6] observed that there
are algorithms that guarantee a tour of length at most .0.0OPT for some O < 2,
where OPT is the length of the optimal tour, of which the running time never-
theless is bounded by a polynomial. The best polynomial time approximation
algorithm presently known for the ETSP is due to Christofides [1], which
guarantees a performance ratio « = 3/2. The algorithm begins by building a
minimum spanning tree T (of length necessarily < OPT) and adding a minimum
length matching of nodes of odd degree to it (of length < 1/2 OPT). The resul-
ting graph of even degree nodes must admit an Eulerian tour of length < 3/2 OPT.
Connecting nodes in "first visit" order yields a tour within the same length-
bound.

It is easy to see that the tours resulting from the two approximation
algorithms cited may well contain "crossing” edges and thus fail to be optimal

in view of the following folk theorem

Theorem A. Optimal tours have no intersecting edges.

Hence optimal tours always are simple polygonal paths. Another conclusion
is that optimal tours always visitipoints on the convex hull in the order in
which they appear on the hull.

An immediate question is whether "approximate" tours can always be improved
so as to satisfy the characteristic expressed in theorem A. It is apparently
common knowledge how intersections can be eliminated from a given tour, but in
the literature as known to us (cf. Lenstra and Rinnooy Kan [3]) only practical
experience and no concrete complexity results for this removal process are
reported. In this paper we prove that the removal process must end in polynom~
ially many steps.

In section 2 we analyse the types of intersections that can occur and the
(common) ways of removing them. Even though each removal may lead to new inter-
sections, we shall prove in section 3 that any order of eliminating inter-
sections must eventually lead to an intersection-free tour in O(n3) removals.

In section 4 we discuss the result.

2. Crossings, concurrencies and their removal.

Without loss of generality we assume that the points do not all lie on a
single line. In this section we shall take a precise look at the different
types of intersections tours can have. Formally it should lead to a proof of
theorem A, which is usually stated without proof.

First we look at (pairs of) edges that intersect in only one point.

/ -
//\\ / ~ /
J

-

Type I

/,.—-..r\//\

\ /

) /
~__ S

removal:

removal:

{
Id

All other intersections are no straight crossings, but sneaky ways in

which sections of the tour overlap:

e.g.

¢
(o}
$

oo e Qe O - .

orx

(where the points shown are assumed to lie on the same line). Consider any
straight line 1 on which sections of the tour overlap. Consider any point
p where the tour enters 1 and begins a section along 1. (Because not all

points lie on one line, such a point must exist.)

[

}

[
!—J

after having left 1 in the meantime), a type II intersection is created which
can consequently be removed. Now assume p is not passed a second time on 1.
Follow the tour starting at p as it runs along 1 and let g be the (first) point

where this section departs from 1. (Again, such a q must exist.)

!
’
/
" 4 1
q

We only need to consider the case that g is not "passed through" in another
section on 1 (or else we had a type II intersection again). Thus the section
from p to g either has no internal overlaps and is intersection-free or has

an intersection of type IIT which we show how to remove below (while shortening
the tour). We use ... @uwwana~~o ... to denote a connecting chain of 1 or more

edges.

Type IIT

(with all points shown

St 2
e

between p and q on the

*e e

same straight line 1)

removal :

with all points merged

into one chain

/

This concludes the case analysis. The "types" cover all possible ways a tour
can intersect (cross or stick with) itself. It enables us to give a concrete

proof of the following, more precise version of "folk theorem” A:

Theorem A. Assuming points do not all lie On a same straight line, an optimal
traveling salesman tour connecting the points must be a simple (closed)

polygonal path.

Suppose there was an optimal tour T for which it wasn't true. The bPreceding
analysis shows that any tour T that isn't intersecting~free, must contain an
intersection of one of the 3 types distinguished which can, consequently, be
removed. Since all of the removal procedures shorten the tour by a non-zero

amount, it would mean that T wasn't optimal. Contradiction.

Obviously we would like any "approximately optimal" tour to be a simple

polygonal path as well, as it is one reasonable guarantee that the tour

cannot be shortened in an "obvious" way.

3. A bound on the number of removals needed.

Consider an arbitrary (i.e., not necessarily optimal) tour T which visits
all points exactly once and returns in the point of departure. If T is not
a simple polygonal path, then it can be shortened as indicated in Section 2.
Any intersection of type I, II or III will be called a tangle. In this section

we consider a simple algorithm to remove all tangles:

algorithm J: while the tour isn't simple polygonal yet do

begin
, locate a tangle
"phase" determine its type
remove it
end.

Note that tangles are not removed in any particular order, although an im-
plementation could always take (say) the leftmost tangle. Any execution of

the loop-body is called a phase. The complexity of algorithm J clearly depends
on the number of phases required to remove all tangles. The correctness of
algorithm J follows from the observations in Section 2 that show that any tour
free of tangles (i.e., intersections of types I, II or III) really has no
intersections whatsoever.

There is an obvious complication, though. Whenever one tangle is removed,
the replacing edges may introduce (i.e., cause) new tangles. It is possible
even that after some phases a tangle is introduced again that was removed
earlier. Fortunately a configuration cannot repeat as a whole (because of the
decreasing length of the tour) and algorithm J must eventually terminate,
regardless of the order in which tangles are removed. We shall argue that the
number of phases is, in fact, polynomially bounded. To this end we shall intro-
duce a function c(T) to measure changes from one configuration to a next.

Consider the set of n points. With any two points of the set we associate
a beam, which is the infinite straight line determined by these two points.
Even when beams "coincide", we treat them distinctly (i.e., beams will have

a multiplicity). The beam associated with an edge is the beam determined by

— - =~ Ssome beams

an edge of T

the two end-points of the edge. We assume that edges are segments, i.e.,

the end-points are considered part of an edge.

Definition. The index c(e) of an edge e of T is equal to the number of beams

that hit it, counting every beam that hits e in its own direction twice!

-

. - This be i nt nce in c(e
- & s am is counted o i (e)

. N any such beam is counted twice in c(e)
Definition. The index c(T) of a tour T is defined as c(T) = z c(e).
edges e
of T
Proposition 3.1. For any tour c(T) < n3.
Proof
There are Eig:l) beams. As some beams have to be counted twice in c(e),
- 2 3
it follows that for each edge c(e) < 2. Eig—l) < n2. Hence ¢(T) < n.n” =n".
u]

There are tours T for which c(T) = Q(n3). The following observation is crucial.

Lemma 3.2. Let T have at least one tangle. Let T' be a tour obtained after

removing one tangle from T. Then we have c(T') < c(T).

By considering each of the 3 possible types of tangles and their removal

procedure separately.

Case 1 (Type I)

ey /"[———— edges removed
yL/fz — . edges added
/
o=
/,/
¢
Observe that c(T) - c(T') = {C(fl) + c(f2)} - {c(el) + C(ez)}- We shall first

argue that any beam b not in the direction of any of the 4 edges shown which

contributes to c(el) + c(e2), contributes to C(fl) + c(f2) with at least the

same count. After all, any such b which hits e, or e. must hit at least one

1 2
of f1 and f2 as well. If b hits both e1 and e2, then it must hit both f. and

1
f2. It follows that

{C(fl) + c(fz)} - {c(el) + c(ez)} 2 difference in count over beams that
hit either £,, £, e, or e. in their

1 2 1 2
full direction.

Notation. Let A(a) be the number of beams that hit an edge a in its direction.

(Note: A(a) =2 1.)

Only counting beams in the direction of the 4 edges shown, we have

c(fl)E A(el) + 2A(f1) + X(fz) + A(ez)
c(f2 = A(el) + A(fl) + 2A(f2) + A(ez)
c(el)E 2A(e1) + A(fl) + X(fz)

c(e2) = A(fl) + X(fz) + 2)\(e2)

It follows that {C(fl) + c(fz)} - {c(el) + c(e2)} > X(fl) + A(f2) > 2.

Case 2 (Type II)

edges removed

-~—- - -. edges added

Again c(T) - c(T') = {c(fl) + c(f2)} - {c(el) + c(e2)}. And as in case 1
one can argue that one only has to take beams b into consideration that hit
any of the 4 edges shown in full direction. Now note that A(el) = X(fl).

Only counting such beams, we have

c(f

-
1]

2A(E)) + A(E)) + A(ez)

1 1 2
C(fz) = A(fl) + 2A(f2) + X(ez)
c(el) = 2K(f1) + A(fz)
c(ez) = A(fl) + A(fz) + 2A(e2)

It follows that {c(fl) + c(f2)} - {c(el) + c(e2)} > A{(f.) = 1.

2

Case 3 (Type III)

(all points between p and

Py SV, R
p < - q are assumed to lie on

the same straight line 1)

(with x and y as explained

below)

Let r be the point visited immediately after q. It is implicit in a type IIIX
tangle that r does not lie on 1. In fact, neither does the point visited just

before p, but we will ignore it (the point could be identical to rl). Clearly

k k
c(T) -~ c(T') = X k(fi) - X X(ei) Observe that necessarily k 2 3 in this type
1 1

of tangle. It is straightforward to see that any beam b contributing to
ZA(ei) contributes with at least the same count to ZA(fi), regardless its
direction. For two beams we can make a more precise statement than that. Let
X be the leftmost point (on 1) visited after the first turn left during the
interval from p to g and let y be the rightmost such point visited before the
last turn right. Then x # y and T must "pass" both x and y at least three
times. (Note that the "change of direction" that must occur in both x and v

accounts for two and the first pass "over" x and the last pass "over" vy,

10.

respectively, yield the third.) Let g be the beam determined by r and x
and let h be the beam determined by r and y. It follows that beam g is counted
at least three times in Zk(fi), as is beam h. On the other hand, in the new

tour beam g only hits the two e-edges incident to x and thus contributes
k

a total count of 2 to Zk(ei). For a similar reason, beam h contributes a
1
total of 2 to the new count. Hence c¢(T) - c(T') =2 (3 - 2) + (3 = 2) = 2.

This completes the analysis and shows that in all cases of possible tangles,
the tour T' resulting after a removal must satisfy c(T) - c(T') =2 1, i.e.,

c(T) > c(T'). O

It is to be expected that after one removal ¢(T) - c(T') will jump by a
larger amount than just 1.
The important conclusion from 3.2. is a bound on the number of phases

algorithm J ever needs to perform.

Theorem 3.3. Given an arbitrary traveling salesman tour T, algorithm J needs

to go through no more than c(T) phases to remove any tangles T may have, i.e.,

to transform T into an intersection-free tour of the same length or less.

Corollary 3.4. Algorithm J never needs to perform more than O(n3) phases,

regardless of the order in which tangles are detected and removed.

From 3.3. and 3.1. DO

We conclude with our main result

Theorem B. Given an arbitrary traveling salesman tour T, one can remove any
intersections it may have and transform it into an intersection-free T' of

length less than or equal to T's in polynomial time.

3 S
Algorithm J does the job. It never needs more than O(n”~) phases and it is
2
easy to see that each single phase can be performed in, say, O(n) steps by

looking at each single edge and testing whether it "participates" in a tangle.

4. Discussion.

The traveling salesman problem comes in many different guises and has many

11.

relevant "companions". (See, e.g., Lenstra and Rinnooy Kan [3] for a survey of
complexity results for the problem and similar routing problems.) We have
shown that any euclidean traveling salesman tour that intersects or touches
itself can be transformed into a shorter one without any such intersections

in only polynomially many steps. This has a number of interesting consequences.

In an attempt to find characteristic properties of optimal tours, Lin [4]
introduced the notion of A-optimality. A tour is said to be A-optimal if it
is impossible to improve it by removing X links and putting A different links
in. Clearly, a tour is 2-optimal if and only if it has no crossings. As far
as we know (cf. [3,4]) no concrete complexity results have ever been proved
concerning the computation of A-optimal tours and the quality of such tours
compared to the optimum (although Lin [4] reports evidence that 3-optimal
tours are likely to be good tours).

Theorem B enables us to remove all intersections from any approximate
solution (tour) to the traveling salesman problem. In particular we can

strengthen Christofides' result [1] to

Theorem 4.1. There is a polynomial time algorithm to obtain an intersection-
free tour (i.e., a simple closed polygonal path) that is guaranteed to be
within 3/2 of the length of the optimum solution of the traveling salesman

problem in the plane.

The result obviously holds for any approximation method and preserves what-

ever performance factor it had.

5. References.
[1] christofides, N., Worst-case analysis of a new heuristic for the
traveling salesman problem, Techn. Rep., Grad. School of Industr.

Adm., Carnegie-Mellon Univ., Pittsburgh, 1976.

[2] Karp, R.M., Probabilistic analysis of partitioning algorithms for the
traveling salesman problem in the plane, Math. Oper. Res. 2 (1977)
209-224.

[3] Lenstra, J.K. and A.H.G. Rinnooy Kan, Complexity of vehicle routing and
scheduling problems, Report BW 111/79, Dept. of Operations Research,

Mathem. Centre, Amsterdam, 1979.

12.

[4] vLin, s., Computer solutions of the traveling salesman problem, Bell

Systems Techn. J. 44 (1965) 2245-2269.

[5] Papadimitriou, C., The euclidean traveling salesman problem is NP~

complete, Theor. Comp. Sci. 4 (1977) 237-244.

[6] Rosenkrantz, D., R.E. Stearns and P.M. Lewis, An analysis of several

heuristics for the traveling salesman problem, SIAM J. Comput. 6

(1977) 563-581.

