vakgroep informatica R.U. Utrechr

THE MEASURE PROBLEM FOR RECTANGULAR RANGES IN d-SPACE

Jan van Leeuwen and Derick Wood

RUU-CS-79~6

July 1979
S s, Rijksuniversiteit Utrecht
& %
g: 2 Vakgroep informatica
T 4 Budapestiaan 6
g Ui
VY Postbus 80,012
3508 TA Utrecht
Telefoon 030—-53 1454

The Netherlands

vakotoen informariee BT

THE MEASURE PROBLEM FOR RECTANGULAR RANGES IN d-SPACE

Jan van Leeuwen
Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands

and

Derick Wood
Unit for Computer Science
McMaster University
1280 Main Street West
Hamilton, Ontario

Canada L8S 4K1

Technical Report RUU-CS-79-6

July 1979

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht

the Netherlands

THE MEASURE PROBLEM FOR RECTANGULAR RANGES IN d-SPACE¥*

Jan van Leeuwen** and Derick Wood***

Abstract. In the Research Problems section of the Am. Math. Monthly V. Klee
recently posed the question to find an efficient algorithm for computing the
measure of a set of n intervals on the line, and its analog for n hyper-
rectangles (ranges) in d-space. The 1-dimensional case is easily solved in
O0(n log n), Bentley has proved an O(nd_llog n) algorithm for dimension 4=z 2.
We present an algorithm for Klee's measure problem which has a worst case
running time of only O(nd—1+n log n). For d=2 the solution is Bentley's,
using his novel segment tree. For d2 3 we devise a more involved data-

structure, based on quad trees, to gain efficiency.

1. Introduction.

In the Research Problems section of the Am. Math. Monthly, Klee [5]

recently posed the following problem:

"Given n intervals on the line, it is desired to find the measure of

their union. How efficiently can that be done?"

Klee gave an O(n log n) algorithm for it based on sorting end-points, but
felt one might do better if only sorting could be avoided in favor of a
technique more "natural" to the problem. Fredman and Weide [4] soon showed
this intuition wrong and proved a lowerbound of Q(n log n) in a general
decision tree model permitting comparisons between arbitrary linear functions
of the inputs at the nodes.

For Klee's problem in d-dimensional space (d> 2), the situation is rather
more complex. Let us define a (rectilinearly oriented) hyperrectangle or

"range" in d-space to be any set of type

* This work was carried out while the second author was visiting the Uni-
versity of Utrecht, sponsored by a grant from the Netherlands Organisation
for the Advancement of Pure Research (ZWO). The second author was also
supported by Natural Sciences and Engineering Research Council of Canada
Grant No. A-7700.

* %k

Author's address: Department of Computer Science, University of Utrecht,

P.0O. Box 80.012, 3508 TA Utrecht, the Netherlands.

¥¥*puthor's address: Unit for Computer Science, McMaster University, Hamilton,

Ontario, Canada L8S 4Kl1.

{(xl,...,xd)lllstSu1 & ... & 1 _<x_<u_}

for bounding parameters 1i and ui. Now consider the following question,

again suggested by Klee [5]:

"MEASURE PROBLEM. Given a set of n ranges in d-space, find the

d-measure of their union."”

One might want to speak of the fair volume (fair because regions covered
more than once should not be counted again) rather than of the d-measure

of a set of ranges, as we do not want to give the impression that we treat
an integration problem with an arbitrary weighting function on the space.
Note that ranges in 2 dimensions are simply rectangles and that the measure
problem is the same as asking for the total area covered by the rectangles
in this case.

Bentley [1] was apparently the first to launch a major attack on Klee's
measure problem for d2 2. He obtained a surprising O(n log n) algorithm
for the rectangle measure problem (i.e. with d=2), exploiting a novel data-
structure called the segment tree. Segment trees have since proved very
helpful in solving other problems for sets of rectangles (see e.g. Bentley
and Wood [2] and Vaishnavi and Wood [7]) and we will probably see more
applications of them soon. Given the efficient algorithm in 2 dimensions,
Bentley [1] immediately noted that it could be "lifted" to an O(nd-llog n)
algorithm in d2 3 dimensions. He suspected that it was not the best one
could do, but concluded that at least it settled Klee's question (see [5])
of whether the measure problem in d dimensions could be solved "in a number
of steps bounded by a polynomial in 4 and n". In this paper we shall prove
that in dimensions d2 3 one can indeed do better than Bentley's algorithm
and solve the measure problem in only O(nd—l) steps.

In section 2 of this paper we shall describe the idea of segment trees
and their application to the 2-dimensional measure problem in some detail,
partly because Bentley's write-up [1] is not widely available but largely
because we shall build on a gbod understanding of how they function in de-
veloping our extended datastructures for 4= 3.

Like Bentley, we shall concentrate on low dimensional problems first and
try to pull whatever efficient solution we can find into higher dimensions.
In section 3 we shall prove that a quad—treelbased datastructure can be con-
structed which allows the 3-dimensional measure problem to be solved in
only O(nz\ stegs. It will generalize to the O(nd_l) algorithm we claimed
for d- * and thuas be the currently most efficient solution for the problem

we know.

Again it is hard to formulate a conjecture related to the question of the
algorithm's optimality. For the approach we take it seems the best we can

hope to get, but we have no argument that it actually is.

2. The area of a set of rectangles in the plane.

Given a set of n rectilinearly-oriented rectangles in the plane, we are
asked to compute the total size of the area they cover. To get a feel for
the apparent intricacy of the question, figure 1 shows a typical configura-

tion of rectangles we may have to consider. The task is to measure the

///// TT7777

T U

/
TN

T]
/7 422§/ /]
v

Figure 1.

shaded region.

We shall tacitly assume that the coordinate axes are chosen such that
all rectangles are located in the first quadrant. Each rectangle will be

given by a "named" quadruple
q = (x-low, x-high, y-low, y-high)

which fully specifies its boundaries (see figure 2). The naming of rectangles
guarantees that there will be no confusion between "different" rectangles
occupying the same region of the plane.

In a first move we throw out all rectangles which have %x~low= x-high
or y-low= y-high, as their contribution to the measure will be zero. Thus

we can assume from now on that all rectangles in the set are non-trivial.

y~highf-=~------

y-low |-===-- oo

X-low x~-high

Figure 2.

Separately sort the 2n x-values and 2n y-values we have, while for each
value retaining the name of the rectangle it belongs to. Go down the sorted

x-list and "merge" identical values, to obtain one list of distinct x-values

< < <
up<u, < u
in which with each ui a table is associated containing the names of those
rectangles which "begin" (when x—low==ui) or "end" (when x—high==ui) at u, .

Likewise trim the y-list to

< < <
V1 V2 “on Vl

but ignore (and indeed, drop) the names of the rectangles they belong to.
We won't have a need for this extra information. So far the work has cost
us O(n log n) for sorting and a mere O(n) for trimming.

Consider the position of the rectangles in the plane. Each one will be
locked in between two vertical lines, which hit the x-axis in some ui
(= x-1low) and uj (= x-high). These lines, and all lines in between, will
"sense" the rectangle as a segment. Our algorithm (or rather, Bentley's)
is based on the use of a scan-line, which moves across the plane from left
to right. See figure 3. Think of the line as scanning a dark radar screen,
with segments lighting up whenever the line intersects some rectangles. For
a while the intersection will be stable, but things can change when (and
only when) the scan-line gets to the "next" u, position. After all, at no
other points can rectangles begin or end! Thus we shall let the scan-line

make brief stops at each of the ui to see what happens.

0
s"'_‘r‘_—l
3 !]
r'““l"'J
R |
SR |
[
1
i
Jt-___. -4
Hi-1 Yy
—
Figure 3.

When the scan-line is positioned at ui, the segments "cut out" by inter-
secting rectangles can be of two different types (see figure 4). A segment
is active when it is the "front" of a new rectangle or the current inter-
section with a non-ending rectangle. A segment is non-active if it is the
"end" of a rectangle or a segment not on the present line of intersection.

In figure 4 the segments a and B are active, Y and § are non-active. We

a]

/|

Figure 4.

shall only want to maintain the active segments on the current scan-line.

Definition. Let scan(i) be the scan-line as it is positioned at u, with
its active segments. Let m(i) be the 1-dimensional measure of the active

segments on scan(i).

Let M be the measure of the entire 2-dimensional region covered by the
n rectangles. The use of the scan-line rests on the following simple, yet

fundamental fact

k-1
Lemma 2.1. M = X m(i). (u,
1

i+179)

It suggests a method to calculate M: as the scan-line moves right and makes
its regular stops, keep track of the values of m(i) and accumulate the in-
dicated sum!

When we move the scan-line we can indeed obtain scan(i+1) from scan(i),
by deleting the segments of the rectangles we now "leave" (as they become
non-active) and inserting the segments of rectangles we now "bump into"

(as they become active). Fortunately we kept the necessary information about
rectangles ending and beginning at u,

i+1
we'll have no difficulty in determining which segments to delete or insert.

in a list right at this point, so

For later use we might want to keep segments ordered by their left-point.
Insertions and deletions could still be processed at O(log n) per trans-
action, to a total of O(n log n) as the scan-line moves right and each "side"
of the rectangles gets inserted once and deleted later.

The straightforward way to compute m(i) would seem to apply the algorithm
for the 1-dimensional measure problem to the currently active segments on
scan(i). When segments are given by ordered left-points, it is easy to see
that one sweep over scan(i) will do and that m(i) follows in a "mere” O(n)
steps. It works, but can be costly. The total amount of work adds up to
O(n log n+kn), which could be as Ead as O(n2) when k gets large. On the
face of it, we must have lost a great deal of efficiency when we decided to
recalculate the entire measure on the scan~line at each scan-position. In-
tuitively we must be able to limit the work at Uy and keep it "proportional”
to the number of segments deleted and inserted. We shall see how m(i+1) can
be computed by applying a correction to m(i).

Observe that all segments which can appear on the scan-line must be com-
j+1]' We shall exploit
the fragments as common, atomic building blocks. It would again be too ex-

posed cf a collection of consecutive fragments [vj, v

pensive to tag all constituent fragments of active segments individually,
as suggested in the structure of figure 5.a. The measure can be very easily

maintained, but in the worst case we might have to place and (later) remove

7.

about O0(l.n), hence possibly up to O(nz), tags to do it right and we are
still no better off than before. To save, we shall explain the idea of

Bentley to mark "highest” nodes in a covering tree (figure 5.b).

Figure 5.

Imagine that the (ordered) fragments are all entered as leaves in a balan-
ced search tree B. Each vJ (except vy and vy) will occur twice, once as the

"end" (VJ) of the fragment [v _1 VJ] and once as the "beginning" (vl;egln

)
of the fragment [Vj, Vj+1]' Let a segment q-—[v ,v] ve given. A node of B
is said to be g-full if it covers a segment fully contalned in g, g-partial
if it is not g-full but has a son which is g-partial or gq-full. Consider the
search paths for V?egin and v?nd through B (see figure 5.b). Let the node
where the two paths diverge be t. All nodes encountered before t must have
been g-partial (why?). Prune the two paths at the first g-full node they

run into (see figure 6). The net result is that we can distinguish a "low

line" from t to low-tip and a "high line" from t to high-tip. Note that low-

tip and high-tip could very well coincide with t, the tip. In fact, if one
does they both do (why?).

high line
~~~qg-partial nodes

™o g-full nodes

Figure 6.



Definition. The 1-umbrella of a segment q is the subtree of B consisting
of

(i) the tip t,

(ii) the nodes on the high line from t to high~tip (all g-partial except
high-tip, which is g-full) and the nodes on the low line from t to low-tip
(likewise g-partial except for low-tip itself, which is g-~full),

(iii) the g-full nodes which are directly connected to a node on the high

or low line.

A l-umbrella will have at most 4 nodes in each level, hence O(log n)
nodes in all. It should be clear that the 1-umbrella can in fact be con-
structed in O(log n) time, but to prepare for a later generalization we

shall prove it in a slightly different way.

Lemma 2.2. The l-umbrella of a segment q can be built in O(log n) steps.

Start at the root of B and repeat the following routine for each node x

visited

step 1
if x is g-full, then x is the umbrella and stop

step 2
let x1ow and xhigh be the low and high son of x, resp.

if only one is g-partial or g-full then
X := the g-partial or g-full son
goto step 1

step 3
{we get here when both sons are g-partial or q-full,
hence when x is the tip}
initialize the umbrella by setting tip to x

let qlow be the subsegment of q covered by x

let qhigh be the subsegment of q covered by i::gh
call L(qlow, xlow)
call H(qhigh' xhigh)

step 4

stop



If we keep with each node the segment it covers, then the routine goes
down the tree at 0(1) cost per node visited. The routine L(g, %) builds
the low-line of the umbrella by presenting a segment q to node x and carrying

out the following steps thereafter

step 1
if x is gq-full, then link x to the umbrella as its low-tip

and stop
step 2
let X ow and xhigh be the low and high sons of x, resp.
{note that x cannot be g-full!}
low
if xlow 1s g-partial, then

link x to the umbrella, xhigh to x (as g-full node it is
linked to the umbrella too)
X:= X

goto step 2

step 3

{we get here when x is not g-partial and the low line must be

low
continued towards x . .}
high

* = Xhigh
goto step 1

The routine H(qg, x) likewise constructs the high line of the umbrella.
It easily follows that the total time spent is O(log n).

a

The idea of Bentley's segment tree is not to mark the individual frag-
ments from which a segment is composed, but to mark the nodes of its 1-
umbrella. We shall prove that the following information can be maintained

in B, for any set of segments:

(¥) with each node, the measure of the fragments in its subtree

which are covered by 1-umbrellas through it or below it.

If (%) can be rightly maintained, then it follows that the measure of the
entire set of segments currently in B can be read off at its root. Note

that we do not explicitly keep track of what the current 1-umbrellas are.
There is a hidden danger in not doing so. If we insert, we must be careful
not to add "measure" to nodes which have already been declared full before.
If we delete, we must be careful not to take "measure" away from nodes which

still have other umbrellas through it or below it. But how do we avoid



10.

errors. It appears to be sufficient to maintain the following additional

information in B

(xx) with each node, a count of the number of times it figures

as a full node of some umbrella.

Let val(x) and count(x) be the values at node x as indicated in (%) and (*x)
respectively. It is important to realize that only the full nodes of 1-

umbrellas really determine what we must compensate for at other nodes.

Lemma 2.3. One can insert a segment and maintain the information in B in

only O(log n) steps.

Suppose we want to insert a segment g. We first determine its 1-umbrella

(using O(log n) steps). See figure 7.

low line

Figure 7.

We shall assume that t# low-tip (hence # high~-tip), to treat the hardest
case first.

It is useful to have a special routine DELTA(x) for updating full nodes
of the umbrella first. It updates the measure information and the count at x
(as side effects) and returns the increment in the measure of its subtree

incurred by the added "full coverage".

procedure DELTA (x)
begin
if val(x) = total size segment spanned by x' subtree

then

{entire segment already covered}
count (x) := count (x)+1;
return (0)

else



11.

{the segment wasn't entirely covered}
f := size segment - val (x)
val(x) := size segment;
count (x) := count (x)+1;
return (£f)
£fi

end;

We shall begin by calling DELTA at low-tip and gradually work our way

towards t.

incr := DELTA (low-tip) ;
x := father (low-tip) ;
while x# t do
{f will become the potential increment to be added in from
the side}
£f:=0;
if x has a g-full son y (nét low-tip)
then
{take care of it and see what increment it contributes}
f := DELTA(y)
fi;
if val(x) = size segment spanned by x's subtree

then

{the maximum size has already been reached, if £#0 it

certainly must be because x did occur as a full node

before}
incr :=0
else

it hasn't been, which means x has at most been partial

before. The increments from both directions can validly
be added in}
incr := incr+f;
val(x) := val(x)+incr

fi;

x := father (x)

od;

Let the resulting value of incr along the low line be Alow' We can likewise

determine the ultimate ‘ncrement Ahjgh resulting from working down the high



12.

line. As we did above, the increments must be combined into t and the re-
sulting total increment A be percolated upward towards the root. Note that
A can be "killed" if we run into a node which has count =1.

The degenerate case in which t= low-tip follows likewise.

A (mind twisting) verification shows that (%) is maintained, (xx) trivially
is. The amount of work adds to a total of O(log n).

u]

Lemma 2.4. One can delete a segment and maintain the information in B in

only O(log n) stpes.

Suppose we wish to delete a segment g. Again we determine its i-umbrella
first, at a cost of only O(log n). The measure information, and the counts,
must now be decremented at various nodes. Again we shall work down the low
line and high line, then "combine" the decrements at t and percolate it
towards the root. This time decrements can be killed too, if we run into
nodes which keep having their count > 1!

Again it is useful to have a separate routine DELTA(x) to update (decre-

ment) the information at a full node.

brocedure DELTA (x)
count (x) := count(x)-1;
S := the sum of the val's of x' sons (0 if a leaf);
if count(x) 21 or val(x)=S§
then
{the size area covered below x remains unaffected by the
removal of q}
return (0)
else
{the size area covered is affected, x is no longer full and we
must reset val (x)}
f:=val(x)-8;
val(x) :=S;
return(f)
fi

end;

To show how the decrements are calculated, we shall present the steps

for working along the low line from low-tip towards t. It shows all the



13.

necessary criteria to be applied, to determine whether to "kill" or to

"propagate"” the iterated decrement at a node.

decr := DELTA (low-tip) ;
X := father (low-tip) ;
while x#t do
{we try to let f be the potential decrement to be added in
from the side, caused by the removal of a full node}
f:=0;
if x has a g-full son y
then
f := DELTA (y)
fi;
{now we only need to know that x has count > 1 in order to
kill the decrement communicated from its sons. Otherwise x is
at best partial, and the total decrement can be rightly added
in to modify its val}
if count(x) =21
then
decr := 0
else
decr := decr+f;
val (x) := val(x)-decr
fi;
X := father (x)
od;

One may verify that (x) and (xx) are correctly maintained. The entire
process takes only O(1) time per visited node, hence the total count adds
up to O(log n). '

[w)

The reader may find it instructive to compare the steps taken to insert
and delete a segment, respectively. The understanding of the routines will
be aided by observing that the following, additional Property remains in-

variant at each node x

(xx%) count(x)=21 or val(x) is the sum of the val's of x' sons

(0 if x is a leaf).

The deletion routine should be applied &nly for segments of which we know
they have Previously beer :nserted. Fortunately our main application will do

exactly this.



14.

Theorem 2.5. The measure problem for a set of n rectangles in the plane

can be solved in only O(n leg n).

Returning to the discussion following lemma 2.1, it is clear how we should
proceed. The currently active segments of scan(i) should be put in a segment
tree. The value of m(i) is readily available at the root. If the scan-line
moves one position, then we should delete the segments which have now
become inactive and insert the segments which now bécome active. There will

be 2n transactions of this sort in all, at a cost of O(log n) each.

3. The measure problem in three and more dimensions.

Let us now consider the (apparently) harder problem to determine the
measure of a set of n, possibly overlapping ranges in d-space for d> 2.
Given the O(n log n) solution in two dimensions, it readily follows that
one can do it with O(nd_llog n) steps in 4 dimensions (cf. Bentley [1]).

It is important to note that any improvement over this bound in some dimen-

sion will imply a better bound for all higher dimensions too.

Theorem 3.1. Suppose that the a-dimensionsl measure problem can be solved
in O(g(n)) steps, for some o and g(n) >n. Then one can solve the d-dimen-

sional measure problem in O(nd_ag(n)) steps for any d2a.

By bootstrapped induction it is sufficient to prove the statement for
d=a+l only. Let a set of n (a+1)-dimensional ranges be given, each range
by the concrete bounding values for its coordinates. Sort the bounding

values of the first coordinates and weed out duplicates, to obtain a list

u <u, << w
while, as for the rectangle case, with each u; a table is kept containing
the names of those ranges (viz. their projection) which end or begin at this
point. The a-dimensional hyperplane through ui is the perfect analogue of
our earlier scan-line. Let scan(i) be the scan-plane through u, with all
active intersections on it, let m(i) be the measure of these intersections
viewed as a—dimensiogg% ranges. The "total" volume we wish to compute is

again determined by % m(i)(ui -ui).

+1



15.

It should be obvious that the total measure can be computed by solving
O(n) instances of the a-dimensional measure problem and only O(n) addi-
tional steps. The number of steps adds up to O(n log n) + 0(n.g(n)), which
is O(n.g(n)).

[w]

Theorem 3.1 immediately explains how the O(nd_llog n) algorithm for the
d-dimensional measure problem is obtained. To improve it, we shall examine
the 3-dimensional problem more carefully. The acclaimed O(nzlog n) algorithm
in 3 dimensions resulted (cf. the proof of theorem 3.1) by moving a scan-
plane from left to right over the x-axis and solving the 2-dimensional
measure problem for the active "projections” each time the scan-line was

positioned at another u, . See figure 8.

l; N

—
= !

Figure 8.

Again, efficiency seems to be lost by not maintaining information from a
previous scan-position. Note that we made the very same observation when we
considered our "initial" solution for the rectangle measure problem in
section 2. We shall try to resolve the inefficiency by following the same

recipe, making use of a representation of all projected ranges by planar

fragments.

The first step will be to determine what the fragments are. Thus, imagine
that all 3-dimensional ranges are projected on an abstract Y-z plane. Separa-
tely sort the bounding values in the y-coordinate and in the z-coordinate,
and eliminate duplicates in each list. The result is a 2-dimensional roster

(see figure 9), pPrecisely delineating all pertinent fragments.



16.

the fragments

g
g

Figure 9.

It would still not resolve anything if we would now mark the presence of
a rectangle by "tagging" all individual fragments it is composed of. There
are O(n ) distinct fragments and we could end up tagging all of them for
each rectangle in the projection! Thus we need an appropriate version of the
umbrella concept for plane rectangles. To prepare for it, we note that it
is indeed possible to build a natural balanced tree with the fragments at
its leaves. The reader is advised to familiarize him/herself with quad-trees
(see Finkel and Bentley [3]), which will be just the tool we need.

To grasp the idea of a quad-tree, consider a rectangular area which is
subdivided once (figure 10). We can set up a "root" node A representing the
rectangle and provide it with 4 sons, each representing a distinct rectangular
part. If we subdivide each rectangular part once again, then each son will

"split" in turn and obtain 4 sons also. And so on.

Figure 10.



17.

If we continue subdividing parts h times, then we get a complete quaternary
tree C with h levels and (hence) 4h rectangle fragments as leaves.

Returning to the collection of up to n2 fragments we determined as atomic
parts of the measure problem, let us add enough dividing points along the
y- and z-axis to make a total of some 2h+1 points on both. Clearly we can
keep hfsEbg 2;'= Ebg ;h-l. It will make for a (small) extension of the
original set of fragments, but the succinct advantage is that we can now
build a nice perfect quad-tree on top of them. Note that C can have no more
than

Eég n~+-_1.I

4 = O(nz)

leaves in all. The quad-tree can be built in a number of steps proportional
to n log n (for sorting the y- and z-points) + n2 (to set up the node
linkages), hence in O(n2).

If we keep with each node of the quad-tree the information telling what
rectangular region it covers, then we can very easily determine for a given
rectangle q whether a visited node is g-partial or g-full. It will be of
help in determining the "umbrella" of a rectangle in the quad-tree, which we
shall do in very much the same way as the construction in lemma 2.2.

To determine the 2-umbrella of a rectangle g we proceed as follows. Start
at C's root and go down the quad-tree as long as there is exactly one qg-
partial or g-full son ahead. The first node you hit which is g-full or which
has 22 g-partial or g-full sons, will be the umbrella's tip. If the tip is
g-full, then the umbrella is completed. Otherwise link all q—fuil sons to
the tip and, after linking them to the tip also, proceed with the following

routine for each of the g-partial sons

procedure UMB (x)

{x has been linked to the umbrella}

link all g-full and g-partial sons of x to x, making them
part of the umbrella;

call UMB for each of the g-partial sons

end

The resulting structure will be a quaternary, connected subtree embedded in
C, which "resembles" an umbrella. It will come as a surprise that 2-umbrellas

can't be very big, as the following lemma shows.

Lemma 3.2. The 2-umbrella of a rectangle can be determined in only O(n)

steps and (hence) has at most O(n) nodes.



18.

We shall argue that the given construction must terminate within O(n)
steps. When the tip of the umbrella is reached (after at most log n steps),
we know q can be embedded in the rectangular region below in only one of

three different ways:

v
type A ///

7
21 W 7

trpe 7 % 7 %/

For our analysis it is unimportant to keep track of the size of the area q

occupies in each of these corner-types. All we need to know is that, at each
node visited by UMB, q's embedding can be classified as being of one of
these three types.

One may observe that

(1) nodes of type A are "terminal",
(1i) nodes of type B (as UMB inspects its 4 parts) can lead into at most
1 son of type A, 1 of type B and 2 sons of type C,
(iii) nodes of type C can likewise lead into at most 2 sons of type A

and 2 of type C again.

We might conveniently represent the "growth” of the number of nodes visited
by UMB as a parallel rewriting system with axiom A, B or C (depending on the

cornertype at the tip) and production rules

A=A
B—ABCC
C—AACC

It models the worst case only and the real number of nodes visited will not
be as large as these growth rules let us predict. Observe that there can be
at most one B node at each instant in time, that the number of A's cannot

be larger than twice the number of C's there can be in the worst case. This

number of C's is easily seen to be

<2. 2h = 0(n)



19.

where we note that UMB's recursion cannot go deeper than the quad-tree's

depth hsrfog ;11+1.

This will do to obtain the O(n) bounds claimed.

From this point on, we can proceed in exactly the same way as we did for
segment trees! We shall demonstrate (this time only briefly) that the
following information can be maintained in the quad-tree, after a set of

rectangles has been inserted

(x) with each node x a value val(x), which is the measure of the total

region covered by 2-umbrellas through it or below it,

(¥x) with each node x a number count(x), which keeps track of the number

of times x currently figures as a full node of some 2-umbrella.

Again the full nodes carry the show. A quad-tree as constructed, augmented

with the val- and count-information at the nodes, will be called a rectangle

tree.

Lemma 3.3. One can insert a rectangle into the rectangle tree and maintain

(¥) and (*%) in only O(n) steps.

Lemma 3.4. One can delete a (currently present) rectangle from the rectangle

tree and maintain (%) and (%*) in only O(n) steps.

In both lemmas we first build the (quaternary) 2-umbrella of the rectangle
we want to insert or delete in O(n) steps and then update the information

at each node during a pre-order traversal of the umbrella in exactly the

same way as in lemmas 2.3 and 2.4. After each transaction the total "meésure"
of the current set of rectangles can be read off at the root.

We conclude

2
Theorem 3.5. The 3-dimensional measure problem can be solved in only O(n°)

steps.

Setting up the initial quad-tree for the fragments in the scan-plane
takes O(n2) steps. If we move the scan-plane across the x-axis, then we need
to make no more than 2n insertions (of active rectangles) and deletions (of
rectangles which become inactive) as we go along, at a cost of O(n) each.

[w]



20.

As an immediate corollary to theorems 3.1 and 3.5 we get the main result

of this paper.

Theorem 3.6. The measure of a set of n rectangular ranges in dimension

d2 3 can be computed in only O(nd_l) steps.

This result seems to establish the best currently known bound on Klee's

rectangular measure problem.

4. Final comments.

The main result of our analysis is an improvement of Bentley's O(nzlog n)
bound for the 3-dimensional measure problem to O(n2). We argued that the d-
dimensional measure problem for d> 3 could be solved in O(nd—l) steps, essen-
tially by extending the efficient solution in 3 dimensions to higher dimen-
sions in the very same blunt manner we previously criticized for its lack of
efficiency.

It would seem that, just as in the 2- and 3-dimensional cases, we should
build a proper analogue of a rectangle tree for the (d-1)-dimensional frag-
ments in a (d-1)-dimensional scan-plane and represent ranges dynamically by
means of a (d-1)-umbrella. The efficiency of this method will depend very
heavily on our estimates of the umbrella sizes to be expected. We know of
no better bound than O(nd—z) for it, as is also confirmed by a very similar
result Lee and Wong [6] obtained for the number of nodes visited by range
querying in a balanced quad-tree (which is very much the same problem) .

Thus the question remains whether our bounds and methods are optimal or
not. In fact, we do not even know whether the n2 bound for 3 dimensions is

best or not.

5. References

[1] Bentley, J.L., Solutions to Klee's rectangle problems, unpublished

manuscript, Dept. of Computer Science, Carnegie-Mellon University (1977).

[2] Bentley, J.L. and D. Wood, An optimal worst-case algorithm for reporting
intersections of rectangles, Techn. Rep. 79-CS—13,'Unit for Computer

Science, McMaster University, Hamilton, Ont. (1979).

[3] Finkel, R.A. and J.L. Bentley, Quad-trees: a data structure for retrieval

on composite keys, Acta Informatica 4 (1974) 1-9.

[4] Fredman, M. and B. Weide, On the complexity of computing the measure of
U[ai,bi], C.ACM 21 (1978) 540-544.



21.

[5] Klee, V., Can the measure of U[ai’bi] be computed in less than O(n log n)

steps, Research Probl. Sect., Amer. Math. Monthly 84 (1977) 284-285.

[6] Lee, D.T. and C.K. Wong, Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad

trees, Acta Informatica 9 (1977) 23-29.

[7] vaishnavi, V. and D. Wood, Data structures for the rectangle containment
and enclosure problems, Techn. Rep. 79-CS-19, Unit for Computer

Science, McMaster University, Hamilton, Ont. (1979).






