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correctness and absence of deadlock (and abortion) of com-
municating sequential processes. The key (meta) rule introduces
cooperation between proofs, @ kind of dual to Owicki and
Gries' notion of interference freedom. CSP's new con-
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1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This paper presents a proof system for CSP, a language for Com-
municating Sequential Processes due to Hoare [H2]. This system deals with
proofs of partial correctness and of deadlock freedom; proofs of soundness
and relative completeness will be published separately by the first author.

Just as CSP sheds new light on synchronization and message
passing both by its communication primitives and by the operations upon
them, sonewinsights are needed to obtain a proof system for this language.
In particular the following properties of CSP have to be taken care of:

~ CSP stresses simultaneity rather than mutual exclusion

as synchronization mechanism by using simultaneous
communication as the only means of synchronization.

~ The two communicgation primitives of CSP, input and out-

put commands, can function as choice mechanism by
acting as guards in (possibly nondeterministic) guarded
choices and repetitions.

~ CSP focusses on terminating concurrent computations

by introducing a distributed termination convention for
input/output guarded repetitions.
Correspondingly, to deal with these properties, we introduce:
~ A (meta) rule to establish joint cooperation between

isolated proofs for CSP's sequential components.



In these separate proofs each statement is preceded and followed by
a pre - and post-assertion. These assertions satisfy the axioms and proof
rules introduced for the purely sequential constructs of CSP. However,
when viewed in the isolation of its sequential component, the post-assertion
of an input command cannot be validated since the assertions of its corres-
ponding output command occur in another sequential component. Now
proofs cooperate if, taken together, they validate the assertions of
the i/o commands mentioned in the isolated proofs ) A global
invariant is needed to determine which pairs of input and output commands

correspond, i.e., are synchronized during execution.

~ A simple mechanism for expressing termination of repeti-
tive commands, generalizing the expression of the termina-
tion criterion ''negation of all the boolean guards'' to distri-
buted termination of CSP processes.

This termination criterion is needed for proof of absence o'f deadlock
and abortion; it generalizes the notion of blocking [OG21 to an environment
in which some processes, which are intended to terminate, fail to com-
municate.

The distinction between coore ration versus combat acted as an almost
philosophical guideline in our efforts. Cooperation via resources versus
mutual exclusion of critical regions; synchronized communication by means

of CSP's communication primitives between a specified pair of processes

versus asynchronous interaction by means of shared variables; even purely



local variables versus globally shared variables. All these are opposing
notions taken from the area of concurrent languages which accentu-
ate in proof theory the problem of finding the missing counterpart of
interference freedom [OG2] between proofs: cooperation between proofs.
This proof system derives from various related work:
~ Owicki's and Lamport's landmark in the proof theory
of concurrent processes [0G1, OG2, L1. We benefitted
also from relative completeness proofs due to Owicki
and to Mazurkiewicz [O , M ].
~ A still enduring effort spearheaded by Hoare to establish
a firm semantic basis for CSP, in which the second and
third authors participated, resulting in a denotational
semantics [FLHR]. In a later stage this semantics was
simplified using a generalization of Dijkstra's weakest
precondition operator as a descriptive tool to obtain a
characterization of the semantics of terminating
programs in CSP [ADF], which brought the semantics
closer to a proof system.
~ The concept of assumption/commitment pairs(interface
predicates)as introduced by Francez & Pnueli [ FP ]
to characterize the assumptions which a process has to
make about the behaviour of its concurrently computing
environment in order to enable it ''to function properly",

so as to justify in its turn the claims made by that
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environment upon its behaviour; thus, assumption/commit-
ment pairs are assertions which express the coopera-
tion between a process and its environment.
While writing up this paper we learned about related work by Carl Hauser
(in preparation) and Chandy & Misra [CM.
This paper is organized as follows:
Section 1.2 contains a definition of the kernel of CSP with which we deal in this
paper. The fragment incorporates guards consisting of pairs of a boolean
expression and an input/output command. Section 2 contains the proof sys-
tem and is the heart of the paper. Section 3 contains two detailed case
studies of correctness proofs ~ the one of a distributed partition algorithm
due to E. Feijen and described in Dijkstra [D2] (our proof differs from that
of Dijkstra), and the second of an algorithm for the distributed computation
of the greatest common divisor of n natural numbers taken from Francez and
Rodeh [FR]. Section 4 generalizes the proof system to freedom of deadlock
and abortion and contains an example. In the last section we try to assess
our method by comparing it in more technical terms with related proof
systems for other concurrent languages. In particular, Dijkstra's account

[D1] of the Gries-Owicki theory is of relevance there.

ACKNOWLEDGEMENT: We express our gratitude to Hisa Nomura for her
extra efforts in typing the manuscript.



1.2 Preliminaries
Syntax and informal meaning of the fragment of CSP considered in this
paper are described by way of example:
P [P, P, [l P3], where:
Pt A [P2 ?x+S, by, Pylyss, 1;
*[byr Py 3
Py %[P;?s 5 S, TP, !t S, OP;?s+5,],

P,! us S b,, P,? u=s S_],
3 0°;3 Y

Py: Py ?z5%[bj+Sg by + S, )

~ "]|'" denotes parallel composition; different processes in the
. P P

same parallel command have disjoint sets of local variables.

~ Ai's denote elementary operations such as assignment or skip.

~ Si‘s are unspecified (for abbreviating the example) program
sections.

~ Pj ? x (in Pi) denotes an input command, expressing an input

reéuest of P‘i from PJ.. Such a command is to be executed only
when Pj is ready to éXecute a corresponding output command
Pil Yy, meaning a request to output the value of y to Pi' The
combined effect of executing both commands is that of assign-
ing the value of y to x. Fither i/o command waits until a
corresponding one is ready.

"I 1" denotes the guard separator. Guards may be boolean

(bi's) passable when true, or i/o commands passable when a
corresponding i/o command in the process addressed is ready,

or a combination of both, passable when its boolean part is



true and the process addressed is ready.

~ A guarded selection aborts in case all its guards are false,.
~ A guard is false in one of the following cases:

i) itis a boolean expressions evaluating to false;
ii) itis an i/o command for which the process addressed
has terminated:

iii) itis a combination of a boolean expression and an i/o
command and either the boolean expression is false,
or the process addressed in the i/o command has
terminated.

'""t!" denotes a repetitive construct. Repetition continues as

long as there exists a passable guard, and terminates when
all guards are false.
~ '"'; " denotes sequential composition.
Guarded commands (i.e., selection or repetition) introduce the

possibility that more than one matching pair of i/o commands occurs; e. g.,

in the example above the first communication of P, can be either with PZ or

with P3, but not with both; this is another source of nondeterminism.

Finally, for simplicity, we consider in this paper only guarded commands
of which the guards either contain all an i/o command, or are all boolean.

This restriction is non-essential for the purpose of this paper in that our proof

system can be easily extended to cover the case just excluded.

For the full details concerning CSP, see [H2].



2. THE PROOF SYSTEM

We intend to reason about CSP programs in a manner analogous to the
work of Owicki and Gries [0G2J- first we present proofs for processes in
separation and then we deduce properties of complete programs by comparing
the proofs for the component processes. Therefore, we have to provide axioms
and proof rules for all possible constructs of a process. One of the essential
properties of CSP programs is that the meaning of processes viewed in isola-
tion is inherently incomplete when compared with their meaning in the con-
text of a complete program. This phenomenon is also present in a less obvious

way in the case of the languages considered in [0G1] and'[OGZ])where the constructs

await b then S and with r when b do S are meaningful, essentially, only in the

context of parallel composition. Therefore, the axioms and proof rules
dealing with the constructs pertinent to CSP do not capture a complete mean-
ing of these comnstructs -viewed separately.

The main novel contribution of this work is in our opinion the proposal
of tying separate proofs together into a meaningful whole; this proposal, the
test for cooperation between proofs, will be discussed shortly.

We adopt the following axioms and proof rules (ai stand for i/o com-
mands):

Al. input
{P} P, ?x{q}

This axiom may look strange since it allows to deduce any post-asser-
tion q of the input command whatsoever. However, any q thus introduced
will be later (when proofs are tested for cooperation) checked against some
post-assertion regarding corresponding output statements. An arbitrary q

will in general fail to pass the cooperation test.



A2. output
{p} P!y {p)
This axiom conveys the information that an output statement has no side
effect.
R1l. i/o guarded selection
fpab} a; (1}, {1} 8 {q},i=l,...,m

{p}[m (i=l,...,m) b, q, — sﬂ{q}

The meaning of this rule is that the post-assertion of an i/o directed

selection must be established along each possibly selected path. We
discuss later the problem of paths never selected.
R 2, 1i/o guarded repetition

{pAb] ay {13}, {ri} S; frlyi=l,...,m

{p} * [D(i=1,...,m) bi’ ai ”Sl]{p}‘
This rule will be strengthened in the sequel by taking into account
the exit conditions of the loop.

(Our intended style of presentation is deliberately incremental

in order toc obtain a natural flow of the argument).

The other axioms and proof rules regarding purely sequential con-
structs are standard and therefore omitted.

Using these axioms and proof rules we can establish proofs for
formulae of the form { p} Pi fq} where Pi is a process. FEach such

proof can be represented, as in [OG21 by a proof outline in which each sub-

statement S of Pi is preceded and followed by a corresponding assertion,
pre(S) and post(S), respectively. The subsequent discussion will always

refer to proofs presented in such a form.



We now present a first formulation of a proof rule (or rather a meta-
rule) which can be used to deduce a property of [Pl ...l Pn-J using the
proofs concerning programs Pi’ i=1l,...,n. This rule has the following form:

proofs of {pi} P, {qi} cooperate, i=l, ..., n

%’pl/\.../\ pn}[Pl ool Pn]fq_l/\ ceenq}
Intuitively, proofs cooperate if they help each other to validate the
post-assertions of the i/o statements mentioned in those proofs. More form-
ally this property is expressed, as follows:
The proofs of {pi} Pi {qi} i=l,...,n cooperate if
i) The assertions used in the proof of {p.l} Pi {qi'} have no
variables subject to change in Pj for i #j;
i) {pre; A pre,} Pj ?x | Ply { posty A post,} holds when-
ever {prel} 1?? x {post) } and {prez'} Pil y {postz} are
taken from the proofs of {pi} Pi {qi} and {pj} Pj {qj} ,
respectively, *
We shall need the following axioms to establish cooperation:
A3. communication
{true} P, ? x|l Pj Ly {x=y}
' provided Pi ? x and Pj !y are taken
from Pj and Pi’ respectivelyn
A4. preservation
{rp} S {p}
provided no free variable of p is sub-
ject to change in S,
Note that A2 is subsumed by A4. We shall also need the following

proof rule.

* Such pairs of i/o instructions will be said to be syntactically matching.
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R3. substitution
[P} S{a}
{plt/z]} s {q}
provided z does not appear free inS and q.
Example 1. Using the system above we can prove

{true} [P, || P, || P51 {x=u},

where P, P! x

1 2
PZ::PI?y;P3Iy
P3::P2?u

Here are the proof outlines:
{ x=z} PZI x { x=z},
{true} Py ? y {y=z}; Py !y {y=2},
{true} P, ? u {u=z}.
The proofs clearly cooperate - for example
{x=z} P,! x N P,?y {x=z A y=z} can be derived -
so we get f x=2} [P1 i PZI' P3] { x=z A y=z A u=z}. Now by
applying the consequence rule we get { x=z} [Plv,” P, I P3] { x=u)
from which the claim follows by applying the substitution rule.

This approach fails when dealing with programs in which some output

commands to not match with any input command.
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Example 2. Let

.o 1
Pl ..PZ. 0
P, :: [P} ?x — skipgqP,! y — skip(QP; ? y— skip ]

P3 :: skip

Clearly, { true} [P1 i P, I P, {x=0} holds. However this cannot be
proved in the above system, for any such proof would require to
establish both {true} P,!y {x=0} and {true} P;?y {x=0}. The
latter formula is an instance of the input axiom but the former one can-

not be derived in the system. ﬂ

We remedy this difficulty by introducing the following, rather aston-
ishing, new output axiom:

A2, output

{pY Piiy {q1

At this moment the reader might wonder: ''Does not the combination
of axioms A ] and A2?, i.e., of {p} Pi ?x {q} and { p} PJ.! y {q} together
allow us to deduce {p} P; ? x|l Pj !y {q} for arbitrary p and q "7 That this
is not the case follows from the cooperation test. Using A3, the axiom of
communication, and A4, the axiom of preservation, only formulae of the
form {r} Pi ? x|l Pj 'y {x=y A r} can be derived, where x is not free in r, and
any use of the substitution-or consequence rule can only weaken the conclu-
sion. We hope that these remarks indicate to what extent the choice of p and
q above is restricted by requiring cooperation.

Next we solve the following problem:
The cooperation test between proofs requires to compare all i/o pairs

which syntactical ly match, even though sometimes communication will

<12~



never take place. A simple example follows where we run into difficulties

because of this very reason:

Example 3. Let

P, [P2

P,: [P)! 2+ skipl P, 224 P

?x- skip 0 P,10+ P, ?x; x:=x+1]
1! 1]

Clearly {true} [P, i PZ] { x=2} holds. To prove this we are forced
to use x=2 as the post-assertion of the first occurrence of P2 ? x

in Pl' This assertion, however, will not pass the test for
cooperation since it cannot be validated when P2 ? x is compared

with P1 ! 1 (; the point being that this pair also syntactically

matches, although it will not be synchronized during execution).

0

In general, syntactic matching of a pair of i/o instructions does not

imply yet that this communication will ever be taken, i.e., imply their

semantic

match. In order to take care that semantically not matching pairs

of i /o instructions do not fail the cooperation test as above, we introduce a

global invariant I which will determine semantic matches, and which may

carry other global information needed for the proof. However, in order to

express semantic matching in general one needs variables which are not

necessarily the ones referred to in the i/o instructions themselves (and, asis

well known, needn't be program variables either; in general auxiliary

variables are needed).

For example, consider the following program sections:

o Py 2 VR N | B Pliy;j:=j+1...

-13-



where i and j count the number of communications actually occurring in each
process, and let therefore the criterion for semantic matching be i=j. How-
ever, i=j is no global invariant since the two assignments will not necessarily
be executed simultaneously.

To resolve these difficulties we must reduce the number of places
where the global invariant should hold. This will be done by introducing
brackets, the purpose of which is to delimit program sections within which
the invariant need not necessarily hold.

This phenomenon is similar to the one concerning resource invari-
ants of Hoare (see [H1]) where the global invariant does not need to hold
within the critical sections. An analogous problem arises when dealing with
monitor invariants (see [HW]).

Regarding the program sections just considered the bracketing
will be

oo < Pyoxsimitls L | L <P ly; ji=j+l> ..

so that i=j will hold outside the brackets.

Definition. A process Pi is bracketed if the brackets ''<'' and ''>'"' are inter -
spersed in its text, so that for each program section <S> (to be called a
bracketed section), S is of one of the following forms:

1) Sl; o SZ R

or
ii) g~ Sl ’

and S, and S, do not contain any i/o statements.

-14-



Definition. If S is bracketed then bracket (S) denotes the set of all vari-

ables appearing in some bracketed section <S‘> of S.

0

With each proof of { p} [P1 el Pn] { q} we now associate a global
invariant I, and appropriate brackets. Therefore the proof rule concerning

parallel composition becomes as follows (in second approximation):

R.3 parallel composition

proofs of [pi} Pi {qi} cooperate, i=l, ..., n

{PyA--enap ALY [P o0 ] Pn]{qlA"'Aan 1}

provided

free (I) c bracket ( [Pl ool Pn]) .

We have now to define precisely when proofs cooperate. Assume a
given bracketing of [P, | . Pn] (to which we referred in the clause concern-

ing free (I).
Definition. Let <S1 > and <SZ> denote two bracketed sections from

Pi and Pj (i#j). We say that S; and S, match if S, and S, contain matching

i/o commands.

Definition. The proofs of the {pi} Pi {qi} , i=l,...,n, cocperate if
(i) the assertions used in the proof of {pi} P, {qi} have no
free variables subject to change in Pj (i#j).
(ii) [ pre(S;) A pre(S,)A I} Slf]SZ {post (S1) A post(S,)A I} holds

for all matching pairs of bracketed sections <Sl> and <SZ>'

-15-



The following additional proof rules are used to establish cooperation:

R4. formation

{P} 51;53 {P11, {PI}G.”& {le‘»{Pz} Sz; S4{q.¥

{P}(Sl;a;sz)” (53; as; 54) {a1
provided ¢ and g match, and Sl’ SZ' S3, S4 do not contain any i/o

commands.

RS. arrow
{P} (a:8) || Sy {q}
{p} (a»S)IS; {q}

R4 and R5 reduce the proof of cooperation to sequential reasoning, ex-

cept for an appeal to the communication axiom. In this sequential reasoning,
assertions appearing within brackets can be used.

Finally, we use auxiliary variables whenever needed. These are
variables which do not affect program control during execution, and are
added only for expressing assertions and invariants, which cannot be expressed
in terms of the program variables alone. We use rule R6, due to Gries &

Owicki [0G2] for deleting assignments to auxiliary variables.

Ré6. auxiliary variables

Let AV be a set of variables such that x ¢ AV 2» x appears in S' only
in assignments y:=.t, where y ¢ AV. Then if p and q are assertions which do
not contain free any variables from AV, and if S is oltained fromS' by deleting
all assignments to variables in AV,

{pls g3
{p¥ S {q}

-16 -



Example 4. We now show how to verify the program from example 3. Two
auxiliary variables i and j are needed. We give proof outlines
for the already bracketed program S.
{i=0 A j=0}
[ri=0
[< P, ?x{x=2} + i:=1> {x=2A i=1}; skip { x=2}

a

<P21 0 ftrue} 4 i:=1 > {i=1}; <P2?x {x=1};1:=2> {x=1 A i=2};

x:=x+1 {x=2}

1 x=2}

[f1i=01

<P,:2 {truel » j:=1> {j=1}; skip { true}

]

<P, ? 2{2z=0} 4 ji=1> {2=04 j=1}; < Pyt 1 {true}; j:=2 > {j=2}
] {true}
]
{ x=2}
We choose I= (i=j). Cooperation is easily established. Note that
that i=0 A (z=0A j=1) A I = false, so the bracketed sections contain-
ing PZ ? x and P1 - 1 pass the cooperation test trivially. Hence by
the parallel composition rule, and rule R6,
fi=0 A j=01 [P, P, ] =2}
holds. Applying the substitution rule we finally get

{ true} [P1 I P, ] {x=2}

-17-



The last problem that remains to be solved is that of i/o guarded
repetitions. Rule R2 does not provide any means to deduce that upon exit
of the loop *[[] (i=1, ..., m) b, a; Si] some of b, 's may be false.
In particular, this rule is apparently insufficient to prove { true} [P1 Il PZ] {b}
with
Pya*[b 2Py ? x b:=false ]
and
P2 :: skip,
and also insufficient to prove { true} [P1 Il P, ] {=b},
with P1 as above, and P2 s P1! Y.
Since the ultimate rule for the i/o guarded repetition is also neces-

sary for proving deadlock freedom, we postpone its formulation and dis-

cussion until section 4.
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.1

CASE STUDIES
Partitioning a set
Given two disjoint sets of integers S and T; Sy T has to be parti-
tioned into two subsets S’ and v s.t. lS |=lSv | » l T| =| TV |, and
every element of sV is smaller than any element of TV. The program
P and its correctness proof are inspired upon Dijkstra [D2]; however
the proof presented here differs from Dijkstra's one. P::[PIN Pz], as
given below, and S# 4.

P, mx:=max(S);

1 P, i P1 ?y; T:=Ty{y};

P, i mx; §:=5-{mx}; mn:=min(T);
P, ?x;8:=5y{x};

mx:=max(S) :

Pll mn; T:=T-{mn};

*[mx >x = P, ! mx; S:=S-{mx}; *[P)?ys T:=Tylyl;

2

P2 ? x ; S:=Sy{x};

mx:= max(S)

l
{
|
|
|
|
i
|
{

mn:=min(T);
: Pllm.n; T:=T-{ mn}
] | ]
Intuitively, these programs executelthe following loop: Let S
and T denote set variables; then processes P1 and PZ exchange the
current maximum of 5, max(S), with the current minimum of T,
min (T), until max (S) in P1 equals the value last received from P2 .
The correctness proof of P requires the introduction of two
auxiliary variables g 1 in Pl and 45 in PZ, to enable expression of

the global invariant GI; i counts the number of communications

performed by Pi'

-19-



The purposes of GI are:

1)

to determine which syntactically matching bracketed sections
are executed indeed (by requiring y 1=1,2);

to guarantee the partitioning property;

to tie the local reasoning required for processes P1 and P2 in
isolation together so as to permit derivation of max (S) <« min (T)
upon (joint) loop exit; to express the global conditions on

S and T needed for the local reasoning about P1 and P2 (in

testing for cooperation).

In the annotated versions of P. and PZ’ P! and Pé, the following is

1 1

added to their "bare' text:

1)

2)

3)

Assigments to the auxiliary variables 4 12 Lae

The pre- and post-conditions required for a proof, modulo
deletion of conditions which were mentioned earlier in the
annotated text and remained invariant, or were not relevant

at earlier points.

Bracketed sections of instructions which, from the point

of view of the proof, are considered as units for the proof of
cooperation. Note that the global invariant GI requires

SN T=0, and that S:=S-{mn} and T:=T | {y} are not synchron-
ized, Thus within these units GI may be violated indeed, but

not outside these units.

-20-



Annotated text of Pl:

(IS[=n, > 0 A S=S A max(S) € SA 4 ,=0} mx:=max(S);
{mxeSA|S| =n;A g, =0}

<P, mx; g :=4+1; { mx €8} S:=8-{ mx1>;
{lSl=n1-1/\111=1}

<P2?x; 31:=1,1+1; {x $S} S:=Sy {x}>;

f1S]=n;Ax €SA g2}
mx:=max (S);
LI;: {1sl =n, A mx=max(S) A x < max(S)A even (g 1)/\ e 2}
*[mx >x+ {mx €SA LI} <P, ! mx; g,:4,;+]; fmx¢€S)
S:=5-{ mx1);
{18l=n;-1A odd () A 2,2 2}
<P, ?x;4y:=g %1 {x$S};S:=SU { x}>;
{|S|=n1/\x€SAeven(zl)'}
mx:=max (S)
LII: { |Si=n1AxESA mx=rax (S) A even (g 1) ALyz 2}
]

{ max(S)=x A | S| =n, A even (2 1)}

21-



Annotated text of PZ:

{ | Tl=ny2 0 AT=Ty A 4,0 "
<Py ?yi 4, =g, + 1 {y§ TY T:=Ty { y}>;
{ |T|=n2+1 A £2=1} mn:=min (T);
{17 =n2+1 A mn=min (T) A 1,2=1'}
<P11 mn; 1,2:=1,2+1; {mne T} T:=T-{mn} >3
LL,: {1Ti =n, A mn < min (T) A even (zz) Alyz2 2}
*[< P,?y+ 22:=4 5+ Ti=Ty {yl>;
{1T| =n,+1 A odd (zz)]m.n:=min (T);
{ | TI=ny+1 A mn=min (T) A 0dd (1,) A 2,2 2}
<P1£mn; zz:=g2+1; T:=T- {mn} >

LIZ: {[Tl=n2 A mn < min (T) A even(zz) ALy= 2}
{ IT|=n2 A mn < min (T)}

The global invariant GI:
GI= SNT=¢ A Sy T=SOU To A28, A (even (g 1) Alg2 2 x<min (T))
For the sake of the proof we assume that

min (@) =+ o2,

-22-



We restrict ourselves to proving cooperation between proofs for the
first bracketed section of P1 and of PZ’ and for the second bracketed
section of P1 and PZ; the customary kind of sequential reasoning is omit-
ted. Proofs for cooperation for the third bracketed sections and the
fourth ones are actually identical, and omitted. Proofs for syntactically
matching but semantically non-matching sections are trivial; e. g., the
first section of P1 and the third one of P3 are trivially cooperating since
~GI holds (in this case « (g 1 =0 A Ly 2 2 A2 1=1,2) )« Note also how the
input and output axioms are used to insert the occurrences of {mx¢S},
{x¢g s}, {y$ T3 and { mn € T} in the annotated program;
the choice of these assertions will be justified in the cooperation proofs.

Proof of cooperation between first bracketed sections;:

One has pre; = mx €S A | S| =n; A 4,=0, and

pre, = I T =n, A T=T0 A 25 =0.
Also, post; = [ S| =n,-1 A £,=1, post,= [ T| =n,tl A g,=1

We have to prove: {pre1 A Pre, A GI}

B omx; g, = 4q+1; S:=8 = { mx} i P12y g5:54,+1 T:=Ty { y)

{post1 A Post, A GI} ,

By the communication axiom and preservation axioms,

{pre; A pre, A GI} P, ! mx Il P;?y {mx=y A pre; A pre, A GI}.

Pre:condition of section ¢ 1552 1+1; S:=5- [ mx}; 1,2:=1,2+1; T:=Ty {y}

w.r.t. postcondition post1 A post, A Gl is

21=4,=0 A vyé T A ]T[:nz,\ mx &S A !S'=n1ASnT=GA SUT:SOUTO’

which is implied by { mx=y A pre; A pre, AGI}.
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Therefore the formation rule yields the result since
{pre; A pre, A GI} P,! mx || P, ?2y { mx=y A pre, A pre, A GI}
and
{ mx=y A Pre; A pre, A GI} ¢ 1:=4 1+1; 5:=8-{ mx} ; £2:=8,+1 TizTy { v)
; {post1 A post 5 A GI} holds.
Proof of cooperation between second bracketed sections:
One has pre'ls 1S =n, -1 A g =1, and pre’ZEl T| =n2+1 A mn=min (T) A 2,=1
and post; = | S| “n; A xX€S A 1,1=2, posté = | T| =n, A ma< min ('i‘) A even (,;,2)
ALy 2 .
We have to prove: {prei A preé A GIY
P, ?x; g:=4¢+1; S:=Sy {x} || P, ! mn; £2:=4,%]; T:=T-{ mn}
{posti A posté AGL} .
By the communication axiom and preservation axiom
{ pre] A Pre;, A GI} P, ?x”Pll mn {mn=x A prei A pre; A GIY,
since odd (zl).
Now observe that
{ mn=x A Pre; A preé A GI}
L1518 1+1; S:=Sy {x}; zz:=12+1; T:=T-{ mn}
{ post] A post; A GI}
holds.
Note that x< min (T) in the post-assertion follows from the fact that
mn=x A mn=min(T) 4 x<min (T- { mn}).

Therefore the formation rule yields the result.
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Applying the rule of parallel programs we get

{1si =n; > 0A §=5, A | T| =n, 2 0 A T=T, A 210 A 4,=0 A GI}
P Il Py )
{LI, A LI, A GI}
where Pi A and Pé are the modified versions of P, and P,.

From this we obtain

{ |S]=n; > 0AS=S; A | T|=n,20 A T=T4SN T=0}

0
213505 45303 [Pi I Pé]
{1S]=ny A | TI=n, ASN T=p ASUT =855U TyA max () < min (T)}

Now by dropping the assignments to g 1 and L, We get the desired formula.
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3.2 Distributed computation of the greatest common divisor of n numbers

As another example, we shall consider a program P which computes
ged (o 1P O-n), 0;> 0, i=1,...,n, a variant of a program first presented in
[FR]. This program has the property that when all processes reached a final
state and have computed the gcd, the program is blocked in a deadlock state,
since no process ''knows'' that all other processes are in final states. The in-
terest in such programs arises because of two facts:

1. It may be easier to write such a program then the correspond-

ing program that will terminate when all processes reached
final states.

2. There exists an automatic transformation transforming every

such blocked program into an equivalent terminating program.
See [F, FR] for details about this transformation.

Using such an example, we are also able to show that our deductive

system can deal with more general invariance (or safety in the terminology

of [L]) then just partial correctness.

The program P consists of n parallel processes arranged in a ring
configuration, where each processes Pi communicates with its own immedi-
ate neighbours Pi—l’ Pi+1 ('+' and '-' are interpreted cyclically in {1,...,n}).
Fach process has a local variable X which initially has the value ;- Fach
process sends its own X, to each ifnmediate neighbour,and uses flags rsl
(ready to send left) and rsr (ready to send right) to avoid sending x; again

before it was modified. Other alternatives of Pi are to receive a copy

of Xy in y, or a copy of X in z. Upon receiving such number from a
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neighbourprocess, the number is compared to X, . If X, is smaller, then it

is updated according to Euclidbs rule, and the rsl, rsr flags are set on.
Otherwise nothing happens. Two auxiliary variables rcvl (received from left)
rcvr (received from right) are included for the sake of the proof.

Since the program deadlocks uponreaching the final state, no post -
condition is claimed for the whole program. Rather, we shall show how to
express in the formalism the claim about the state at the instant of blocking.

In the annotation LIi is the loop variant of Pi which serves also

as the pre-condition and post-condition for the body of the main loop.

Following is the annotated text for Pi
{xi=gi>0 A rslil\rsri } '
*[ L1}

(rsli, P. 1Ix. — rsl. : = false: rcvl

s i i:=false { Lli}

1 o= . o=
(rsri, Pigix — rsr, :=false; revr, :=false ) {LIi}

? = .
<Pi-1 ?y; = reovlistrue;
[Yiz x, - skip
D
v, <% [Yi’xi » =y,
g

{
yi-rxi > xi=x mod Vs

1; {LIi} rsr i=true; rsl :=true

1) (i



P, ?z, <+ rcvr,.:=true;
< i+l i i '

[ziz x, + skip

a
Z<x, [zip:i » x;:=z,

a
zi.g'xi + X=X, mod z;
I {LL} rsr :=true; rsl:=true
i i
1) (L
]
The global invariant, GI, is the following:

Gl= [= rsli“ (zi_1=xi A rcvri_l)

mrsT (v, 7 Aredly, ) ]

ng(xl’ . °:xn) = ng (0'100 ooy O'n)

GI establishes the correct sending and receiving relationship between
any triple Pi-l’ Pi' Pi+1’ and also that all changes in the xi's. preserve gcd
(o 1°°°° O'n)- .

The loop invariant LIi is expressed in terms of local variables (of
Pi) only, and describes the sequential behaviour of the loop body

LIiE (= rs1:.l A rcvli-‘O ¥; 2 xi)

A

. A\ revr— z, > X,
(= rsT; A i i 2 1)
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The instant where a process is about to execute the loop body and find
itself blocked is characterized by
BLi= (LL A =rsL A = rsr.).
Therefore, we have to prove the following property:
(*) /\ ?\ -
(GI/\ BL) (i=1xi-ng (Gl"--’cn))
(*) implies that the conclusion indeed holds at the instant of total blocking

if it occurs.

n

Proof of (*): Suppose that GI A . /\ BL, holds .

=1
n
From GI N /=\ —arsli A —:rsri) we infer
(1) A (xi = zi-1=yi+1) A .rcvri/\rcvli .
From (LIi A rsli A s, A rcvliA rcvri) we infer
2) Ay =2 x,)
N T Ex A R

i
Using (1) and (2) we get

and

.15 VT X which, together, impl?r

, and therefore

Finally, (4) and gecd (xl, .o ,xn)= ged (g 100 o-n) imply the required
n

conclusion X, —gcd {o 17+ gn).
3—-
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We are left with the problem of verifying that GI is indeed a global invari-
ant, and LIi is a local loop invé.riant. The second task involves ordinary
sequential reasoning .using the input and output axioms, and is Ieft to the
reader.

On the other hand, a proof of the global invariance of GI uses the
concept of cooveration.

n
(2a) Imnitially, A = rsli A —11‘S!‘i is false, and the two first
i=1
n

clauses of GI are trivially true. Also N X, =g, trivially
1=

implies the third clause.
(b) One pair of matching bracketed sections is the one con-
sisting of the first alternative of some Pi and the fourth

alternative of Pi-l’ Hence, we have to show

,{rsli A LIi A LIi-l A GI}

P, ! x.; rsl, :=false; rcvl.:=false,
i-1° 79 77 i .
Y
I a

‘) . .= .
P, | zi-l’:_f_vri-l' true; [.. ]
{LL ALL_, AGI)

The variables changed are: rS]'i' rSIi-l’ TSI, ¢ rcvli, rcvli_l, z; 4 'xi-l

By the rule of formation it remains to be proved that
TR A TSE AL A (arsgy g ATevy Y 2 % ) A GI)
A;B
L
{ Ly ALL L AGH
holds, where the above pre-condition is the post-condition of

P, , x|l P,?z,
i i i

i-1 =1

inferred bv the axioms of communication and preservation
First, x;=2, implies, by the known mathematical facts about the ged

function, that ged (xl,‘ .. ,xn)=gcd (o 1700 cn) remains true afte- executing A .B.
All other changes need just routine checks.
(c) The other matching bracketed section is the second alternative

of Pi and the third alternative of Pi+1 and is verified similariy.
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4. DEADLOCK FREEDOM

Similarly to Owicki and Gries , our proof system can be used to
show that a given program is deadlock free. Furthermore, the 1"nethod can
be used to prove the absence of abortion due to attempts at communication
with processes that already terminated. (This question does not arise in

[OG1l. 0G2), ], because such a situation cannot be described in their
programming languages).

We adopt the concept of blocking introduced in [0G21 . .used there
to characterize those states in which execution cannot be continued. Our
adoption takes into account the distributed termination convention of CSP
in that communication at the guards of an i/o guarded repetition will not
be blocked 1in case all the processes referred to in these guards have term-
inated. All other communications which address processes that have term-
inated will be blocked. Intuitively, a program is blocked (in a given state)
if the set of processes which did not terminate as yet is not empty, all are
waiting for communication, and there exists amongst them no pair of
processes which wait for each other (one for input and the other for output);
and also, there exists no process in that set which would exit a loop by the
distributed termination convention. Thus in a blocked state no process can
proceed.

Given a program P and an assertion p, we say that P is deadlock
free (relative to » ) if no execution of P, starting in an initial state satisfy-

ing P, can reach a state in which P becomes blocked.
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In order to be able to prove the absence of deadlock (and abortion) we
first strengthen our proof rule for i/o guarded repetition. The required
extension incorporates the distributed termination convention, amounting to
the fact that the repetitive command is exited in case we can partition the
set of indices of all guards in the command into two disjoint sets: The one
(to be denoted by A) contains the indices of those guards which contain a true
boolean part bj’ and refer in their i/o part to a process that has terminated;
the other set (to be denoted by B) contains indices of guards with false boolean
part bj' This information will be collected in the post-condition of the loop
in a way similar to that of the inclusion into the post-condition of the
negation of all guards in the sequential case. Notice that no guard in either
A or B can be passed.

To express this information, we introduce local propositional vari-
ables End ;, i#j, 1l=<i, js<n, with the following interpretation: End ;
holds iff Pi "assumes'' that Pj terminated. All these propositional. variables
have false as their initial truth value. When they are included in some
assertion with true as their truth value, it will be only due to a loop exit
in some process. In the proof (but not in the program) this change of value

will be described as if assignments take place upon loop exit. End ; can
only be used in proofs concerning Pi‘

The new rule for i/o guarded repetition becomes now

R2! guarded repetition

{PA bj} a; {rj}, {rJ} Sj {p}) j=l, ..., m

. i
{p} 'r[D (J—l, e e o 9 m) bj’ aj-. Sj]{p/\ -Q’l ("\ijEnd k_j)}

J

-32-



Here kj denote the index of the process referred to by a;’ and i denotes the in-

dex of the process countaining the loop .

The propositional variables End ; are used in general in the global
invariant I. Therefore, we must add a clause to the definition of coopera-
tion. This clause will take care that the invariant is preserved upon exit
of an i/o guarded repetition by some process, when the corresponding pro-
cesses (referred in the guards in A) have terminated, as expressed by
using their post-conditions.

The clause to be added is the following:

iii) Let C be the set of indices of all processes referred to

in o for j € A.
J

Then

A AN AN i

. t (P. . b, . ab, AL t End, | .
i'e pos(J)Apre(S)AJGAJAJeB JA -+ I [true/ nJ]JEC

holds, where S denotes a subprogram of Pi of the form
*[D'(Fl, ee., m) bj’ a; Sj] .
Also, A, B have a meaning as described above, AN B =@, AUB={1, ..., m}.

Here I [true/ End; ] j stands for the formula obtained from I by a simul-

eC

taneous substitution of true for End; for jeC.

i

Next, we proceed with the formal definitions required in order to form-
ulate the theorem about deadlock freedom. We assume that a specific proof

outline for each process is given.

-33-



The following definition intends to characterize those situations in
which execution can proceed smoothly; such situations will not have to be
considered in the proof of deadlock freedom, since they imply that the

program is not blocked in that situation.

Definition: An m-tuple of assertions <Pps oo pm> matches iff

i) m=2 and Py» P, are pre-assertions of a matching pair

of bracketed sections,
or ii) fori=l1, ..., m-l,pi is post (Pk.)’ P is
i
pre (S) A jé\A bj A jé\Bﬂbj for S a subprogram in
P_, A and B as above, [A] =m-1, {kyy, oo., k }=the
m 1 m-1

set of indices of processes referred to by some qj) i €A,

1

Note that the second clause corresponds to the already discussed
termination convention of i/o guarded repetition.

Next, we proceed with the definition of the blocking concept as it
applies here. Remember that a blocked tuple of assertions is intended to
indicate states in which the program deadlocks or aborts. We will have to
prove that no such blocked tuple of agsertions can simultaneously hold in any

state which can be reached by an execution starting in a state satisfying the

pre-condition of the whole program.

Definition: An n-tuple <Pj,+-» P_> of assertions is blocked iff all of
e ——————— n S ——————

the following conditions are satisfied:

i) each assertion p; is either a pre-assertion of a bracketed

section of Pi’ or post (Pi) or pre (S) A b. A ./\ - b,

VAN
JjeEA "] "jeB ")’
with S, A, B as considered above.
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ii) at least one P; is not post (Pi) (i.e. not all processes

terminated already).

iii) no subtuple <Py s -+ P > of <Py»+-+s P > matches ,
1 m

i

Theorem: Given a proof { p} P {q} with global invariant I, then P is
deadlock free (relative to p) if for every blocked n-tuple
n

<Py» s P>, _'(i/=\1 P; A I) holds.

[

Hence, in order to prove that P is deadlock free, we have to identify
all blocked tuples of assertions, and the global invariant I should be such
that a contradiction can be derived from the conjunction of the invariant and
the given blocked tuple. The operational meaning of this contradiction is
as follows: there is no moment during execution at which control of eve ry
P.1 reaches a point in which the assertion P, (taken from the given blocked
tuple) holds. If the conditions of the theorem hold then execution can proceed
smoothly (possibly forever).

The theorem above is a consequence of the following one, whose proof

is part of the proof of the soundness and completeness of the system.

Theorem: Let a proof { p} P { q) be given. If during execution each Pi is

n
about to execute a statement with a pre-assertion pre,, then i/-‘-\l pre,

is satisfied by the (global) state at that moment.

If none of the processes is within a bracketed section then I holds.

]
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Sometimes a stronger invariant will be needed for proving deadlock
freedom than for proving partial correctness.
Now we apply these concepts to the partition example considered in
section 3. We refer to the proof presented there.
In order to prove the absence of deadlock in this program, we have
to strengthen the invariant GI to include
GI’ = End’

and add mx > x to the pre-condition of the two bracketed sections in the loop

+ mx< x,

of Pl’ as well as adding mx< x to the post-condition of Pl' Also, the use of

the strong version of i/o guarded repetition rule implies that End2 is added

1
to post (PZ). In showing the invariance of GI’, the only case that has to be
checked is the loop exit of PZ; since we can assume post (Pl)’ GI’ holds
indeed.

Next, we consider all blocked pairs <p, q> of assertions, and show
that their conjunction with GIAGI’ is contradictory.

In all cases which do not involve the post-assertions of P, or P, the

1 2
contradiction is reached by observing that all blocked pairs imply different
parities of the zi's whereas GI implies 1522
For example, with p .as the pre-condition of Pi's first bracketed a section
and q as the pre-assertion of Pz's first bracketed section inside its loop , we have
2150A0dd (40N 4, =4,
whichis conrtradictory.

The only other case with an essentially different proof, which does

not use the fact that GI implies 15220 is when p denotes the pre-assertion
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of Pl's first bracketed section inside its loop and P2 has terminated, i.e. q

contains End? (amongst others). Then we have

mx> XA (End? SmMXs X) A Endi

which again is contradictory.
Note that only here the additional invariant GI’ was used.
Returning to the gcd program from section 3, we will prove now that

there is no other blocking possibility in that program besides the intended

one (as stated in the explanation to the program).
n

i i+1

l — p—vg
Let GI’ = 1/\ (End ., = End’; ).

=1

We shall prove the invariance of GI’., By using the strong repetition rule

\
R»’Z » we get that each post (Pi) implies

i
i-1
(by considering the third and fourth alternatives of each loop). Initially GI’

i
Endi+1 A End

holds, since all End; are initially false,

All we have to consider now is a loop exit of some Pi’ and then

post(Pi_H) A post (Pi-l) may be assumed, 1i.e. we have to verify

i+1 i-1

GI’ AEnd |~ A End ; = GU [true/ End, |,, true/End, T

i+1’ i-1
which trivially holds.

A simple consequence of GI’ is

(%) A Endl = Eoal .

i#j j i

The meaning of this condition is that either all processes have terminated, or
none did.

Any blocked tuple of assertions (besides the one considered in section
3) implies that some of the assertions in the tuple are post (Pi) for some

1< i< n, i.e. that some (but not all) of the processes terminated, which clearly

contradicts (®x),
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In order to conclude that the situation considered in section 3 does

occur (i.e. is inevitably reachable) we have to use:

i) A well-foundedness argument to prove the absence of infinite

computations.

ii) The distributed termination pattern theorem [F ] to show
that the program does not terminate, since its termination

dependency graph is cyclic.
iii) The absence of other blocked tuple of assertions than the

one considered in section 3, as was shown above.

The proof of (i) .is beyond the scope of the paper so is omitted.
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5. CONCLUSION AND COMPARISON WITH RELATED WORK

We have presented a proof system for partial correctness and absence
of deadlock in CSP programs. Now that we have gone through all stages of its
development, it may be useful to compare our proof system with related
Hoare-style proof systems dealing with concurrency.

Our final rule for parallel composition is related to the corresponding
rule of Owicki and Gries [OGZT in which the premise is that proofs for compo-
nent programs are interference free, in that both are metarules involving
comparison between proofs. However, it also relates to the system presented
is Owicki and Gries [OGl], which deals with shared resources and critical
sections, in that a global invariant I is. used which must be preserved by each
pair of matching bracketed sections. This suggests that any pair of matching
bracketed sections constitutes a (semantically determined) critical section
using a resource. The fact that only one global invariant is used implies
that exactly one resource is associated with each program. Such a resource
can be used only by pairs of processes; in fact, in case these pairs of
processes are mutually disjoint, several pairs of processes can use this
resource at the same time.

The fact that we deal with simultaneity as a synchronization primitive
relates in turn our approach to that of Mazurkiewicz [ M] where simultaneous
await statements are considered. However, since message passing is absent
in his language, the issue of “‘cooperation~ a direct consequence of the disjoint-
ness of CSP processes ~ does not arise. Also, since in [ M] shared variables

are used, his proofs have to be checked for interference freedom, whereas
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in our system the property of disjointness of processes preserved in the com-
ponent proofs implies that the need for testing upon interference freedom does
not arise.

One of the features of our system is that the cooperation test requires
us to supply new formal proofs which do not constitute a part of the (sequential)
proof outlines. This phenomenon is also present in [ OG2 ] where new proofs
are needed to show interference freedom. These proofs can be viewed as
global reasoning since they involve more than one process, However, in our
case, unlike that of [OG2l, we can control the size of these proofs by having
the liberty of choosing the bracketed sections ourselves. The bigger the
bracketed sections the more sizeable proofs have to be carried out. The (to
be published) proof of relative completeness of our system implies that we
can always choose bracketed sections of the form ¢;S where S is an assignment

(for updating the local history of communications‘)thus reducing global reasoning,

Our method suffers from the same drawback as the one presented in

[OG); in the worst case the test for cooperation, e.g. for the case of two

processes ; can involve as many as ml*rn2 checks, where m, and mZ are

1

pProportional to the lengths of the component programs. The same problem can
arise in proofs of absence of deadlock. However, in practice the number of
cases is significantly smaller, and often several of them can be trivially
established, as is the case in testing cboperation between syntactically
matching but semantically not matching pairs. For example, in our proof

for the partitioning program 8 cases had to be established in the cooperation
test and 15 for the proof of absence of deadlock, but only 4 cases have a not

immediate proof in the cooperation test and only one such case occurs in the

proof of absence of deadlock.
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