Some questions in algebraic geometry

(preliminary version, June 1995)

Frans Oort
“Fen zot kan meer vragen “One fool can ask more questions
dan tien wijzen kunnen beantwoorden.” than ten wise men can answer.”
Fen oud Nederlands spreekwoord. An old Dutch saying.

Introduction

In June 1995 several mathematicians will gather in Utrecht for a conference on
“Arithmetic and geometry of abelian varieties,”

and this seems a good occasion to share with them some of the questions that have occupied
my mind over the years.

These pages contain some of these problems. Their choice, approach and presentation do,
I am afraid, bear a distinctly personal stamp - my own. Very likely they will bring a smile to
the lips of some of the experts present at the conference, and there may even be some raisings
of eyebrows. Yet I hope that among you there may be some that are willing to spend some
time with these musings, even though there are, as we all realize, more important questions
to be studied in the mathematics of today.

Most of these ideas presented here I have over the past thirty years shared with colleagues,
but the part which each of them has played in shaping my thoughts is in most cases no longer
traceable. Only such ideas that I believe to have originated in my own mind and which,
moreover, | consider likely to be true, are here labelled as “conjectures”.

Very likely some of these questions might have been formulated more precisely. 1 may also
not be aware of the fact that some of them have already been solved, or were found to be
connected to other problems: references to that effect I may easily have missed.

If you have any comments on the problems as they are presented here, please let me know.

NB This is the 1995 version, NOT UPDATED.
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1. Finite group schemes.

Suppose S is a scheme, which we suppose to be noetherian and connected. Let N — S be a
finite, flat group scheme over S. For every point s € S the fiber N is a finite group scheme;
its rank does not depend on the point s chosen; we call this number the rank of N — S.

1A. Question: Is a finite group scheme N — S annihilated by its rank?
L.e. let n be the rank of N — S, and let m,, : N — N be “exponentiation by n”, does this
map factor through the unity section e : S — N:

(m,:N = N) = (N=S5N).

1.1. I do not know whether Cartier duality (leading from a non-commutative group scheme
to a group scheme in non-commutative geometry) could be of any help in this question. One
could try to phrase and answer the analogous question in non-commutative geometry.

1.2. In case the group scheme is commutative the answer is aflirmative, as was proved by
Deligne, see the theorem on page 4 of [65].

In case S is the spectrum of a field K, the answer is affirmative: it suffices to show the
statement over an extension of K, so take the algebraic closure K; for étale group schemes the
result follows from plain group theory; in characteristic zero every group scheme is reduced



(Cartier), hence in that case we are done; in positive characteristic, over a perfect field, a
finite group scheme is the direct sum of a local and an étale group scheme; the result follows
for local group schemes by the structure theorem [66], 14.4, theorem.

Note that it suffices to answer the question for all cases where S is the spectrum of a local
artin ring.

I expect that in case of a “small extension” R — R’ with a finite flat group scheme N over
R such that N/ = N ® R’ is annihilated by its rank, the liftability problem of N’ to R can be
linked with the annihilation of N by its rank, and possibly an answer to Question (1A) can
be obtained in this way.

2. Endomorphisms of abelian varieties.

Let K be a field, and let X be an abelian variety over K. We denote by m(X) the rational
number 5
g
X)=—2
Y=g
(standard notation introduced by Shimura, see [62], page 156), where ¢ = dim(X), and
D =End(X) @z Q, the endomorphism algebra of X.

2A. Question: Suppose given m € Q~q. Does there exist a simple abelian variety over a field
such that m = m(X)?

2.1. In case char(K) = 0, the number m is the rank of the lattice A (as D—module) which
can be used to define the complex torus €7 /A = X (C); hence in case D is a division algebra
it follows that this rank in an integer.

It is easy to see that any integer m € Zs; can be realized in this way (consider Hilbert
type real multiplications). For m = 1 we can take a simple CM abelian variety.

If X is simple, and m(X) is not an integer, then char(K) > 0. If X is simple, and 2-m(X)
is not an integer, then char(K) > 0 and End”(X) is an algebra of Type IV.

Note that for any d € Z the number m := 5 can be realized: for d = 2 choose a super-
singular elliptic curve; for d > 2, choose an integer n with 0 < n < d, and define a p? Weil
number as a zero of T2 4+ p”™-T + p?; this constructs an isogeny class of a simple abelian variety
X of dimension d over a finite field, where its endomorphism algebra is an algebra of rank d>
over an imaginary quadratic field, see [64], “probleme de Manin” and page 253-04.

Possibly the question can be answered in case m = § by using the previous example by
Tate, letting D act diagonally on Yy = X * and trying to produce a deformation in characteristic
p of Yy such that this action is exactly all that survives (could methods as in [54] be used?).



3. The Torelli mapping.

Let M, be the coarse moduli scheme over Spec(Z) for complete, irreducible, nonsingular
curves of genus g. Let A, ; be the coarse moduli scheme over Spec(Z) of principally polarized
abelian varieties. The Torelli morphism is denoted by

j:./\/lg — ./45771,

it maps the moduli point of C' to the moduli point of the canonically polarized Jac(C'). This
morphism is injective on the set of geometric points, cf. [3]. It is known that

]QMg®Q — Ag,l@@

is an immersion, see [55], Corollary 3.2. More generally, if [C'] € M,(k), with k algebraically
closed and char(k) not dividing the order of Aut(C'), then j is an immersion at this point.

3A. Determine all points in M, at which the Torelli mapping j is not an immersion.

4. Lifting automorphisms of algebraic curves.

Let k be a field of characteristic p, let Cy be an algebraic curve over k (absolutely irreducible,
reduced, non-singular, complete). Let Hy be a subgroup of the automorphism group:

Hy C Aut(Co).

4A- Conjecture: In case the group Hy is cyclic, the pair (Co, Ho) can be lifted to character-
istic zero.

L.e. there should exist an integral domain R of characteristic zero, a homomorphism R — k,
a curve C — Spec(R) (flat, proper, smooth) with C @ k 22 Cy and a subgroup H C Autr(C)
such that the two subgroups are identified: H = Hy.

4.1. In case we drop the condition ”cyclic”, counterexamples are easy to give. Commutative
counterexamples are easy to give. Here is a non-commutative example. Consider the normal-
ization C of the plane projective curve defined by the affine equation Y?—Y = X?2. This curve
has genus ¢ = (p — 1)/2 if the characteristic of the base field is not equal to 2. As Roquette
showed: choose p > 5; if the base field is F,, this curve has an automorphism group of order
8g(g+1)(2g+1) =2(p—1)p(p+1),see [59], Satz 1. Any lifting of this curve to characteristic
zero has, by a theorem of Hurwitz, an automorphism group of order at most 84(¢g — 1). Hence
this curve Cp with its full group of automorphisms cannot be lifted to characteristic zero.

Note that in the previous example for any automorphism §y of Cy the pair (Cy, Bo) can
be lifted to characteristic zero (see (4.2) below). However in [47], page 166 we see a non-
commutative subgroup Hy C Aut(Cy) of order 20 such that (Cy, Hy) cannot be lifted to
characteristic zero.

4.2. In [60] we find: for a curve Cy and an automorphism o¢ € Aut(Cp) such that p? does
not divide the order of og, the pair (Cy, o) can be lifted to characteristic zero.

4.3. In [13] we find a lifting of a curve plus a group of automorphisms in characteristic p to
a possibly singular curve in characteristic zero.



5. Algebraic curves with sufficiently many complex multiplications.

Let X be an abelian variety over a field K; we say that X admits sufficiently many complex
multiplications (abbreviated smCM) if the endomorphism algebra End®(X) contains a com-
mutative, semisimple algebra of rank 2¢g over Q, where ¢ = dim(X) (several other definitions
can be given). For example, if X is a simple abelian variety over a field of characteristic zero
which admits smCM, then End®(X) is a CM-field of degree 2-dim (X ) over Q. We say that an
algebraic curve C'is a CM-curve if Jac(C') admits smCM. A point [(X, )] € A,(C) is called
a CM-point if X admits smCM.

5A. Question (Coleman, see [6], page 238, Conjecture 6): Let
Cy:={[C] e M,(C) | C is a CM-curve}.
Is it true that for a fived g € Zi>4 this number is finite:

#(Cy) <oo 7

5.1. It is not so difficult to show that for every g < 3 the set C, is infinite: for these values
J(My) C Aga

is Zariski-dense, and the set of CM-points in A, ; (C) is dense (in the Zariski topology, but also
in the classical topology), and the conclusion follows. Note however that this approach does
not construct explicitly CM-curves of genus 2 or 3. And this is the difficulty of the problem: on
the one hand it is “easy” to construct algebraic curves, but how can we read off from properties
of C' what are the endomorphisms of Jac(C)? It is easy to construct principally polarized CM
abelian varieties. For g < 3 a principally polarized abelian variety over an algebraically closed
field is a Jacobian (possibly of a reducible curve), see [57]. However for g > 3 it seems difficult
to decide for a given polarized abelian variety whether it is the Jacobian of an algebraic curve.
Typically: being a Jacobian and properties of End(X) are not easy to compare.

5.2. In [20] Johan de Jong and Rutger Noot prove that C4 and Cg are infinite sets. They
get round the difficulty ”CM versus being a Jacobian” in the following way. Choose a prime
number £. They construct a family of curves of genus ¢ = ¢ — 1 over an open set U =
Pt — {0,1,00} in P}, where every fiber has an automorphism of order ¢, by considering
Y= X(X —1)(X — A). Note that [Q(¢,) : Q] = £ — 1 = g hence every fiber has something
like "half CM”.

£=2. For { = 2 this is the Legendre family of elliptic curves, and we know that for infinitely
may values of A the corresponding fiber is an elliptic curve with CM.

(=3, (=5 and (=7. For a prime number £ > 2 one can try to show the analogous fact
that for infinitely many values of A the corresponding fiber has a Jacobian with smCM. For
€ < 7 one easily sees that the image of U in A, is (an open set in) a one-dimensional Shimura
variety (of PEL type); for such varieties we know the set of CM-points is dense, and we are
done.

¢ >7. For a prime number ¢ > 7, this gives a one-dimensional family in j(M,) C A, but
the smallest Shimura variety containing it has dimension at least two, and we expect (see (6)
and (7) below) that the number of values for A where the corresponding fiber has a Jacobian
with smCM is finite.



5.3. By the way, note that for a prime number p, the set ./\/lg(]ETp) is infinite, and every point
corresponds with a Jacobian which admits smCM (by a theorem by Tate, see [63]). We see
that the characteristic p analog of the question by Coleman gives an infinite set for every p
and every g > 0.

5.4. One could formulate the “local Coleman problem™ fix an algebraic curve Cy over F,,
and consider the set £(Cy) of isomorphism classes of CM-curves defined over C which modulo
p reduce to Cy (one has to give proper and precise definitions). Suppose that Jac(Cp) is an
ordinary abelian variety. Is the set £(Cp) finite? For ¢ < 4 and for ¢ = 6 this set is infinite,
for other values we do not know the answer in general.

Note that the completion of A, ; at an ordinary point [(Xg, Ag)] has a group structure (by
a theorem by Serre and Tate), and that in this group structure the torsion points are exactly
the CM-liftings (called quasi-canonical liftings).

Consider the Manin-Mumford conjecture: if a (possibly singular) Riemann surface S con-
tained in a complex torus 7" has the property that #(S NTors(T)) = oo, then the genus of
S is one; the Manin-Mumford conjecture was proved by Raynaud, see [58]. We see a striking
analogy between the local Coleman conjecture on the one hand, and the Manin-Mumford
conjecture on the other hand. This analogy stimulated me with respect to (6A) below.

6. Dense sets of CM-points.

We have already seen that Shimura varieties contain a dense set of CM-points. We expect
that the converse is also true:

6A- Conjecture: Let V C A, @ C be a subvariety which contains a Zariski-dense set of
CM-points. Then V is a subvariety of Hodge type (terminology as in [34], 1.3.8 and see [34],
IV.1.2.)

6.1. Also see [52], (2). After I formulated this conjecture I found out that a special case
(dim(V) = 1) already had been formulated by André, see [1], page 215, Problem 1.

6.2. As for the local problem: let [(Xo,Ao)] = zg € A, 1(F,) be an ordinary point, and
consider the completion

g = (‘/4971);:\0

in that point; then G is a formal group scheme, in fact this is a formal torus (over some
extension of the base ring) it is isomorphic with (G2 )9(9+1/2. Consider an algebraic variety
Vi C A; @ K over a field K in characteristic zero, whose extension V contains zg; write
V/. C G for its completion. Rutger Noot showed: V is a subvariety of Hodge type (in the
terminology of [34]) if and only if V) is a formal subtorus (up to translation over a torsion
point, up to taking irreducible components), for precise formulations see: [38], Prop. 2.2.3,
see [39], Th. 3.7; for the converse see [34], 111.5.2

6.3. In his PhD-thesis [34] Ben Moonen answers a particular case of Conjecture 6A. Sets of
CM-points which have enough points of good, ordinary reduction can be studied via Serre-Tate
parameters, for a precise formulation see [34], IV.1.4 and 1V.1.8.



6.4. However, here is already a case of Conjecture (6A) which I am unable to solve: Let
W = ./4171 X ./4171 = Al X Al,

and consider a set S C W(C) of CM-points. Suppose that S is not contained in a finite union
of curves of the folowing type: horizontal fibers, vertical fibers and modular curves. In this
case the conjecture would imply that the Zariski-closure of S is W @ C.

7. Shimura varieties contained in the Torelli locus.
This section is largely taken from [52]. Consider the Torelli morphism
Ji My, — A
see (3). The image of this mapping will be denoted by
JMy) =J; C Ay

and will be called the open Torelli locus, its Zariski-closure is called the Torelli locus, denoted
by J, C Ay1. Note that for ¢ < 3 we have J, = A, 1, and for g > 4 the set J,, which is of
relative dimension 3¢ — 3 over Spec(Z), is a proper closed subset of A, ;.

TA. For a fived integer g € L4 determine all varieties of Hodge type of positive dimension
in Ay 1 @ C which are contained in the Torelli locus [J,, and which meet the open Torelli locus

Tg.

7B. Here is an example of the previous question for which I do not know the answer. In [36]
Mumford constructed Shimura varieties of dimension one in A4 ; @ C (which are not Shimura
varieties of PEL type). Let us call these curves “Mumford curves.”

Question: Is any of the Mumford curves contained in the Torelli locus T4 ¢

7.1. Note that a complete answer to (7A), and a positive answer to Conjecture (6A) would
settle completely Coleman’s Question (5A):
If (6A) holds, and #(C,) = oo, then there exists a variety of Hodge type of positive dimension
as in (TA). Indeed, the Zariski closure of this infinite set is a finite union of varieties of Hodge
type, at least one of these is as in (7TA).
Conversely, for a variety of Hodge type V as in (6A) we have that V' N jgo is open in V, and
the set of CM-points is Zariski-dense in V', hence the existence of a variety as in (6A) implies
that #(C,) = oo.

Consider £(Cjp) as in (5.4), with ¢ =genus(Cj). Suppose this is an infinte set. Methods of
[34] can be used to show that the Zariski closure of this set in A, is a finite union of subvarieties
of Hodge type, and we would have a variety as in (7A) for this value of ¢.

7.2. An obvious observation: there are many varieties of Hodge type of positive dimension in
J, (for g > 2): take g = g1 + - - - + ¢, with all g; < 3, take varieties of Hodge type Vi C Ay, ,
at least one of positive dimension (see 5.1), the image of the product of these gives a variety
of Hodge type in J, which however does not meet jgo itr>1.



7.3. In [34], I1.3 we find a characterization of varieties of Hodge type over C as totally geodesic
subvarieties of A, @ C. It might be that an approach along these lines could shed some light
on Question (7TA).

Suppose g > 4. We can see that J, ® C is not a subvariety of Hodge type of A, @ C.
It would be interesting to have a better understanding of the analogy between methods of
differential geometry, and say methods as developed in [9].

8. Strata given by Newton polygons.

For an abelian variety X in positive characteristic we can define its Newton polygon N'(X); we
write NP for “Newton Polygon”. For an abelian variety over a finite field a definition can be
given using properties of the geometric Frobenius. A definition can be given by comparing the
kernels X [p’] and X [F7] for large values of i and j. A definition can be given by decomposing
the p-divisible of X over an algebraically closed field up to isogeny into isosimple factors, see
[32], page 35; just to fix soms notations: the isosimple p-divisible group as denoted by Manin
by Gy, (With m, n € Zsq relatively prime) has dimension m, its Serre-dual has dimension n,
and the part of the NP given by this isogeny factor has slope n/(m + n) over an interval of
length m + n. In this way a formal isogeny type

X[p™ @k ~D Gun @k

defines the (lower convex) NP of X (by ordering the slopes n;/(m; + n;) in a non-decreasing
order).

For a given value ¢ all Newton polygons belonging to ¢ form a partially ordered set (where
the ordering is given by “lying above”). For a given NP, say /3, we consider the set

consisting of all polarized abelian varieties X such that no part of the NP A (X)) lies below 3.
By theorems by Grothendieck and Katz, see [23], page 143, Corollary 2.3.2, it is known that
Wpg is a closed subset of A, @ F,. We write Wy = Wg N Ay @F, for the locus in Wy of

principally polarized abelian varieties.

8A. Question: Above we have defined Wy as a closed subset. What is a good “functorial
definition”, what is a good definition of this stratum as a scheme?

8.1. Stratification by p-rank. For an abelian variety X in characteristic p we define f(X),
its p-rank, by:

fX)=f <= X(E)p=(z/p).
Note that 0 < f < dim(X). For a given value f we define

Vi={(X, ) [ f(X) < [}

It is easy to see that this is a closed set in A; @ F,,, and it is easy to see that every component
of V; has dimension at least (¢(¢+1)/2) — g+ f. In fact:
Theorem: Every component of Vy has exactly this dimension:

dim(Vy) = (g(g+1)/2) =g+ f.



In case of principal polarizations this was proved by Koblitz, see [25], Theorem 7 on page 163,
for the general case see [42], Theorem 4.1.

8.2. We remark that the p-rank strata are particular cases of the NP-strata. For any g and
any f with 0 < f < g there is a unique NP 3 such that every NP lying above 3 has p-rank at
most f, in particular

Wg = Vy.

In fact this is clear for f =g, for f = ¢g — 1 take f(1,0) 4 (1,1) 4+ f(0,1) and for f < g — 2,
take the NP given by f(170)+ (g - f_ 171)‘|’ (179_ f_ 1) ‘I’f(071)

8.3. As usual, we define the ordinary NP p by ¢(1,0)+¢(0,1),i.e. the NP belonging to g = f
(i.e. only slopes 0 and 1 appear). We define the supersingular NP o by ¢(1,1) (i.e. the NP is
a line, all slopes are equal to %) The locus S, 1 of principally polarized supersingular abelian
varieties

Ws D851 CA1 ©@F,

has dimension equal to
2

. g
dim(Sy1) = [Z]

(as conjectured in [43],page 616, []: integral part). The number of components of this super-
singular locus can be expressed as a class number (and this number is large for p large):

H,(p,1) if ¢ isodd,
#(irreducible components of S, 1 @ F,) =
H,(1,p) if ¢ iseven.

For g = 1 this is due to Deuring (using a class-number computation by Eichler), and to lgusa,
for ¢ = 2 see [21], Theorem 5.7, for ¢ = 3 see [22], Theorem 6.7, and for general g, see [28§],
Theorem 4.9. In particular we see that this number is large for p large (e.g. for ¢ = 1 this
number equals 1 iff p € {2,3,5,7,13}, forg =11t is 1 iff p < 11, for ¢ = 3 it is 1 iff p = 2).
To summarize: in most cases the supersingular locus is reducible.

8B- Conjecture: Let 3 be a NP, with 3 # o, i.e. Wy is not the supersingular locus. Then
for principally polarized abelian varieties:

Wg is irreducible.

In some cases this has been proved. Faltings (for all p) and Chai (for p > 2) showed that
W,1=A,1 @F, is irreducible. In [53] it is shown that V,_1 1 C A,1 @ F, is irreducible (and
in that paper the previous result by Faltings and Chai is proved again). | have proved that
Vo,1 C Az @F, is irreducible (unpublished). For the general case I have glimpses of a possible
proof of (8B).

9. Strata given by NP in the moduli space of curves.

Consider the strata



given by Newton Polygons, and consider the open Torelli locus
JMy@F,) = Ty @F, C A1 @ F,
and its closure, the Torelli locus J, @ F,,.

9A. Question: For a given g € Z>4 and a given NP 3 describe the intersection

W50 (Jy ©F).

9.1. At the moment I have no reasonable guess what kind of answer could be expected. Does
there exist ¢ and 3 such that this intersection is empty? Note that dim(Wp) is independent of
p; however, if the intersection in the question is not empty, does the dimension (of a component
of) this intersection depend on p? Note that dim(S,1) = [¢?/4] and dim(7J, @ F,) = 3¢ — 3,
hence if

g>9 then dim(S,1)+dim(J, @ F,) < dim(A, @ F,).

However the intersections of the various Wy with the Torelli locus are not “as transversal
as possible”: G. van der Geer and M. van der Vlugt construct for arbitrary p and large ¢
supersingular curves in characteristic p of genus g, see [14], [15].

It might very well be that intersections of the p-rank strata V; with the Torelli locus are
transversal in the sense that I expect that (for g > 2):

dim(V; N (J, @ F,)) =39 -3 — g+ f.

One could hope that intersections as above give effective cycles in M, ®F, of which the Chow
classes can be computed. This might give insight in the Chow ring of M,.

9.2. We see a kind of question which in general is difficult. Consider two subsets of a moduli
space, each characterized by certain properties of the objects we classify. Try to determine
properties of the intersection of these sets. If the properties are difficult to compare, such a
question seems difficult in general. Example are the following: consider CM-Jacobians (see
5), or Jacobians in positive characteristic with a given Newton polygon as above, or Jacobians
with a given endomorphism ring [5], intersecting Mumford curves with the Torelli locus as in
(7B), or study moduli spaces of hyperelliptic supersingular curves [48].

10. Algebraic computation of fundamental groups.

For an algebraic variety Grothendieck has defined the (algebraic) fundamental group. For
an algebraic curve in characteristic zero the structure of its fundamental group is determined
with the help of comparison with the topological fundamental group (and the same for the
prime-to-p part of the fundamental group of an algebraic curve in characteristic p).

10A. Question: Can we determine the structure of the fundamental group of an algebraic
curve by purely algebraic methods?

10.1. Already for P{.— {0, 1, 00} it seems that this question remained unanswered up to now.
Ofer Gabber communicated to me that this is the algebraic computation of the fundamental
group in characteristic zero can be reduced to this case.

10



11. Abelian varieties over number fields, and the type of their reductions modulo
a prime.

Let X be an abelian variety over a number field K, and let X5 be the set of finite primes of K.
For every v € Y at which X has good reduction we can ask what is the type of the abelian
variety X, e.g. its p-rank or its NP A(X,). We say that an abelian variety Y in positive
characteristic is ordinary if its p-rank is maximal, i.e. N'(Y) = p. For a NP § we write

Rp(X) :={ve Ik | N(X,) =5}

for the set of finite places of K where X has good reduction with NP equal to 3. We mention
in this section the question:

Given an abelian variety X over a number field K and a NP (3; whal can be said about
Rp(X) CXk?

For the ordinary locus Serre made the following conjecture (see [61]):
11A~7: For every X and K as above, there exists a finite extension [L : K] < oo such that

Rp(Xz) CXp

has Dirchlet density equal to one. In fact the conjecture is more precise: L should be chosen
in such a way that the image of the Galois representation on each of the the Tate groups of
X7y, is connected.

11.1. Every time you think about this conjecture , it seems reasonable but difficult. For elliptic
curves this was proved by Serre; for the case dim(X) < 2 it was shown to be true by Ogus,
see [45], Corollary 2.9. For CM abelian varieties it holds. For certain other special cases it has
been proved. In general (11.A) seems unknown, even it seems unknown whether every abelian
variety over a number field has at least one place of good, ordinary reduction (something which
would be very nice to know, that would enable us to use Serre-Tate parameters for every such
abelian variety).

11.2. Example: Consider an Albert algebra D of Type I1(1), i.e. a quaternion algebra with
centre equal to Q such that D is indefinite, i.e. D ® R = Mat(2,R). Consider (a component
of) a Shimura variety of PEL type associated with this algebra, i.e. a complete curve in
V = Ve C Ay ® C such that every geometric point of V' corresponds with an abelian variety
which has multiplication by an order in D.

Let X be an abelian surface defined over a number field K such that an order in an algebra
of Type I1(1) acts on X. Then any reduction X, at a prime of K does not have p-rank equal
to one: f(X,)# 1. This provides an example of an abelian variety in characteristic zero and
a Newton Polygon such that no reduction modulo any p has the given Newton polygon:

Rp(X)=0

if 3=(1,0)4 (1,1)+ (0,1) and X has multiplication by an algebra of Type I1(1).

Using the “Raynaud trick” (see [53]) we show that any such V' modulo p contains at least
one supersingular point. The analogy with the case of elliptic curves is striking, and one can
expect:

11



11B; Conjecture: Suppose X is an abelian surface over a number field K such that X @ K
has multiplication by an order in a Type 11(1) algebra; for the supersingular NP o we expect:

#(Ro(X)) = oo 7

We have seen that for a given abelian variety X over a number field and a given NP 3 the
set Rg(X) can be empty. However for the ordinary locus, 8 = p, see (11A), and for the
supersingular locus 8 = ¢ such reductions might exist.

11C. Question: Given an abelian variety X over a number field K, and the supersingular
NP o; what can be said of the set R,(X) of places of good, supersingular reduction? Is it
infinite for every X ¢ Can it be finite or empty for some choice of X ?

Note that Elkies showed that for every elliptic curve E defined over a number field K
which has a real embedding (is this essential?) the set of supersingular reductions is infinite,
see [10], [11]. For abelian varieties of higher dimension this question seems interesting and
difficult. Even for abelian surfaces in general the answer seems unknown.

11.3. Here are some rather non-founded ideas and questions. Suppose [(X, A)] € A,(Q), and
let VC A; @ K be the smallest variety of Hodge type containing this point, defined over a
number field K. Consider the set of prime places of K where reduction of V' gives a subset of
the moduli space in positive characteristic which intersects the supersingular locus in a set of
codimension at most one; if this set is finite one could expect that R,(.X) is finite, otherwise
one could try to show that R,(X) is infinite. It seems worthwhile (and difficult) to pursue
this idea.

12. CM-liftings.

Suppose X is an abelian variety over a finite field k. By a theorem of Tate [63] we know
that Xg has smCM. We say that X is a CM-lifting of Xy if there exists a domain R, with
K D R — k, an abelian scheme X' — Spec(R) such that K has characteristic zero, such that
Xo 2 X ®Fk, and such that X := A ® K admits smCM.

Note that if the p-rank of Xg is at least dim(X) — 1, then a CM-lifting exist, see [50],
Theorem A.

However, for every g € Z>3 and f < g — 2 there exists an abelian variety Xy over a finite
field with dim(Xy) = ¢ with p-rank f(X) = f which does not admit a CM-lifting, see [50].
The proof of this fact in [50] probably can be improved.

Note that if ' — Spec(R) is an abelian scheme, R — k is a residue class map, Xo Z X @k
with char(k) = p > 0, then the natural map End(X) — End(X) is injective, and the index

[End®(X) N End(Xo) : End(X)] is a power of p.
12A. Question: Describe how the Tate-p-groups scheme of an abelian variety X in charac-
teristic zero reduces to a submodule of the Dieudonné module of Xg; use this to show that in

certain cases CM-liftings do not exist. In particular it might be used to answer the following
questions:
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12B. Question: Let F be a supersingular curve over ]FT). Does there exist an abelian surface
X isogenous with F X E which does not admit a CM-lifting, or, does every supersingular
abelian surface over ¥, admit a CM-lifting?

In [50] examples were constructed using [27], where we started with a simple abelian variety
of low p-rank over a finite field with a commutative endomorphism algebra. However the
following case we could not decide:

12C. Question: Let Y be a simple abelian variety over F, such that End(Y) is not commu-
tative. Is'Y isogenous with an abelian variety Xo over ]FT) which does not admit a CM-lifting?
See [50], Question C. Note that different CM-liftings of ¥ or of Xy may belong to different
CM-fields.

13. Serre-Tate parameters in the non-ordinary case.

Let X be an ordinary abelian variety in positive characteristic, and Ag a principal polarization,
we write [(Xo, Ao)] = 2 € Ay1(Fp). Serre and Tate showed that the formal scheme (A, 1)
has “canonical coordinates”, see [31], see [24], Chapter 5, see [33]. Note that the torsion points
in the formal group

(Ag)h, = ((G)")olotH/?

Zo

correspond with the “quasi-canonical liftings” of X, i.e. the CM-liftings (but End(X) need
not be a maximal order in End®(X) = End®(Xy)).

We pose the question whether such a “canonical” parametrization is possible in the non-
ordinary case.

13A. Question: Suppose given an abelian variety Xo with a polarization Ag over a finite field
and a CM-lifting (X, X). Can we define “canonical coordinates” on (Ag1)5 7
Various attempts have been made in the past, see [30], [16], [68], [2], [67].

Note that different choices of a CM-lifting of Xy belonging to different CM subalgebras of
EndO(Xo) may give quite different coordinate systems.

This question should be made much more precise before it can be taken seriously.

13.1. Remark: The terminology “canonical lifting” might cause confusion. I intend to use
this phrase only in case Xy is an ordinary abelian variety. Some authors use this concept
for an arbitrary abelian variety over a finite field requiring that the geometric Frobenius can
also be lifted; for an ordinary Xy we do get the right concept, but for non-ordinary abelian
varieties there may be many liftings such that the geometric Frobenius lifts along (e.g. a
supersingular elliptic curve I over F,» such that “ﬂ'E/Fpn = F™” is multiplication by an

integer, e.g. Tgp,, = p”/Q-lE). Also for abelian varieties over a non-finite field in positive
characteristic we can define a canonical lifting for an ordinary Xy in the Serre-Tate theory,
however in that case there is no geometric Frobenius.

14. Complete subvarieties.

This material is partly taken from [51]. We consider moduli spaces (of curves, of abelian
varieties), which are in general non-complete (non-compact when over C), and we study the
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following type of question:

Let W be a complete subvariety of a certain moduli space;
can we give a sharp bound for the dimension of W7

We think that the answer to this question may depend on the characteristic of the base field
in consideration.

14.1. Example: For every prime number p and for every g € Zsgo the set Vo C Ay @ F, is a
closed subset of dimension g(g — 1)/2 which is complete.

See [46], Th. (1.1a), and [42], Th. 4.1. For the definition of Vj, see (8.1).

Furthermore: if K is a field, and W C A, @ K is a complete subvariety then dim(W) <
g(g —1)/2 (G. van der Geer, unpublished). We see that in positive characteristic this bound
is attained.

14A-» Conjecture: Let W C A3®@C be a complete subvariety then dim(W) < 3 =g(g9—1)/2.
In fact, we expect that for ¢ > 3 and W C As @ C, a complete subvariety, then dim (W) <
g(g — 1)/2. It seems interesting to know what the maximum is of the dimension of such
complete subvarieties for a fixed g.

14B- Conjecture: Let W C A3 @ F, be a complete subvariety of dimension 3. Then we
expect that this implies that W = Vi ;. Note: Vp 1 is irreducible for g = 3, see (8B).

If (14B) turns out to be correct, then (14A) follows (using a calculation of certain Chow classes,
as was done by G. van der Geer, unpublished). Actually, this line of thought was stimulated
by computations by Carel Faber [12], Ann. Math. 132, page 413, and a conjecture made in
1988 by Manin (unpublished), that the Chow classes of the Vp1 C Az @ F, for various p
should be proportional to each other with rational factors.

14.2. Example: For g > 2, and any field K a complete subvariety W C M, has dim(W) <
g — 2.
This was proved by Diaz in characteristic zero, see [7], Theorem 4. For an arbitrary base field

we find this in [29], corollary in Section 1, where Looijenga proved part of a conjecture by C.
Faber.

14.3. It could be true that a complete subvariety W in M, @ C for g > 3 has dim(W) < g —2,
and it might be true that there does exist a complete subvariety of dimension equal to g — 2 in
M, @TF,. However we have little evidence for this. Already the case g = 4 this seems unsolved:
does there exist a complete surface W C M, ® K for some field K7

14.4. For the moduli space M7 of “nice curves”, i.e. curves of “compact type”, one can
phrase analogous results (dimension bounded by 2¢g — 3) and analogous expectations.

15. Hecke orbits: dense sets of points.

Consider the moduli space A = A, @ F, of polarized abelian varieties in characteristic p (or a
component of this). Consider a point [(X, A)] = 2 € A, and consider the set G(z) consisting of
all points corresponding with isogenous polarized abelian varieties, i.e. if (X, A) is a polarized
abelian variety over some field K with moduli point [(X,A)] = 2 then G(z) consists of all
moduli points of pairs [(Y, u)] € A such that there exists an isogeny ¢ : Y — X @ k over some
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field containing K, and an integer m € Z~g such that ¢*(A) = m-u. This set G(z) is called
the Hecke orbit of x in A. If we consider only isogenies with degree prime to p we write

GV (@) = {[(Y, )] |3 Y > X @k, m€Lso, pfm, ¢*(\)=mp},

the Hecke-prime-to-p orbit. The ¢-power Hecke orbit G,(z) is the set where we consider only
isogenies where the deg(¢y) is a power of the prime number (. Clearly

Ge(z) C GP)(x) C G(a)

if £ # p. These definitions can be found in [4], and in that paper by Chai we find (Th. 2):
Theorem: Suppose ( is a prime number different from p, and x = [(X, )] such that X is an
ordinary abelian variety; then Ge(z) is dense in A.

15A- Conjecture: Suppose [(X,\)] =z € A, we write § = N(X) for the Newton polygon of
X. We expect that the Hecke orbit G(x) is dense in the Newton-polygon stratum defined by (3.

15.1. Note that in general Gy(z) or GP)(z) has no chance to be dense in a Newton-polygon
stratum. For example consider the locus of 3-dimensional abelian varieties with Newton
polygon given by (2,1) + (1, 2), this is an open subset of the p-rank-zero locus V; C As. For
such an abelian variety either a(X) = 2 (this is in the 2-dimensional locally closed subset
Vo(a = 2) C Vo) or a(X) = 1 (this gives a set dense in Vo). Clearly G() does not move a
point with @ = 2 to a point with @ = 1, so in the first case we see that G)(z) C Vo(a = 2);
if the conjecture is correct this should be a dense subset. In case a(X) =1 we can show that
g(p>(x) is not dense in Vjq, but if the conjecture holds, the Zariski closure of this set has
dimension 2.

Such examples can be given in great generality. We do not see a proof of the conjecture

using methods as in [4]. It might be that this conjecture can be approached via the intriguing
Question (Q 2) in [4].

16. Special subsets of moduli spaces.

In [26], 1.3 we find the definition of the “special subset” Sp(V') of a variety V' defined over a
field (say of characteristic zero). This subset, which is geometrically defined, has applications
in arithmetic (this is the subset where we expect “most of the rational points” when working
over a number field).

16A. Question: What is Sp(M, @ Q), what is Sp(A, @ Q)7

16.1. This seems a natural, and difficult question. In [35] we find some suggestions about
this.

Note that the moduli space Ag717n®IBTp contains many rational curves where n € Z>3 prime
to p and g > 3.

17. Special subsets in open surfaces.

Consider a scheme over an order in a number field with generic fiber a variety U. Is there a
way to predict where “most of the integral points” should be found? For a open set U C P?
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obtained by deleting a curve it seems that a good definition is available: take the Zariski
closure of the union of all rational curves in P? which have at most two places outside U.
Do we know what the special subset of such an open variety U is, when we have enough
information about the deleted curve? Can this be generalized to arbitrary (non-complete)
varieties?

17A. Question: [Is there a good definition of the “open special subset” of a (possibly non-
complete) variety? What is this in case of an open set U = P%(a curve)?

18. Intersections of components of moduli spaces of polarized abelian varieties in
positive characteristic.

In [37] Mumford raised the question whether components of the moduli space of (non-
principally) polarized abelian varieties intersect in positive characteristic. Norman gave ex-
amples that indeed this happens for abelian surfaces, see [40], [41]. In his PhD-thesis Johan
de Jong analyzed this situation, describing intersections of components of A, 4 @ F,, see [18],
Chapter I, and [19] (the index d: polarizations of degree d*). A sequence of elementary divisors
is a sequence § = {d1, -, d,} such that &;|d; - - - [d,; we write d = T17_; 4;.

18A. Question: Determine for arbitrary sequences &, § of elementary sequences the inter-
section of the moduli spaces (A5 @F,)® and (A, 5 @F,)°. Notation of [19], the exponent “c”:
take the Zariski-closure.

19. Minimal modular parametrizations.

19.1. We write (STW)- for the Shimura-Taniyama-Weil conjecture, which says that every
elliptic curve over Q is modular (proved by A. Wiles for semistable elliptic curves over Q).

19.2. Given a real number o € R we write (MO;a) for the following conjecture: Suppose
A, B € Z~ are positive integers which are relative prime, and write C' := A + B; we write

cond(ABC) :=11 p, the product taken over all prime numbers that divide ABC.
(MOsar)2 = If A, B € Zsq are relatively prime, then
C < (cond(ABC))~.

This conjecture is called the Masser-Oesterlé conjecture, also called the A, B, C-conjecture;
there are much better, sharper formulations of this conjecture, e.g. see [44], Section 3.

19.3. Suppose (STW) does hold. We can study the following boundedness condition (where
n € Lso):

(B))? : For every elliptic curve F over Q with conductor N := conductor(F) there exists a
parametrization (non-constant morphism) over Q:

¢: Xo(N)—= E  with deg(p) < N"™.

Certainly it is not easy to give upper bounds for the degree of the minimal modular parame-
trization see [69], Section 6. I have no idea whether a polynomial expectation/question like
(B.,)> is reasonable.
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19A- Suppose Conjecture (STW) is correct, and suppose that there exists a positive integer
n such that the boundedness B,, holds. Then there exists a € R such that (MO;a) holds.
This seems to be reasonable, once deep results like (STW)» and (B,,)» are settled.
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