2 SR) SRR » Vnkgmepinformmca’KUUue&

A

Nissim Francesz les
C. A. R, Hoare® * o ; P

L

:Yw‘? o | o Daujel J. Lohmuml
” Willem P. de Rosver>

[: R

Py - * »

T , ., August 1978 - .

P

o g

-

‘1. University of Southern California, Los Angeles
2. University of Oxford, Wolison College, U. K. .~
3. University of California at Berkeley

(*) Based on work caryied out by Francez, Hoare and de Roever at
Queen's University, Belfast, d the academic year 1976-77,
suppiorted by SRC Grant No, B/RG/74082. e
The completion of this paper was supported by NSF Grant No,

R o 3.53-4510-2493.

Sy

[4

(#*) Present Addresses: of N. F.: Technion, Haifa, Israel. |
' of W. P. deR.: Univeérsity of Utrecht, de Uithof,
B Utrecht, the Netherlands. =

7% itfa

vakgroep informatica R,U, Utrech:

SEMANTICS OF

%
NONDETERMINISM, CONCURRENCY AND COMMUNICATION

by

. . 1%k
Nissim Francez

C. A. R. Hoare2

Daniel J. Lehma.nnl

&’
Willem P. de Roever3

August 1978

1. University of Southern California, Los Angeles
2. University of Oxford, Wolfson College, U. K.
3. University of California at Berkeley

(**) DBased on work carried out by Francez, Hoare and de Roever at
Qucen's University, Belfast, during the academic year 1976-71,
supported by SRC Grant No. B/RG/74082.

The completion of this paper was supported by NSF Grant No.
3-53-4510-2493.

(**) Present Addresses: of N. F.: Technion, Haifa, Israel.
of W. P. deR.: University of Utrecht, de Uithof,
Utrecht, the Netherlands.

SEMANTICS OF NONDETERMINISM, CONCURRENCY

AND COMMUNICATION

I. Introduction

1. Background and motivation:

One of the more important and active areas in the theory of program-
ming languages is that of concurrent programs, specifically their de-
sign, definition, analysis and verification. Due to recent develop-
ments in the technology of microprocessors, there is a trend towards
languages supporting distributed activities involving communication
rather than concurrent activities on some shared resources, mainly
memory. Thus, it becomes very important to supply adequate tools
for the definition and analysis of such programs and programming

languages.

One recent attempt to designsuch a language was done by Hoare IR
where the language CSP (communicating sequential processes) was
presented informally. This is a language for the expression of non-

deterministic, concurrent and communicating programs.

The main features which distinguish CSP are:
a. Processes are disjoint, do not have any shared variables.
The only contact between processes is by means of com-

munication, Concurrency is explicit on the process level.

iy

b. Communication is achieved by means of input and output
operations, which are expressed by primitives of the
language. Communication plays a double role of both
message passing and synchronization. Communication is
always directed, having syntactically specified source and

target processes, and a strongly typed message.

c. Processes are nondeterministic, and the language allows
to distinguish between two kinds of nondete rminism, dis-

cussed in the sequel.
Syntax and informal meaning of CSP are described by way of example:

P::[P,| P,!IP,], where:

P

AL [Pz?x-» T, DP3 Ly TZ];
*[P2!u4 T, (] P,2vs T4];

Pyt [P, 28T 0Pt T, DP3?x-bT7];

P,A, 5% [B 2Ty [JB,» Tl

- '|' is the parallel composition operator.

- Ai's are elementary operations as assignment, skip, abort, etc.

- Ti's are unspecified (for abbreviating the example) program sections.

- PJ. ?x(in Pi) is an input command, expressing an input request of Pi
from Pj, and assignment of the input value to the (local) variable x.
Such a command is to be executed only when Pj is ready to execute
a corresponding output command Pi!y, meaning a request to output

the value of y to Pi' Either i/o command waits until the correspond-

ing one is ready.

-3-

- '[' is the guard separator. Guards may be boolean (Bi's), pass-
able when true, or i/o commands, passable when a correspond-
ing i/o command in the addressed process is ready.

- "' denotes repetition as long as there exists a passable guard.

- ;' is sequential composition.

- All processes have disjoint sets of local variables, the only ones

to be assigned.

Thus the language is essentially different from various other attempts
to consider concurrent programs, e.g. Concurrent Pascal (Brinch-
Hansen [27]) which uses monitors [10] to control access to shared
variables and procedures, or the language used by Owicki [15] with

critical sections,

In this paper, we
i) Definc a formal(denotational) semantics for the main con-
structs of CSP.
ii) Clarify, by means of semantical analysis, the relationship
between nondeterminism, concurrency and communication.
iii) Suggesta rigorous framework for dealing with termination

and deadlock of communicating processes.

(In this paper communication is understood as interaction between dis-

joint processes.)

The denotational approach to the definition of the semantics of program-
ming languages originated from a pioneering paper by Scott and Strachey
[18], who have shown that a relatively small number of basic semantic
constructions are needed for an adequate modelling of the realm of mean-

ings of sequential, deterministic programs, The main idea in this

-4 -

approach is to attach to each program some mathematical object as its
meaning, or denotation; see Strachey and Milne [22] for a survey of such
a characterization of various programming language constructs. The
domain of these objects is called a semantic domain. This attachment
enables a mathematical proof of properties of the program, and supplies
a justification for various inductive proof-rules. The process of attach-
ing a meaning to a program uses induction on the syntactic structure of
the program. Because of the presence of circular definitions, e.g. recur-
sive procedures, a mathematical theory had to be developed(Scott [19]) in
order to prove the existence of the required denotations. According to
this theory, a program denotes a partial function from one domain to
another. In case of circular definitions (e.g., recursive ones), it can
be shown that there exists a unique partial function which satisfies this
definition and is a limit of a sequence of partial functions, each of which
is at least as well defined as its predecessor. Using tools from lattice
algebra and topology, Scott was able to give the appropriate foundations

needed for this approach,

More recently, Plotkin [16] extended this approach to cover also non-
deterministic programs, By a construction of power domains, which
are domains of certain sets of elements from the base domain ordered
in an appropriate approximation ordering (see also Egli [6]), he was
able to supply denotations to nondeterministic programs by using set
valued partial functions. Another power domain construction appears

in Smyth [20].

Milner [14] suggests a construction, called renewals (or resumptions), to

give denotations to concurrent programs. However, the programs he
has in mind in [14] involve highly interleaved actions on shared vari-
ables. Thus, an action by a process may either deliver a result, or
give rise to a new process yet to be interleaved with other processes.
Since process interaction in CSP is by means of communication rather
than by means of sharing memory, a different description of the seman-
tics is enabled. We suggest another construction which is adequate for
communicating processes in CSP (compare also Milne and Milner [13])

and which reduces the degree of interleaving.
The importance of this work is twofold:

1) The formal semantics for CSP clarifies many of the com-
plex issues which arc needed in order to formulate and
validate proof-rules for CSP. (Currently, work is being
done on rules which will use "interface predicates', intro-

duced in Francez [7]).

22) The clearer relationship between concurrency, nondeter-
minism, and communication suggests a way for both the
design of language constructs which diminish the danger of

deadlock, and the construction of terminating programs.

In the next section, we specify some new contributions of the paper,

which expand on 1) and 2) above.

b~

20

What is new?

2.1

A priori semantics: We regard a single process (taken out of a

set of communicating processes) by itself to be a semantically

meaningful entity, which deserves a denotation ot its own. There-

fore, we are led to a definition of semantics which attributes a

separate meaning to each component P, of P:: [Pyl |

P_]. This
n

xind of semantics is called a priori because it denotes all the

communication capabilities of Pi when confronted with any

environment, i.e. all other processes in P. At the next level

we introduce a binding operator”, which combines the set of

scparate a priori meanings of all Pi's to a joint meaning of P.

Since every process has its own {disjoint) local memory, the only
contact with other processes being via communication, the
degree of interleaving is much smaller than with shared vari-
ables, as in each process local computation, involving no com-
munication, does not influence in any way similar computations
in other processes. Therefore, the semantics of each separ-
ate process is determined by (1) providing an initial state for
the local variables and (2) describing its reaction to every
possible mcssage requested. Since the values of these messages
may vary, cach value specifies a diffcrent possibility for con-
tinuing the computation. These possibilities will be expressed
as branches of a tree. This leads to the construction of a new

semantic domain, which we call the domain of history-trees.

-7~

2,2

The histories in question are histories of communication (i.e.

traces of records of communications that might have taken place).
We show that these histories are sufficient for the description of
deadlock since deadlock can be caused only by some communica-
tions failing to happen. With these histories we provide a uniform
alternative to mythical (''ghost") variables, e.g. Clint [3] and
Owicki [15], since these variables are used to capture parts of

such histories.

In this context, communication involves a message passing from a
source process to a target process. Other approaches are e.g. Milne
and Milner [13] where emphasis is put on exchange of values, or Kahn

[11], where message transmission is buffered, not synchronizing.

Nondeterminism, concurrency and communication

In our semantic domain we distinguish between two kinds of nondeter -

minism, which are expressed in CSP by means of two kinds of
guarded commands [4](this may be one of the innovations of CSP),
These two types differ in the way nondeterminism is resolv;ed, and
have a different impact on achieving successful communication and

deadlock freedorm.

The one kind, using boolean guards, we call local nondeterminism,
and is the "old' notion introduced by Dijkstra [4]. When examined in
connection with communication, it occurs when a process Pi can
communicate with any of Pil oo Pi , and decides on its own for

n

which communication to wait, i.e. independent of any consultation

with the other processes.

-8 -

The second kind, using i/o guards,we call global nondeterminism,
and is resolved by inspecting the other processes w. r. t. to their
willingness to communicate. Only mutual willingness to communi-

cate may result in a de facto communication.

Mixtures of boolean guards and i/o guards are not considered in
this paper. As a simple example, con: -2r the difference between

the following two programs. :

. 1 .s '
andl) [Pl..[true-» P, ?x[] true- PZ'O]”PZ“PI' 1]

2) [P,:[P, ?x-skip OP,.04 skip]|| PZ::PIII]

1 2
In the first, Pl may choose the second alternative and cause a dead-

lock. In the second, successful termination is guaranteed,

In our semantic domain of history trees, this distinction is reflected
by letting the history trees have two kinds of non-leaves, on which
thé binding operator operates differently. This difference reflects
also the -ifferent implications of the presence of the two kinds of
nondete rminism on freedom from deadlock, and will underlie a

future proof-rule.

The use of end-aignaling for termination

CSP [9] enables a neal handling of loops which depend on communica-
tion guards, and also the abortion of the corresponding selection.
Upon termination, a process Pi reaches a final state, which may be
sensed by all processes communicating with Pi' A guard consisting

of a communication request is regarded as false iff the target process

has already terminated! Otherwise, waiting occurs, because the
communication may take place in the future. Thus, a loop depend-
ing on guards communicating with P.1 ces Pi is exited only if all

1 n

of these processes have terminated, Correspondingly, a selec-

tion depending on such guards aborts.

Not e that termination is in general not a property of a single pro-
process. As a typical example, consider a ''service process’!
which responds to requests until it receives a signal meaning
"terminate!'. If presented with an infinite sequence of requests,
it should produce an infinite sequence of responses. Only the pair
consisting of user-process and service-process may provably term-
inate. For a more interesting example, displaying how intricate
the termination of such programs may be, see Dijkstra [5]. Thus,
although every possibility for (non) termination is already present
in the a priori meaning of « single process, actual (non) termina-
tion of the combination of all processes is determined only on the

level of the binding opcrator 2.

1I. A Domain 7. and semantic equations for '/}7[[Pi], the APriori Semantics of P,

The distinction between local and global nondeterminism implies that a
domain of ordinary trees (whose arcs arc possibly labelled by records
of communication) is not sufficiently structured as to reflect this dis-

tinction. For, whenever local nondeterminism is resolved, a number

of independent alternatives are created, each of which has to be in-

dependently confronted with the environment. However, global non-

-10-

determinism postpones resolution until the moment of binding since
it looks for mutual consent with the environment and can therefore

only be resolved during binding.

Therefore, a more refined structure of (finite and infinite) trees
with two kinds of nodes, called local nodes and global nodes, is

needed.

Since at any stage in its computation, at the level of elementary state-
ments and operations, a process can make only a finite number of
nondeterministic choices, any local node has only a finite, positive,

number of outgoing arcs.

A global node signals willingness to communicate. Therefore, any
arc outgoing a global node is labelled by a target process identifier.
Willingness to communicate means either willingness to output a

value or to input one of the appropriate type.

At any instant, a process may have a global nondeterministic choice
to communicate with a finite number of processes, and therefore the
corresponding node will have a finite number of outgoing edges,

specifying these processes.

There will be also nodes corresponding to a single input command,

and these may have an infinite number of outgoing branches, each
labelled by a record of communication corresponding to one of the
possible input values. An output command will be represented by a
node with a single outgoing edge, labelled by the record of communica-

tion corresponding to the output value.

-11-

We nowproceed with the formal definition of this domain,

Definition: Let A be any non empty set, called the

Communication Alphabet,

Members of A represent messages passed via i/o
from one process to other. In this paper we shall

assume that A={n|n20}.
Definition: A record of communication (roc) is a triple g =<a, i, j>,a € \.

The intended interpretation of ¢ is that of the massage a passed from

Pi to Pj. Let 1<i,jsn., Then 22={ <a,i, j> laeA} where i # j,

and ¥'=¢. Also, letr.=11,...,n}-(i}. ;= U gijandz‘]= U 21J°
! jery ier
]
Definition: Let Vi denote the set of {(local) variables of Pi'
S, = [Vi-o A]u {fail}] is the set of states of P..
We consider a statc to be mapping from variables to values, We avoid
the consideration of "environments’ [18] since these do not change in

the restricted language we consider; fail is a special state denoting a

failing computation.
For s € Si' s # fail, xGVi and a € A, s:= AY. ify=xthena else s(y).

Next, we definc the complete partial order (cpo) T, as the least
solution (in the category of cpo's) of a domain equation. The

reader unfamiliar with the technicalitics of this kind of equations
could consult |21, 221, Ty is the domain of history trees correspond-

ing to Pi, and will be used as the range of the semantic function

-12a

m [IPi]], characterizing the a priori semantics of Pi'

- i
(1) ri—(siu(j%ri[yja.ri])u(jgr

(elxm)) uir, =g xS urh

i 1

Here:

x*= || F(X) and F(X)=) Y. XOX0QY,
i.e. X+ is the domain of finite (non-empty) sequences over X . {1} with the
following ordering: there is one bottom element, sequences of different

lengths are not comparable, and sequences of the same length are ordered

coordinatewise by the ordering inherited from X.

Equation (1) defines a (finite or infinite) tree in ,7; to be either bottom or be-

longing to one of five addends.

Formally: If A is a partially ordered set then A is obtained by adding to A
L

a new bottom element. The union symbol |J denotes disjoint union of parti-

ally ordered sets (no bottom element is added); union is thus associative. (For
instance, an element A|j By C is either in Aorin B orin C and corres-
pouds therefore with three cases; this is in contrast to the customary usage
of the disjoint sum A +B+C which adds more bottom elements and there-

fore creates more partially defined objects (and is not associative)).

If A is a set and B a cpo, [A+ B]is the cpo of all total functions from A to B

with the obvious ordering.

The symbol x denotes Cartesian product |, denotes the least fixed point

operator,

The coalesced sum ® and the coalesced product © have been defined in [21]
and [12]. They are used to avoid the introduction in X+ of partially undefined

and infinite objects, as explained in [12] (warning: in [12] the coalesced sum

«13.

is denoted by +)..

Intuitive explanation: The solution to equation (1) can be thought of as the

domain of all finite and infinite trees, which have the following nodes:

a.

b.

Leaves:

Input nodes:

Output nodes:

Global nodes:

J.ocal nodes:

are labelled by S;U {1} and having no outgoing arcs.
have (a possibly infinite) number of outgoing arcs,
each labelled by some g € 21 .

have one outgoing arc, labelled by some g € Zi’
have a finite, positive, number of outgoing arcs,
labelled by I‘i and an additional unlabelled arc.
(Will be denoted in figures as(J).

have a finite, positive, number of unlabelled

arcs. (Will be denoted in figures as O).

Note that each kind of node corresponds to a particular addend in (1).

Equation (1) has been designed as to induce the following ordering on T

(see [21, 12]):

Thus,

T, C T2 iff T2 may be obtained from T1 by replacing some ; -

labelled leaf by some T'¢ T

I

-14-

This is very refined ordering, which, e.g. distinguishes between

{iq.2
Such distinctions are natural in a context in which histories (and not only

terminal values) matter ; is the smallest element in this ordering.

ig II’ i ig and iy the corresponding injections

from the components to their corresponding copies in Y cf. [18].

We shall denote by:

Thus,

sy [ria] 7, ete.
: i i
J
Before defining the sermantic function ? [IPi]], we define an auxiliary func-

ig 2527y i;

tion £ (replacement), which generalizes functional composition from the

sequential casc,

When defining the meaning of Sl; SZ’ S1 has already produced an (inter-
mediate) history tree. Thus, the meaning of S2 has to be applied to all
possible leaves of that tree, and will in general depend on the states label-
ing the leaves of this tree, e.g. if S2 starts with some boolean selection,

the state will determine the selected branch(es).

E:_'/'ix [Si-oji]-b ‘Ti

and the meaning of @ [T, F]is the tree obtained by replacing every leaf

labelled s by the trec F(s). (We assume F (fail) = fail).

-15=

@ is defined recursively by structural induction on T:

7L , if T =

F (T) if T € ig (S,)

iy(xo.R[T(s) F]) .ifTGiI(’[‘Z;-'J’i])
(Z)P(T.F]=ﬁ ig(<T11, pIT12, F]>) ,if'reio(zix..ri)

igleec Tl 1, R[T'1 112, F]>, ..., <T1kiL g [T1k12, Fl>>, F(sh>)

where s=T12and T'=T 1 1 , ifT eiG (rixj‘i)Kx s)'

LiL(<R[T1 L F) «eo, p[T1 K, F]> ,ifTeiL(yik)

(1 i denote the projection to the i th component of an n-tuple).
Note that @ does not affect infinite paths in T. Clearly, @ is continuous.

Next, we proceced with the formal definition of 7 [PiB : Si-b T and in-
formal cxplanation of each clause in the definition.
) o [Qlfail) = fail for all Q. In the sequel, we assume s ¥ fail!
2) Input
o ﬂPj?x]] =xs.if () o iS(s’; (1)
We get a new function, returning for each s the modified state,
which records the side effect of input the value compouent 5 | 1

of the input (roc) g.

Thus, Pj ? x creates the following treec, to be called an input node.

E

-16-

3)

4)

5)

OuQut:

m [[PJ!XB =A S.io(<< s(x), i, j>, is(s)>)

We get a tree with one arc to be called an output node.

[1
A0, 0'//.)

’

®s5
The subtree labelled s indicates that output has no side effect,

and the output value will have to be matched by 5 to an input arc

in the tree corresponding to Pj'

Assignment

mlx:=e] = s.if¥ (e, s)=fail then fail

else is(sx)
r (e, s)

7 (e, s) is an auxiliary function which computes. the value of an

expression e in state s, We assume ¥ (e, s) = fail if e is un-

¥
defined. We do niot consider recursive functions here, so the
evaluation of expressions always terminates, and yields fail in
cases like division by 0. The meaning of assignment is to update
the state s. Note that it does not create any new arcs in the tree.
Skipping

m 1l skip] = » s.ig(s). Obvious.

- 17 -

6)

7)

Sequential composition:
mISy:8,0=xs.0bnls; 1 (s), m[S,]]

For a given state s, we first apply 7 IISII] to s, obtaining a tree,

say Ts' Then, we apply the replacement operator § to ’I‘s and
the function [ISZ . This reflects the fact that the operation of

S, depends upon the final state of 7 [[S1] which it continues.

2

~

Note that 7 ﬂSl] (fail) = fail by assumption (case 1), and g may
be, therefore, applied with 7 as an argument.

Also, if S, has a nonterminating computation, 7 [[SII] (s) will

1
have an infinite path, which will not be affected by R.

Boolean selection:

We treat here the case of two guards only. The extension to any
number of guards should be clear. We assume guards are always
defined.
mI[B,+5,TB,~S,]11=x8.T_, where
Ts= case <V (Bl’ s), I (Bz, s)> of
<ff, ff> :iS (fail);
< ff, tt> M [[SZII (s);
<tt, ff> :m [[S, T (s);
<tt, tt> :i; (<ms](s), m [S,1 (s)>)
In case both guards are false, computation is aborted, In case
exactly one guard is true, then” of the corresponding guarded
statement is applied to s.
In case both guards are true, a l_o_g_g}_node is created, reﬂect‘mg
in its two unlabelled subtrees the two independent continuations,
thus recording local nondeterminism, which will cause indepen-

dent binding of each subtree.

-18-

The picture for this case is:

L
.

MLy Bl

8) 1/0 directed selection

Again, we shall describe the semantics of a particular case, involving
only two guards, both being input guards. The description of ¢ for
more (or less) than two guards, and for output guards, should be
clear,
m [[[Pj ?x+S, 7P ?y+ S, 1] =1s. T, where

T = ig (<<<is i o [8,0 (57 | 1))>,

<k ifio.m IS, (s) | 1)) >>

ig (fail)>).
An inpﬁt can be.accepted from either Pj or from Pk’ and the corres-
ponding guarded statement executed., The decision as to which con-
tinuation to take is postponed to the binding time, when the state of

Pj and ZPk will be available, thus reflecting the global nondete rminism.

-19.

:s1 98®d sTY3 03 Burpuocdsdziod aanyod oy

-20-

The fail subtree will be used if both Pj and Pk have terminated,

a fact to be noticed at binding.

Since all the auxiliary functions applied so far are continuous, the

definition of 7 for loops by means of least fixed points is justified.

9) Boolean repetition

Wz[[*[Bl-’ S) 7B, SZ] B=u()\F.)\s.Ts)where
TS= case < 7(B s), ¥ (BZ, s) > of

<ff, ff>:is(s);

<ff, tt>:0 [mIs,](s), F];

<tt, fi>:0 [m[S,0(s), F];

<tt ff>:iL(<n [mﬂsl I16, FLel7 [[82]] (s), F]>);

If both guards are false, the loop is exited. In case exactly one guard
is true, the corresponding guarded statement is executed and the

whole guarded command is attempted again.

In case both guards are true, a local node is created, and both

continuations are recorded as subtrees of this node.

10) 1/0 directed repetition

m [* [Pj?xasl[jpk?y-b S,11 =u (A F.xs. T), where

T = iG (<<<i, '11(xo.RI[M [[Sl]](S;{l 1). FD>,
<k, i;(xc . R M [[SZB(SZ 1 FJ)>>,
is(s)>)
If both processes ended, the loop is exited, Otherwise an input
is selected (again, postponing the decision from which process),

the corresponding S executed, and the whole loop attempted again.

21-

This completes the definition on 9 [[Pi]] by means of semantic

] ‘ equations. As a simple example, reconsider the program pre-

sented in the introduction.

ﬁ .f Let s € Sl’ s’'¢€ S2 be two initial local states.

III.

The

Anticipating the binding function, one can see intuitively that the
second program can never fail, since it will choose that alterna-
tive in P1 which will match P2 (i.e. the first). On the other hand,
the first program may fail, if P1 chooses its second guard as a

“"wrong' independent choice, thereby causing deadlock.

Binding Operator 2

The purpose of the binding operator is to attach a joint meaning to a

concurrent command P :: [P1 ool Pn] in an initial state

<8Byy cees SO by using the history trees [IPl]](sl), cees

n [[Pnﬂ (s,,)

We restrict ourselves to 'closed' concurrent commands since the
sernantics for, and the proper restrictions to be imposed upon non-
closed concurrent commands are still under scrutiny, cf.Hoare [9].
(By '‘closed' we mean that no component Pi of P communicates with
P

any process not amongst Py, ..., P , Pn.)

i=1% 7i+1”
The computation of P starts in <Bys ceey 5> and may produce a
set of such n-tuples as final states, While binding, all the histories
of communication are "forgotten'' and only final states are left, cf.
also Milne and Milner [13]. Any occurrence of an infinite computa=

tion in any process Pi is recorded by a single formal value ; stand-

ing for the 'undefined' n-tuple. We also include two other states

deadlock, which records a deadlock situation, and fail, which

records abortion in any componeat. The meaning of P is given by

s mIP D (s oo mIPT (5)).

-23-

1.1

On the Egli-Milner Order

Before defining the binding operator § we first need to introduce the
concept of Egli-Milner order to describe the value domain of B --a

certain collection of subsets of Sl X oo X Sn U {1, fail, deadlock}

and its underlying structure (since 5 is defined recursively, #'s
existence follows from the usual continuity considerations with

respect to this order).

The concept of Egli-Milner order (Egli [6], Plotkin [16]) dates back
to 1975, and constituted a breakthrough in the semantics of non-
determinism, and a fortiori of concurrency; its application in

de Roever [17] resulted in the first comprehensive model =- i.e.
including a characterization of nondeterminism -« of Dijkstra's
predicate transformer; and it is based on a powerful intuition
which is best explained in Egli's unpublished paper, extensively

cited in, e.g., de Bakker [1].

Let D denote any nonempty set with ;, ¢ D, PE-M(DU {1})de-
notes the collection C of all nonempty subsets V of Dy {1} satis-
fying: if V € C and V is infinite, then , € V. Order PE_M(DU {11)

as follows : for Vl’ V2 € PE-—M (Dy {11}).

V1€ E.MmV2 iff either ; ¢ Vyandv, -{1} ¢ v,
(set-theoretical containment)
ori § Vyand v, =V,.
<PE_M(DU {2} £ > is a complete partial order, called Egli-

= E-M
Milner order.

«24-

1)

2)

4)

We shall use the property that if Vi € PE-M (Dy {1+1) and

fori€ N, then yel.u.b. Vi iff 3Jy e Vij.

ME goMm Vi1 :

This concept is related to nondeterminism in that functions with

values in PE M (Dy{+}, suchas B, describe nondeterministic
program behaviour. The extension of this concept to subsets of
any complete partial order < L, C > has been described in

Plotkin [16], Smyth [20] provides a masterful account how this

order can be more simply described for the general case.

1.2 The Definition of 7

The functionality of B is for any n 2 2 given by
((S1 x...xSn) U f 1 {_a_i_l,

deadlock‘ }).

B:J]x... X'Tn"PE-M

First, we give a recursive definition of (Tl' ey Tn) and then
proceed with an informal explanation of the role of each clause in
the definition. We shall number the successive clauses in the
margins, for convenience.
@(Tl, ey Tn) =
fi13dil<sisn). T,=1)
(For all subseq'uent clauses, assumeVvVi (I<isg rl).Ti # 1)

yof fail ! diQsi< n). T, = ig (fail) }

(For all subsequent clauses, assumevVv i (1 <i< n). Ti # iS (fail)).

U {<sl, ciey S > l]vi(lsi<n). T,

i -5 €15 5]

UG(TI’ LA I J Ti-l’ Ti(lel), « s 09 Tj-l’ lez, LN B] Tn)
e P . i

-25-

. o i : . '
5) U {fail| T, € 11([25 +7.]) and T; € 1s(sj), or T, € 1O(gix1’i)
and Tj € iS (s:j”

J
6) UBg (Tlﬁ ceoy Ti-l’ Ti'

. _ 1
¢ o0) Tn)lfTi"< Ti,.oc,

m . + .
T, >€i (7)), 1sjsm,

. j
NUs T s T T T L T e, Ty)

. 1 2
1fTi=<<< kl’ Ti >,<k2, Ti s, ""<krn' Tim>>, 8>,
and

either TiJ € i ([v;(j +7 .), and Tkj € io(y;(j X7,)
j y 5
or Ty €1O(>f‘i xri) and Ty €1 ([3"i +7 Dy forl1<js m,

p i g j
8 BTy e Ty T L T L T, L T

i=1? 7§

J
if T, = k., T, L x_, T.™
1 i—<<< i’ i>, oo-,<m, i >>, S>,
1
Tj:<<< El, Tj >‘ooo, <zr, Tir>>’ s'>
and for some p, q,kp=j, gq =i, and

. . P . . i q._ . i
either Ti € 1I(f9_‘j -+ J i]), Tj € i5 ():j xfj)

S j qQ .. j :
or T € ig (73279 T € ip ([*Y-i])

9) ’J@ (Tlo « s 0y Ti-l' S. Ti+1, o e 0y Tn)
1
ifTi :<<<ki, Ti D> ey <km, Ti >>, s>
andv j(l <jsm). T, ¢ iS(Sk.)’

J . .
10) U {deadlock ! if none of the other clauses is applicable }.

=26 -

This covers all the possible contributions of (Tl, ey Tn)'
Since unions are used, this definition is independent of the
order of application of the various clauses. Thus

Je] (Tl' ces Tn) will reflect all possible final states that are
obtainable by executing [P, Il ... I P], including proper

states, failures, nontermination and deadlock. 0

We procced by explaining the role of each clause in the

above definition.

ad 1) f 11 is thc bottom element of PE-M mentioned above, and
denotes undefined information. A-; node in Ti is used to
describe approximations to elements inj'i , and will appear in
the approximations to the a priori semantics of loops within
Pi' This clause is needed for the continuity of 3.

ad 2): fail is a formal value denoting some machine detectable error,
such as a selection with false guards only, etc. It is pre-
served under the a priori semantics (see clause 1 in the
definition of), and could be used to issue an error
message (Goguen [8]). Once such an error occurs within any
m [[Pi]] (si), it will be reflected in the value of 3.

Note that ;| & fail.

=27~

ad 3): This is the case of successful termination of all Pi's, each
reaching a final state s, € Si' Then we add the tuple
< 8ys <nes sn> to the set of final values of 3.

ad 4); This is the case of successful communication where Ti
contains an input node (from Pj) and Tj contains a corres-
ponding output node (to Pi)’ with matching roc's. Then,
Ti is replaced by the subtree corresponding to this
matching roc, which is obtained by applying Ti’ which is
a function, to this roc, and Tj is replaced by its (unique)
subtree; then B is called recursively,

ad 5): This is the case of unsuccessful communication, where Ti is
an input node or an output node, and Tj € Sj is a final state
of Pj, meaning that 13‘j has already terminated. A communi-
cation atternpt with a terminated process is interpreted as
failure, and the value is { fail}.

ad 6): This is the case of local nondeterminism in Pi involving
selection with boolean guards. As already noted, the mean-
ing is that any of the subtrees of Ti can be chosen, and
bound to the other Tj's. Thus, we pick an arbitrary
j,1 £j < m, and replace Ti by its subtree Tij in the recur-
sive call. Since the union is taken over all possibilities,

each ’I‘ij will be considered.

ad 7): This is a case of global nondeterminism in Pi' Ti is a
global node, with subtrees corresponding to communication
with P j

kP e Pk . For some j, 1< j< m, Ti is an in-

1 m

-28-

ad 8):

ad 9):

ad 10):

put node (corresponding to an input guard), addressing

Pk.’ and Tk. is an output node addressing Pi' Thus the
global nondete rminism can be successfully resolved.

Note that this binding step does not reflect the establish-
ment of the corresponding communication. This communica-
tion will be detected at the next level of recursion, when

the input node 'I‘ij is confronted with the output node Tk.'

A similar case arises if Tij is an output node (to Pk.) and
Tk. is an input node. ’

This is another case of resolvable global nondete rminism in
both P, and P‘j. Each of them has an i/o guard addressing
the other with matching roc's, Again, the actual communica-
tion will be detected at the next recursive call,

This is the case of unresolvable global nondeterminism in
P., and then T, is replaced by the "escape' state s, which
accomplishes the guards. The state s is a proper state if
this node was generated in an i/o directed loop (clause 10

in the definition of 77) or equals fail in case of selection |
(clause 7 in the definition of). The global nondeter-
minism is unresolvable only if all addressed processes

P P have terminated.

k.* *-+r Py
i m

This case arises when a group of processes are in-

volved in some cyclic communication, while all the rest

have terminated. This is a deadlock state, and is record-

ed as such in the value of 2.

-29-

Note that we are able to detect a nondeterministically

possible deadlock state. Compare Milne and Milner [13].

In the example of the end of the last section, one would get

3 (m [P, 1 (), m [P,] () = [<(e)], &' >)
whereas

B (mlPy;'] (s), m [P, 0 (s =1< (s)lx, s'>, deadlock}

The first thing that has to be done is to show that if the equation is

written 5 = ¢ (8), the functional ¢ is continuous in 5. Let

-]

<51> =0 be a sequences of partial functions from.?'l Xo o .xJ’n to

pE-M (S1 X..eX Snu { L fail, deadlock}),@og By C--C /3ir=_:...,
and 5° = Lu.b. 5'; then 1 (%) (T, ..., T) is obtained by replacing

i
all occurrences of B in » by /&; from BOE BIE e £ BiE .

_ ' 3 ' !
it follows that 287 (T}, «.., T)=latb. 8 (T}, +o., T_) for
1

b Wy

arbitrary T.; by continuity of |J one obtains + (B‘”) (Tl’ ceaesy Tn) =

.

(=

1. }1. b. T (/9) (T

: 1""’Tn)’

One of the cardinal principles of denotational semantics being
that all semantically meaningful functions are continuous, one
would like to show next that B is continuous in its arguments.
(This fact will be used in future work on proving validity and
completeness of proof rules.) /3 being the least upper bound
of the sequence CT (n) c TZ (Q) eeo = -ri (n) +.. (where
if the completely undefined function) it is enough to show that
«ri () is continuous for every i; it suffices to show that if A is

continuous then so is v (A) since 0 is obviously continuous.

-30-

The first step is to see that if A is monotone then + (A) is mono-

tone. Suppose T, T',: then case analysis shows that if

ac (S1 X. e X Sn) U { fail, deadlock} and a ¢ t (A) (Tl, TZ’ cess Tn),

1
thena ¢ + (A) (T T Tn) and if ; € 1 (A) (T'l, TZ’ ooy Tn)

1’
then 1 € 7 (A) (Tl’ T

29+

29t Tn); the case analysis is tedious but

standard, and therefore omitted. The last step is to show that if A
0 1 i . .
T1 R T1 —.. is an ascending

sequence whose l.u.b, is T

is continuous and T1

s Il

1 then, if a ¢ (S1 XeooX Sn) u {fail,

deadlock } and a €1 (A) (T1°°, T,, ..., T,) then there is a i such
thata ¢ r (A) (Tll, T, +esy T) and that if for every i, 1 € 7 (A)

(T T y v o 0y Tn) then 1 € T (A) (le, TZ'...’ Tn)- BOth pl‘Oper—

i
17 72
ties are checked by case analysis,

We give detailed proof of one case.

Assume A is continuous, and let Tl0 c Tll c - C Tl1 Ceees

T1°° = 1.\i1.b. (Tli). Lety € v (A) (Tl‘”, Tyy vees T)), where
YE<S1s seey 8 > We want to show that E| is.te YyET (A)

(Tli, TZ’ cees Tn)' From the form of 1's definition, there are
six clauses due to which this y could be generated (y is a tuple of
final states!) These are clauses 3, 4, 6, 7, 8, 9. Since by
assumption A is continuous in its arguments (and application and

projection are continuous as well), we have that

2, e oy Tn)o

i
A (T1°°, Tos ovns Tn) = 1.';1.b. A (Tl » T
By a property of PE-M of a flat domain D, d ¢ l.iu. b. Vi implies

that 3 .,d ¢ V,, for V, ¢ P This implies the claim for
J) 1

E-m (D)

«31a

clauses 4, .6, 7, 8, 9.

For clause 3, we have that

[=-]

T1 =8, (S1 has no : !), and therefore] i.Tl1 =85 again

the claim follows,

Similar arguments can be given for the remaining arguments

T2, ¢ e 0y Tn'

A semantic variant

According to the semantics presented, a possible outcome of a program
is the set { ., fail}. This represents a nondete rministic situation,
where there is a non-ending computation and a failing computation, This
could be interpreted operationally as terminating (actually aborting) the

whole concurrent program once a local failure is detected.

An alternate semantics could be that in the presence of nontermination
the result is {, }, and any fajlure is disregarded. In order to achieve
this semantics, one has to restrict the application of the '"negative"

clauses 2) and 5) only if no other, '‘positive'' clause, is applicable.

=32~

Acknowledgements: We are grateful for helpful remarks from

D. Albert, M. Clint, E. W, Dijkstra, D. Harel, R. Milner,

G. Plotkin, A. Pnueli. Special thanks are due to Robert Milne,
who discussed in detail previous drafts and helped to improve

both contents and presentation,

We are grateful to SRC of the U.K. and to NSF of U.S. A, for

providing funds for living and travelling.

-33-

IV. References

[1] de Bakker, J. W., Semantics and termination of nondeterministic
recursive programs, Proc. 3rd coll. Automata, Langu-
ages and Programming, Edinb. Univ. Press, 1976.

[2] Brinch Hansen, P., The programming languz%ge Concurrent Pascal
IEEE Trans, on Software Eng. 1, 2, pp. 199-207, 1975.

[3] Clint, M., Program_provin ¢ Coroutines, Acta Informatica, Vol, 2,
No. 1, 1973, 50-63,

[4] Dijkstra, Edsger W., A discipline of programming, Prentice
Hall, Burroughs-Nuenen, 1976.

[5] Dijkstra, Edsger W., et al,, An elephant inspired by the Dutch
National Flag, EWD 608; see also EWD 607;
Burroughs-Nuenen, 1977,

[6] Egli, Herbert, A mathematical model for nondeterministic compu-
tations, Technological University, Zurich, 1975,

[7] Francez, N., A pfoof method for cyclic programs, Acta Infor-
matica 9, 133-157, 1978.

[B] Goguen, J., Abstract Errors for Abstract Data Types, Proc. IFIP
Working Conference on Formal Description of Program-
ming Concepts, 31 July to 5 August 1977, New Brunswick.

[9] Hoare, C.A.R., Communicating Sequential Processes, Queen's
Univ., Belfast, 1976, submitted to CACM.

[10] Hoare, C.A.R., Monitors: An operating systems structuring con-
cept, CACM 17, 10, pp. 549-557, 1974,

[11] Kahn, G., The semantics of a Simple Language for parallel pro=-
gramming, IFIP, 1974,

[12] Lehmann, Daniel J., and Smyth, Michael B,, Algebraic speci=-
fications of data types: a synthetic approach. (To appear
in Mathematical Systems Theory).

(Summary in Proc, 18th Annual Symposium on F.O,C.S.
Providence, R.I., Oct, 1977, pp. 7-12.)

[13] Milne, G., and Milner, Robin, Concurrent Processes and their
Syntax, Univ. of Edinburgh, 1977.

[14] Milner, R., Processes: A mathematical model of computing agents,
Logic Colloquium 1973, N, Holland, Amsterdam, 1973.

=34

[16]

[17)

[20]

[21]

[22]

Owicki, Susan, and Gries, David, An axiomatic proof technique
for parallel programs I, Acta Informatica 6, 319-340,
1976,

Plotkin, Gordon D., A power domain construction, Siam J.
Comput., Vol, 5, No. 3, September 1976.

de Roever, Willem P,, Dijkstra's predicate transformer, Non-
determinism, Rccursion, and Termination, Proc. of
Conf. on Mathematical Foundation of Computer Science
(1976), Lecture Notes in Computer Science, Springer=-
Verlag, 1976.

Scott, D. and Strachey, C., Towards a mathematical semantics
for computer languages, Proc. Symp. on Computers
and Automata, Microwave Research Institute 1971,

Scott, D,, OQutline of mathematical theory of computation, Proc.
4th Princeton Conf. on Info, Sci. and Sys., 1970.

Smyth, M., Power domains, Journal of Computer and System
Science, 16, 13-36 (1978).

Stoy, Joe, Denotational Semantics of Programming Languages;
The Scott-Strachey Approach, M,.I.T. Press, 1977.

Strachey, C. and Milne, R., A theory of programming language
semantics, Chapman & Hall, London, 1977.

=35«

