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Introduction

In this survey we discuss stratifications and foliations of our basic hero A, ® F),: the moduli
spaces of polarized abelian varieties of dimension ¢ in positive characteristic p.

In characteristic zero we have strong tools at our disposal: besides algebraic-geometric theories
we can use analytic and topological methods. It seems that we are at lost in positive charac-
teristic. However the opposite is true. Phenomena, only occurring in positive characteristic
provide us with strong tools to study moduli spaces. And, as it turns out again and again,
several results in characteristic zero can be derived using reduction modulo p.

But we start with a warning. In algebraic geometry constructing varieties, schemes, spaces,
a good method is to define a priori a functor, and then prove the functor is representable, as
Grothendieck taught us. This functorial approach has proved to be very successful. However,
strata and leaves defined and constructed below all are given by characterizing the points
contained in that space. This is not a very elegant way of doing algebraic geometry, I know.
However in the cases considered below, I cannot do better. And we pay a price. Usually the
definitions are easy. However the fact that these spaces do exist often is cumbersome. We
construct several subvarieties of 4, ® I, giving stratifications and foliations. We see, that
the properties indeed define the spaces constructed, and we reap the fruits, because of the
many applications. But in general the scheme structure we choose, the reduced structure on
the (locally) closed set, need not be the most natural one.

Base fields, and base schemes will be in characteristic p, unless otherwise specified. We write
Ay ® F), for the moduli scheme of polarized abelian schemes in characteristic p. We write
A= A, 1 ®F, for the moduli scheme of principally polarized abelian schemes in characteristic
p. Sometimes a level-n-structure will be assumed, with n prime to p.

The terminology “stratification” and “foliation” will be used in a loose sense:

A stratification will be a way of writing a space as a finite disjoint union of subspaces of that
space; in some cases we will actually check whether the boundary of one stratum is the union
of “lower strata”.

A foliation will be a way of writing a space as a disjoint union of subspaces of that space.

Here are some motivating questions and problems:
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e What is the Hecke orbit of a point in the moduli space of polarized abelian varieties?
Over C: such an orbit is dense in the moduli space A(C). What can we say about this
question in positive characteristic?

e What is the maximal dimension of a complete subvariety of Ay (C) ?

e A conjecture by Grothendieck: which Newton polygons occur in the local deformation
space of a given p-divisible group, or a given polarized abelian variety?

e Describe NP strata in the moduli space of abelian varieties in characteristic p.
e What strata are given by fixing the p-kernel of the abelian varieties studied.

e What kind of leaves are given by fixing the p-divisible group of the abelian varieties
studied.

It will turn out that various stratifications and foliations of A, ®F,, and a description of these
structures give access to some of these questions.

Hecke correspondences have the property that they may blow up and down subsets of the
moduli space (if we consider “a-Hecke-orbits”). For some of our results we have to restrict to
principally polarized abelian varieties, in order to obtain nice, coherent statements. In some
cases, by some miracle, statements holds more generally for all degrees of polarizations (e.g.
the dimensions of the p-rank-strata). In some cases the condition that the polarization is
principal is essential, e.g. the analog of a conjecture of Grothendieck translated to polarized
p-divisible groups, e.g. the question whether (a = 1)-locus is dense in a NP stratum. In some
of our considerations we restrict to the principally polarized case.

Here is a survey of the strata and leaves we are going to construct. For an abelian variety A
over a field, a positive integer m and a prime number p we define the group scheme:

A[m] := Ker(xm : A — A),
and we define the p-divisible group of A by:
A[p™] = Ur<icoo A[p'].

NP A+ A]p>®] — A[p™]/ ~ over an algebraically closed field: the isogeny class of its
p-divisible group; by the Dieudonné - Manin theorem we can identify this isogeny class of
p-divisible groups with the Newton polygon of A. We obtain the Newton polygon strata.

EO (4,)) — (A N)[p] — (4,))[p]/ = over an algebraically closed field: we obtain EO-
strata; see [52]. Important feature (Kraft, Oort): the number of geometric isomorphism
classes of group schemes of a given rank annihilated by p is finite.

Fol (A, A) — (A, N)[p™°] — (A, \)[p™>]/ = over an algebraically closed field: we obtain a
foliation of an open Newton polygon stratum; see [54]. Note that for f < g — 1 the number of
leaves is infinite.

Note: X 2Y = N(X) = N(Y); conclusion: every central leaf in Fol is contained in exactly
one Newton polygon stratum in NP.



However, a NP-stratum may contain many EO-strata, an EO-stratum may intersect several
NP-strata. If the p-rank is smaller than g — 1 a NP-stratum contains infinitely many central
leaves. Whether an EO-stratum equals a central leaf is studied and answered in Section 11.
To a p-divisible group we can attach various “invariants”:

X [p™] up to ~ 13 NP | We
X[p'] up to & ® EO | S,
(A[p>],A) up to = | (X, ) | Fol | C(z)

We explain these notions and notations below.

For all these concepts we show that we obtain (locally) closed subsets of the moduli space
A, ® K, where K D T, is a field. We will see that these spaces do exit. We determine their
dimension. We decide which ones are (ir)reducible. And we show various applications of the
concepts thus defined.

We will write k and €2 for an algebraically closed field. We will write A = A, ® I, for the
moduli space of principally polarized abelian varieties in characteristic p.

Questions studied below can be stated for the unpolarized case and in the case of quasi-
polarized p-divisible groups or polarized abelian varieties. This last case is for us the most
interesting, and often we will not state the analogous (usually easier) questions and theorems
in the unpolarized case.

We have seen many times that supersingular abelian varieties on the one hand and non-
supersingular abelian varieties on the other hands in general behave very differently. What
has been proved now:

supersingular NP-strata, EO-strata and central leaves in general
(we mean p > 0), are reducible (Katsura-Oort, Li-Oort, Harashita)

but

non-supersingular NP-strata, EO-strata and central leaves
in the principally polarized case are irreducible
(Oort, Ekedahl-Van der Geer, Chai-Oort).

1 Newton polygons: The Manin conjecture

NP ‘Newton polygon strata are given by A[p>]/ ~ . ‘

(1.1) Our story starts with Manin’s thesis [31]. For an abelian variety A we define its
p-divisible group X as the union (inductive limit) of all subgroup schemes A[p].

In Chapter IT Manin describes isogeny classes of p-divisible groups over a perfect field and over
an algebraically closed field. Here is the main result: for a pair of coprime positive integers
m,n € Z there exists an isosimple formal group Gy, p, of dimension m, with Aim((Gp,n)') = n.
Any formal p-divisible group X over k is up to isogeny a direct sum of such groups:

X ~ Z Gmi,m;
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see [31], Classification Theorem on page 35. Note that for any abelian variety (for example
defined over a field of large transcendence degree over F),), its p-divisible group is isogenous
with a p-divisible group defined over the prime field.

Note that this shows there is a bijection between the set of k-isogeny classes of p-divisible
groups over k and the set of Newton polygons:

)

(1.2) Theorem (Dieudonné and Manin), see [31], “Classification theorem ” on page 35 .

{X}) ~r = {Newton polygon}

A Newton polygon is a lower convex polygon in Q x Q, starting at (0,0), with integral break
points, and ending at (h,d) for certain integers h and d; for abelian varieties of dimension g
we have h = 2¢g and d = g.

We write N (X) for the Newton polygon of X. For an abelian variety A over a field of
characteristic p we write N'(A4) = N(A[p>]). To Gy, one assigns m + n slopes equal to
m/(m+n); for X ~ > Gpm,n, the Newton polygon N (X) is formed by taking all these
slopes and ordering them in non-decreasing order. This is the theory of the “F-slopes”. In
some papers the different (but equivalent) notion of “V-slopes” is used: in that notation
N (Gp.) is isoclinic of slope equal to n/(m +n).

(1.3) In Chapter IV Manin discusses Newton polygons coming from an abelian variety. The
“formal structure of an abelian variety A”, now called the Newton polygon of A, is discussed,
written as N (A):

A — Ap¥=X - NX) = N(A4).

For an abelian variety A over a finite field Manin proves that the Newton polygon of an
abelian variety is symmetric in the sense that the isogeny factors Gy, , and Gy, ,, appear with
the same multiplicity; or in other words: a slope [ appears with the same multiplicity in N (A)
as the slope 1 — (. For an abelian variety over any field of positive characteristic the symmetry
of N(A) follows from [43], Theorem 19.1.

(1.4) Manin then formulates his celebrated
Manin Conjecture [31], Conjecture 2 on page 76:

a Newton polygon & comes from an abelian variety <= £ is symmetric.

(1.5) This conjecture was proved using the Honda-Tate theory, see [69], page 98. For a pure
characteristic p proof, see [51], 5.3.

(1.6) A symmetric Newton polygon is called
supersingular if all slopes are equal to 1/2. A Newton polygon is called
ordinary if only the slopes 0 and 1 appear. A symmetric Newton polygon ¢ is called
almost supersingular if it is the unique one “one step away” from supersingular:
if g =2r, we have £ = (r,r — 1)+ (1,1) + (r — 1,7);
if g=2r+1, we have £ = (r + 1,7) + (r,r + 1).



(1.7) The p-rank stratification. For an abelian variety A we define the p-rank to be
equal to f(A) = f if #(A[p](k)) = pf. This gives a stratification of Ay @ Fp, by declaring
that Vy contains all [(B, pt)] such that f(B) < f. It is not difficult to see that V; C A; ® I,
is closed. It is a surprising and difficult theorem (suggested by D. Mumford, proved by P.
Norman and F. Oort):

aim(Vy) = 2olo+1) ~ (9~ 1),

see [40], Theorem 4.1. Note that all components have this dimension. This is surprising and
unexpected, if you realize that Hecke correspondences blow up and down in general, but that
the dimensions of these strata remain the same under such correspondences.

2 Barsotti-Tate groups: A conjecture by Grothendieck

(2.1) Basic references: [15], [19], [22]. For a scheme S and and integer h € Z>( we define
a p-divisible group (or, a Barsotti-Tate group) X — S as a union, an inductive limit, of
commutative finite flat group schemes X,, — S such that the rank of X,, — S equals p,
such that X, is annihilated by p”, and such that for ¢ and j there is an exact sequence
X; = Ker(xp' : Xivj — Xitj); in this case X4,/ X; = X;.

For an abelian scheme A — S we study A[p’] := Ker(xp’ : A — A); the system defined by
X; := A[p'] is a p-divisible group.

This concept is a strong tool in studying abelian varieties in characteristic p. One can
“feel” a p-divisible group as a terrific substitute of p-adic homology, as a characteristic p
substitute for Tate-f-groups. There are many equivalent properties. Such as: a Tate-¢-group
is “defined over the prime field” and “basically a p-divisible group, up to isogeny is defined
over the prime field”. Or: deforming an abelian variety its Tate-f-group “stays geometrically
constant” (i.e. constant up to a Galois twist); we will see that an analogous statement holds
for p-divisible groups holds over central leaves.

A basic example/surprise. Let Ey be an ordinary elliptic curve over a field k¥ D F,. Let
E — S be an equicharacteristic-p-deformation over an integral base, 0 € S, Eg = E xg 0, and
let n € S be the generic point. Then we have

Tg(Eo) it Tg(En) & k‘(n)

and we have

Ey[p™] @i k(n) = Eo[p™] @4 k(n).
Families of p-divisible groups can be studied, see [19], [75], [64], [54]. Proving the conjecture
by Grothendieck recorded below gives access to studying the boundary of Newton polygon
strata (the main missing piece of information in Manin’s thesis), and constructing central
leaves, studying properties using a slope filtration (idea basically due to Grothendieck and
Zink), access to the Hecke Orbit Problem becomes available. We see that the topic “families
of p-divisible groups” lies in the heart of these developments.

(2.2) In 1970 Grothendieck observed that* Newton polygons go up” under specialization.
In order to study this and related questions we introduce a notation:



(2.3) For Newton polygons we introduce a partial ordering.

We write (1 > (s if (1 is “below” (3,

i.e. if no point of (j is strictly above (5. G2 G

Note that we use this notation only if Newton polygons with the same endpoint are considered.

If S is a base scheme, and X — S is a p-divisible group over S we write
We(S) ={seS|N(X)<(}CS

and
WL(S) :={s €S| N(X)=(}CS.

(2.4) Theorem (Grothendieck and Katz; see [25], 2,3,2). W¢(S) C S is a closed set.
As the set of Newton polygons of a given height is finite we conclude: Wg (S)c Sisa
locally closed set.

(2.5) Notation. Let £ be a symmetric Newton polygon. We write We = We(Ag1 @ ).

(2.6) We have seen that “Newton polygons go up under specialization”. Does a kind of
converse hold? In 1970 Grothendieck conjectured the converse. In [15], the appendix, we find
a letter of Grothendieck to Barsotti, and on page 150 we read: “-- The wishful conjecture I
have in mind now is the following: the mecessary conditions - -- that G’ be a specialization of
G are also sufficient. In other words, starting with a BT group Go = G', taking its formal
modular deformation --- we want to know if every sequence of rational numbers satisfying - - -
these numbers occur as the sequence of slopes of a fiber of G as some point of S.”

(2.7) Theorem (conjectured by Grothendieck, Montreal 1970). Let K be a field of char-
acteristic p, and let Gy be a p-divisible group over K. We write N (Gy) =: 8 for its Newton
Polygon. Suppose given a Newton Polygon ~ “below” B3, i.e. B < . Then there exists a
deformation G, of Gy such that N'(G,) = ~.

For a proof see [21], [51], [53].

This the “unpolarized case”. An analogous formulation of the conjecture for quasi-polarized p-
divisible groups is not true in general (for an arbitrary degree of the polarization); in [24], 6.10
we find an example of a supersingular abelian variety of dimension three with a polarization
of degree p?, which cannot be deformed to a polarized abelian variety having Newton polygon
equal to (2,1) + (1,2). Many more examples can be given.

However the analogous conjecture in the principally polarized case is true:

(2.8) Theorem (the principally polarized variant of the conjecture by Grothendieck, Mon-
treal 1970). Let K be a field of characteristic p, and let (Gg, Ag) be a principally quasi-polarized
p-divisible group over K. We write N(Gy) = 8 for its Newton Polygon. Suppose given a sym-
metric Newton Polygon v “below” (3, i.e. 3 <. Then there exists a deformation (Gy, ) of
(Go, o) such that N(G,) = .
For a proof see [21], [51], [53].

Using a theorem by Serre and Tate, we see that from (2.8) the analogous theorem for principally
polarized abelian varieties holds true.



3 EO strata

EO ‘Ekedahl-Oort strata are given by A[p]/ = . ‘

Main reference: [52].

(3.1) We call a finite group scheme G a BT; group scheme if ImFz = KerV; and ImV; =
KerFg. In particular this implies that G is annihilated by p. Group schemes annihilated by
p were classified by Kraft, see [27], and later, independently by Oort. A crucial fact is:

Fiz h € Z>o. The set of isomorphism classes of finite group schemes

annihilated by p of rank equal to p™ over an algebraically closed field k is finite.

Moreover one can give a definition of a “quasi-polarization” on a BT group scheme; this is
not so difficult if p > 2, but more care has to be taken in case p = 2, for details see [52]. A
principally polarized abelian variety (A, \) gives rise to a quasi-polarized BT; group scheme
(A, \)[p]. In all cases one proves that the set of isomorphism classes of quasi-polarized BT
group schemes of fized rank over an algebraically closed field k is finite; especially see [52],
Section 9.

(3.2) A quasi-polarized BT; group scheme (G, \) is uniquely determined by its “elementary
sequence”. This is a set of positive integers {p(1),---,¢(g)} with the properties (i) <
o(i+1) < (i) +1 for 0 <i < g, where ¢(0) := 0. This sequence is obtained by producing on
G a “final filtration”, see [52], Section 2; the elementary sequence describes for every step in
the filtration its image under V. We write ES(G, A) for the elementary sequence of (G, \).

(3.3) Choose an elementary sequence ¢; equivalently: choose an isomorphism class of a
quasi-polarized BT group scheme (G, \) over an algebraically closed field. Let (A,\) — T be
a principally polarized abelian scheme over a base field in characteristic p. We write:

Sp(T) = {t | ES((A, A)[p]) = ¢}
This turns out to be a locally closed set in T, see [52], Proposition 3.2. We write
Sp = Sp(Ag1 @ Fp),

which is called the Ekedahl-Oort stratum determined by ¢. Note that [(A4,\)] =z € Ay 1(K)
iff for any algebraically closed field £ D K we have (A,\)[p] ® k = (G, \) ® k. In [52] several
properties of these strata are proven (quasi-affine, dimension, etc.).

4 Foliations

Fol ‘Central leaves are given by (A, A\)[p>=]/ = . ‘

(4.1) Let X be a p-divisible group and let ) — S be a p-divisible group over a base S. We
write

Cx(S)={s€ 5|30,V ® Q0= X © Q).

Choose a quasi-polarized p-divisible group (X, \). Let (J,u) — S be a quasi-polarized p-
divisible group over a base S. We write

Coxn(S) = {s €5 30,3V, 1n)s © Q= (X, \) © Q).
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(4.2) Theorem, see [54], Th. 2.3.
Cx(S) C W(x) ()

is a closed set.
A proof can be given using (4.3), (4.4) and (4.5).

(4.3) Definition. Let S be a scheme, and let X — S be a p-divisible group. We say that
X/S is geometrically fiberwise constant, abbreviated gfc if there exist a field K, a p-divisible
group Xo over K, a morphism S — Spec(K), and for every s € S an algebraically closed field
k D k(s) D K containing the residue class field of s and an isomorphism Xo ® k =2 X ® k.
The analogous terminology will be used for quasi-polarized p-divisible groups and for (polar-
ized) abelian schemes.

See [54], 1.1.

(4.4) Theorem (T. Zink & FO). Let S be an integral, normal Noetherian scheme. Let
X — S be a p-divisible group with constant Newton polygon. Then there exists a p-divisible
Y — S and an S-isogeny ¢ : Y — X such that YV /S is gfc.

See [75], [64], 2.1, and [54], 1.8.

(4.5) Theorem. Let S be a scheme which is integral, and such that the normalization
S" — S gives a noetherian scheme. Let X — S be a p-divisible group; let n € Z>o. Suppose
that X — S is gfc. Then there exists a finite surjective morphism T, = T — S, such that
X[p"] xs T is constant over T.

See [54], 1.3.

(4.6) Note that we gave a “point-wise” definition of Cx(S); we can consider Cx(S) C S as
a closed set, or as a subscheme with induced reduced structure; however is this last definition
“invariant under base change”? It would be much better to have a “functorial definition” and
a nature-given scheme structure on Cx (.5).

Note that the proof of this theorem is quite involved. One of the ingredients is the notion
of “completely slope divisible p-divisible groups” introduced by T. Zink, and theorems on
p-divisible groups over a normal base, see [75] and [64].

Considering the situation in the moduli space with enough level structure in order to obtain
a fine moduli scheme, we see that C(4 \)jp](Ag ® Fp) is regular.

We write C, for the irreducible component of C(z) := Ci x)p~]A passing through
[(A,\)] = x; we say that C, is the central leaf passing through z.

Remark (Chai & FO). In fact, for N(A) # o, i.e. A is not supersingular, it is known that
Cianp=](A) is geometrically irreducible; see (9.8).

(4.7) Isogeny correspondences, unpolarized case. Let ¢ : X — Y be an isogeny
between p-divisible groups. Then there exist finite surjective morphisms

Cx(Def(X)) « T — Cy(Def(Y)).

(4.8) Corollary. The dimension of Cx(Def(X)) only depends on the isogeny class of X.



(4.9) Isogeny correspondences, polarized case. Let ¢ : A — B be an isogeny, and let
A respectively u be a polarization on A, respective on B, and suppose there exists an integer
n € Zso such that ¢¥*(u) = n-\. Then there exist finite surjective morphisms

Cianp=|(Ag@Fy)  « T = Cpupe)(Ag @Fp).

See [54], 3.16.

(4.10) Corollary. The dimension of C(x x)(Ay ® ;) only depends on the isogeny class of
(X, ).

Remark / Notation. In fact, this dimension only depends on the isogeny class of X. We
write

c(§) = dim (Cx ) (Ag @ Fp)) . X = Ap™], &:=N(X);

this is well-defined: all irreducible components have the same dimension.

A proof of all previous results on isogeny correspondences, and the independence of the di-
mension of the leaf in an isogeny class can be given using (4.3), (4.4) and (4.5); see [54], 2.7
and 3.13.

(4.11) Hecke-a-orbits. Consider [(A,\)] = z € A(K) Consider all diagrams

(4,0 ®Q < (C,¢0) 5 (B, ),

where:

Q) is an algebraically closed field containing K,

(C, () is a polarized abelian variety over §2,

¢ : C' — Ais an isogeny such that ¢*(\) = (,

(B, i) is a principally polarized abelian variety over 2, and

1 : C — B is an isogeny such that ¢*(u) = (;

Ker(y) and Ker(t) are geometrically successive extensions of the finite group scheme a;
in this case we write [(B, )] € Ha(x)

(4.12) For a given point [(A, )] = x one can study Ha(x), see (4.11). In general this is
not a (locally) closed set in Ay @ Fp,: the “number of components” can be infinite. The union
of “components” of H,(z) containing = however is a closed set, which we denote by I(x).
An irreducible component of I(z) is called an isogeny leaf; for details see [54]; related notion:
Rapoport-Zink spaces. It turns out that

central leaves and isogeny leaves give, up to a finite morphism,
a product structure on every component of Wg(.Ag & Fp),

see [54], Theorem 5.3.

(4.13) We see that all central leaves belonging to a symmetric Newton polygon £ have
the same dimension (independent of the degree of the polarization). This dimension will be
denoted by ¢(&) or by cdp(§). For any irreducible component W of We(Ay ® F),) we see that
for x € W we have ¢(§) + dim(I(x)) = dim(W). We will write i(§) := sdim(&) — ¢(§); this is

the dimension of any isogeny leaf in the principally polarized case. Here are some examples:



(4.14) As illustration we record for g = 4 the various data considered:

NP | ¢ f 1 sdim(§) | c(§) | i(§) | ES(H(E))
p | (4,0)+(0,4) 4710 |10 [ 0 [(1,23,4
F=3(,00+1,1)+(0,3) 3] 9 9 | 0 [(1,2,3,3)
F=212,0+ 22+ (0,2 2] 8 71 1 ](1,2,2,2)
3 Lo+ )+@2)+0O,0 1| 7 6 | I |(1,1,22)
v [ (1,0)+(3,3) +(0,1) 1| 6 1 [ 2 [(IL,,1,0)

5 |31+ (1,3) 0| 6 5 | 1 (0,1,2,2)

v [0+ (1,1) + (1,2) 0] 5 3 [ 2 [(0,1,1,1)

o | (4,4) 0] 4 0 | 4 [(0,0,0,0)

Here p >~ (f=3) > (f=2) >8> >v >0 and > § > v. The notation ES, encoding the
isomorphism type of a BTy group scheme, is as in [52]; the number f indicates the p-rank.

(4.15) For g =5 and f = 0 we obtain 5 possible Newton polygons (a totally ordered set in
this case):

£ sdim(&) [ e(§) [i(€) | BES(H(9))
(4,1) + (1,4) 10 9 1 [(0,1,2,3,3)
(3,1) + (1,1) + (1,3) 9 71 2 ](0,1,2,2,2)
(2,1) +(2,2) + (1,2) 8 4 | 4 1(0,1,1,1,1)
(3,2) +(2,3) 7 3 [ 4 [(0,0,1,1,1)
(5,5) 6 0 | 6 [(0,0,0,0,0)

(4.16) Theorem. A geometrically fiberwise constant p-divisible group X/S over an (excel-
lent) integral normal base has a natural slope filtration.

(4.17) Corollary. Let X — C be a p-divisible group over a central leaf. Then X/S admits
a slope filtration.

For the proof of the theorem one uses first [64], in order to have an isogeny ¢ : Z — X/S
from a completely slope divisible p-divisible group , called Z, to the given one X/S. Let
Ker(y)) = N — S. By induction on the isoclinic parts of the filtration Z; C Zy C --- Z, it
suffices to show that N N Z; is flat over S.

Going to a finite cover T' — S, using [54], Theorem 1.3, further using that completely slope
divisible implies geometrically fiberwise constant (or using directly [54] Lemma 1.4), and using
[54] Lemma 1.10, and [54] Lemma 1.9 we see that the fibers of Ny N Z; ¢ have constant rank,
hence the same for the fibers of N N Z;, hence this is flat. This proves the layer Z; C Z
descends to a sub-p-divisible X1 C X, which is the lowest isoclinic part; finish by induction.

(4.18) Example. Here is an example where there does not exist a slope filtration. Choose
g =3, and £ = (2,1) + (1,2). Choose a principally polarized abelian variety (A, \) with
N(A) = € and a(A) = 2. For [(A,\)] = = we see that I(x) is a curve, which locally at x
consists of two branches; over one branch there does exist a slope filtration of the deformed
p-divisible group; over the other branch the natural slope filtration does not exist.

In most cases: over an open Newton polygon stratum the natural slope filtration does not
exist.
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5 Monodromy and Hecke orbits (following Ching-Li Chai)

(5.1) In this section we fix a prime number p, we fix an integer N > 3 (to be used to
define level structures), such that p does not divide N, and we choose a prime number ¢
not dividing pN. We fix an algebraically closed field £ D F,. We write B = A, 1y ® k, the
moduli space of principally polarized abelian varieties over an extension of k£ with a symplectic
level- N-structure.

(5.2) Hecke-f-orbits. Fix a prime number ¢ different from p. Consider [(4,\)] = = € A;
suppose that (A4, \) is defined over a field K D F,; we say that (B, p) is in the Hecke-f-orbit
of (A, A), notation [(B, p)] € He(x), if there exists an isogeny ¢ : A — B and an integer n
which is a power of ¢ such that ¢*(u) = n-A.

This set Hy(z) C A is called the Hecke-f-orbit of the point z. A subset S C A is called
Hecke-£-stable if for every x € S we have H,(z) C S.

For Hecke correspondences also see [12], VIL3.

(5.3) Let Z C A be a locally closed subset. Let Z° be an irreducible component of Z. Let
n € Z° be the generic point. Let A — Z be the universal abelian scheme restricted to Z. Let

pae:m(2%7) —  Sp(Th,<,>¢)

be the /-adic monodromy representation in the Tate-f-group of A,,. Identify the Tate-¢-group
of A, over 7 with Z?g with the standard pairing.

(5.4) Theorem (C.-L. Chai). Choose notation as above. Let Z C B be a locally closed
subscheme, smooth over Spec(k), such that:
Z is Hecke-f-stable, and
the Hecke-L-action on the set mo(Z) is transitive, and
n & W, (equivalently: Z contains a non-supersingular point).
Then:
pPAL: ﬂ'l(ZOaﬁ) - Sp(Tg, < >£) = Sp2g(Z£)

1§ surjective, and
Z is irreducible, i.e. Z = ZV.

See [4], 4.4.

6 NP: dimensions

In 1977 Tadao Oda and I made a conjecture computing the expected dimension of the super-
singular locus W, C A= A, ® Fp, see [41]. In 1998 Ke-Zheng Li and I proved this, see [30].
In [47] I indicated what the dimensions of the Newton polygon strata in .4 should be. In [53] I
prove a more general result which reproves the supersingular case. Here are the results giving
these formulas.
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(6.1) The dimension of Newton polygon strata, unpolarized case. We fix integers
h >d >0, and we write ¢ := h — d. We consider Newton Polygons ending at (h,d). For such
a NP ¢ we write:

) ={(z,y) €ZxZ|y<d, y<z, (x,y) on or above (},

and we write

[dim(¢) := #(0(0)).]

(=2x (1a0)+(2>1)+(1a5):
=6x1+3x2+2x1; h=11
Here dim({) = #(<(()) = 22.

(6.2) Theorem see [51], Th. 3.2 and [53], Th. 2.10. Let Xy be a p-divisible group over a
field K; let ¢ = N(Xy). Then:

dim(WC (Def(Xo))) = dlm(C)

For polarized abelian varieties and for quasi-polarized p-divisible groups one can try to deter-
mine the dimension of the Newton polygon strata. For an arbitrary polarization see (12.2).
For principal polarizations:

(6.3) The dimension of Newton polygon strata, principally polarized case. We
fix an integer g. For every symmetric NP & of height 2g we define:

A& ={(r,y) €ZxZ|y<x<g, (x,y) on or above ¢},

and we write

dim(We(Ag1 ® Fp)) = #(A(E))
§= (5a 1) + (27 1) + 2'(17 1) + (1a2) + (175)>
g=11; slopes: {6 x %,3 X %,4 X %,3 X %,6 X %}

This case: dim(Wg(Ay @ Fp)) = sdim(§) = 48.

(6.4) Theorem, see [51], Th. 3.4 and [53], Th. 4.1. Let & be a symmetric Newton polygon.
Then:
dim We(Ag1 ® Fp)) = sdim(§).

12



(6.5) We sketch a proof of the Grothendieck conjecture, and a proof of the computation of
dimensions of Newton polygon strata.

For a group scheme G over a field L of characteristic p we define a(G) to be the dimension
of the K-vector space Hom(oy,, Gk), where K D L is a perfect field. If G is local-local, the
a-number is the minimal number of generators of the Dieudonné module of G.

The central and most difficult part of the proof is the fact:

(6.6) Theorem. For a given p-divisible group Xo over a field K, there is a deformation
X — T over an integral base, 0 € T(K) , with Xg = X @1 0, with generic point n € T such
that a(X;) <1 and N(X,) = N(Xp).

For a given principally quasi-polarized p-divisible group (Xo,\) there exist a deformation
(X,\) — T with constant Newton polygon and a(X,) < 1.

On first shows this to be true for a simple p-divisible group, i.e. a group isogenous with some
G- This is done by constructing a “catalogue” containing all such groups, for details see
[21]. Then one has the task to show this base T' is irreducible. A tricky computation plus the
general theorem “Purity” then finishes the proof in the case of a simple p-divisible group; for
details see [21]. To find this proof took me 7 years.

Then one studies deformations of p-divisible groups with a filtration; for details see [53].
In this way Theorem (6.6) is proved.

Then one sees that Newton polygon strata are regular at points where a(X) = 1; this is done
by the technique of “Cayley-Hamilton”: in that case the deformation theory with constant
Newton polygon is a smooth problem, and the strata are exactly nested as given by the Newton
polygon partial ordering; for details see [51]. In this way we can can read off the dimension of
any Newton polygon stratum. We can write down explicitly a deformation to a given Newton
polygon, and a proof of the Grothendieck conjecture follows.

7 NP: irreducibility

(7.1) The number of supersingular elliptic curves is large for p large. For the case of elliptic
curves in characteristic p this is classical. By Hasse, Deuring and Igusa we know:

Aut(E 247
J(E) is ss #( 11( ))

this implies that the number of supersingular j-invariants is asymptotically p/12 for p — oc.

For other values of g, the dimension of the abelian varieties in considerations we have an
analogous situation:

(7.2) Example. For a scheme X over a field we denote by IIp(X) the number of geometri-
cally irreducible components of X. Note that the supersingular locus has “many components”
for fixed g and large p; see [30], 4.9:

#(Io(Wy)) = Hyg(p,1) if g isodd,

#(IIo(Wy)) = Hy(1,p) if g is even.
13



Note that for g fixed, and p — oo, indeed #(I1g(W,)) — oo. We see that W, is geometrically
reducible for p > 0, e.g. for p > 11 if g = 2 (see [23], 5.8), for p > 2 if g = 3 (see [24], 6.8).

One might wonder what the number of irreducible components is for an arbitrary Newton
polygon stratum; it seems quite a job to compute the number of components of all New-
ton polygon strata. However, as it will turn out: any non-supersingular NP-stratum W s
irreducible, see (7.4) below. In fact:

(7.3) Theorem. For every g, for every prime number { # p, for every N as above, and
for every symmetric Newton polygon &, the action of Hy on the set of irreducible components
o(Whe) of the Newton polygon stratum Wy e C B = Ag1 N ® k is transitive.

For details see [55].

Using the monodromy result by Chai in Section 5 we obtain:

(7.4) Theorem. For every { Z o the locus Wy ¢ C B is irreducible; i.e.

Eto = #I(Wye) = L.

This was conjectured in [50], Conjecture 8B. This answers [66], 3.8.

8 EO: dimensions and irreducibility
(8.1) In [52] Theorem 1.2 we find:
dim(Sy) = ol = @)+ +lg).

In [34], [36], [70], [71] we find alternative approaches to this computation.

(8.2) Lemma (FO, unpublished). Let g = 2r+1, respectively g = 2r; let ¢ be an elementary
sequence. Then:
S, C W, <+ ¢(r)=0.

(8.3) 1In[52], 14.1 I conjectured that the EO strata not contained in the supersingular locus
should be irreducible. This has been proved now:

(8.4) Theorem (T. Ekedahl and G van der Geer, see [11], Theorem 11.5). Any EO-stratum
Sy inside A = Ag1 ®F, not contained in the supersingular locus is geometrically irreducible.

Also, T conjectured that EO strata contained in the supersingular locus should be reducible
for p large. This has been proved:

(8.5) Theorem (S. Harashita). For every S, C W, the number of geometric components
of Sy, equals a certain class number; for p large this number is bigger than 1, i.e. for p > 0
the locus S, is geometrically reducible.

See [16].
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9 Foliations: dimensions and irreducibility

We have seen that the dimension of a central leaf, in the unpolarized case written as cdu((),
respectively cdp(§) in the polarized case, only depends on the Newton polygon (and not on
the degree of the polarization) see (4.8), (4.10). Hence we are looking for a formula allowing
us to compute such a dimension.

(9.1) Historical remark. In summer 2000 I gave a talk in Oberwolfach on foliations in
moduli spaces of abelian varieties. After my talk, in the evening of Friday 4-VIII-2000 Bjorn
Poonen asked me several questions, especially related to the problem I raised to determine the
dimensions of central leaves. Our discussion resulted in Problem 21 in [10]. His expectations
coincided with computations I had made of these dimensions for small values of g. Then I
jumped to the conclusion what those dimensions for general g could be; that is what was
proved later, and reported on here, see (9.3), (9.6). I thank Bjorn Poonen for his interesting
questions; our discussion was valuable for me.

(9.2) Notation. Let ¢ be a Newton polygon, and (z,y) € Q x Q. We write:
(xz,y) < ¢ if (z,y) is on or above (,

(z,y) 2 Cif (z,y) is strictly above (,

(z,y) > ¢ if (x,y) is on or below (,

(x,y) Z ¢ if (z,y) is strictly below (.

Let ¢ be a Newton polygon. Suppose that the slopes of ( are 1 > 81 > --- > [y > 0; this
polygon has slopes (3, -, 31 (non-decreasing order), and it is lower convex. We write ¢* for
the polygon starting at (0,0) constructed using the slopes i, --, 3, (non-increasing order);
note that (* is upper convex, and that the beginning and end point of ¢ and of (* coincide.

We write:

OGC) ={(y) €Z| (,y) < ¢ (wy) 2 edu(Q) = #(O(G¢)) |

u

“cdu” = dimension of central leaf, unpolarized case.

Remark. One can show:

See [62] for details.

We suppose ¢ = > 1<, ti-(mi, n;), written in such a way that ged(m;,n;) = 1 for all 7, and
Wi € Zso, and i < j = (m;/(m; +n;)) > (m;/(mj +nj). Write d; = p;-m; and ¢; = p;-n; and
hi = pi-(m; + n;); write v; = m;/(m; +n;) = d;/(d; + ¢;) for 1 < i < u. Note that the slope
v; = slope(Gpy,;.m;) = mi/(m; +n;) = d;/h;: this Newton polygon is the “Frobenius-slopes”
Newton polygon of )" (G, n,)". Note that the slope v; appears h; times; these slopes with
these multiplicities give the set {8; | 1 < j < h:=hi; +---+ hy} of all slopes of (.

(9.3) Theorem (Dimension formula, the unpolarized case.) Let X be a p-divisible group,
D = Def(Xy); let Y be a p-divisible group with N'(Y') = N (Xo);

dim(Cy (D)) = cdu(p).
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See [5], 7.10. For details see [62].
Example:

o ; dim(Cx (D)) = # (((¢;¢7))-
(3 — 5)5:6 =19,

dihy — dohy =46 — 1.5 =19;

d102 - dgcl =45-1.1=19.

(9.4) Remark/Example. Suppose ( is isoclinic (i.e. all slopes are the same). We see
that for an isoclinic Newton polygon cdu(¢) = 0. Hence the theorem says that there are no
non-trivial deformations with constant Newton polygon in the isoclinic case; this was already
proved in [21], Corollary 2.17.

(9.5) Notation, the polarized case. Let ¢ be a symmetric Newton polygon. For conve-
nience we adapt notation to the symmetric situation:

§=pr-(my,ny) + - 4 ps-(ms, ng) +7r-(1,1) + ps-(ng, ms) + -+ + p1-(n1, ma)

with:

m; > n; and ged(m;,n;) = 1 for all 1,

1<i<j<s= (mi/(mi+mn;)) > (m;/(mj+ny),

r>0and s> 0.
We write d; = pu.m;, and ¢; = p.n;, and h; = d; + ¢;. Write g := (Zl<i<s(di + cz)) + r and
write u = 2s + 1. o

We write:

AEGE) ={@y) €Z|(@y) <& ()&, v<gh  |adp(Q) = #(AG))

i

“cdp” = dimension of central leaf, polarized case.

Remark. One can show:

HAEE) = D (€°() —£0).

1<i<g

See [62] for details.

Write § = 3y ;< i-(miy i), e (mj,nj) = (Nut1—j, Mut1—5) for s < j < wand r(1,1) =
ts+1(Msy1,nsy1). Write v; = m;/(m; + n;) for 1 <14 < wu; hence v; = 1 — vy 41— for all 4.

(9.6) Theorem (Dimension formula, the polarized case.) Let (A, ) be a polarized abelian
variety. Let (X,\) = (A, \)[p™]; write £ = N'(A); then

dim (Cx ) (A®F,)) = cdp(é).

See [5], Proposition 7.12. For details, see [62].
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. dim(Ciaz) (Ag @ Fp)) = > i<y (€7(0) — £(2).
IS slopes 1/5,4/5,h =5: 45— 11.2=09,
slopes 1/3,2/3,h =3: 123-11.2=2

(dy —c1)ho =33 =09,

(dy +dy —c1 —co)r =42=38,

dim(Cia5)(Ag @ Fp)) = # (A(C;C7)) = 28.

Example:

(9.7) Remark/Question. Suppose & Z &. By the theorem we see that in this case
cdp(&1) > cdp(&2). Is there a direct proof for this? It might be that this can be answered in
another way if we have more information on the question as formulated in (12.7).

(9.8) Theorem (Ching-Li Chai & FO, details will appear in [8]). Letx € A= Ay, ®@F,
be non-supersingular. The central leaf C(x) is geometrically irreducible.

Various methods are applied. We use irreducibility of non-supersingular Newton polygon
strata, see (7.4), and we use the notion of hypersymmetric abelian varieties, see [7].

10 Hecke orbits

Basic references: [3], [5].

(10.1) Let 2z € A; ® C. The closure of the Hecke orbit H(x) equals A, @ C; here “closure”
can either be taken in the complex topology or in the Zariski topology.

In positive characteristic the analogous statement is not true in general. As an easy
example, choose a moduli point e € A; ® F,. If the related elliptic curve is ordinary, then
H(e) is dense in A; ®F,, (and this is not difficult to show); however if the related elliptic curve
is supersingular, then we see that H(e) in every component of A; ® IF,, consists of the finite
set of elliptic curves with that degree of polarization; hence H(e) is not dense in any of the
components of H(e). However a deep result by Chai is stimulating:

(10.2) Theorem (Chai, 1995). For every ordinary € Ay @ ), the Hecke-C-orbit is dense
in Ag @ F,. See [3].

In 1993 I formulated the following conjecture:

(10.3) Conjecture. Suppose [(A,p)] =z € Ay @F,, and write { = N'(A). Then
H(z) is Zariski-dense (7) in We(Ay @ Fp).
See [50], 15A.

In 2004 Ching-Li Chai and I proved this conjecture, where one final detail was filled in by
Chia-Fu Yu:
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(10.4) Theorem (the Hecke Orbit Conjecture).

(M ()5 = We(Ag @ F).

Note that the Hecke Orbit Conjecture is true if x is supersingular: every irreducible component
of Wy(Ag @ Fp) is an isogeny leaf, and H, operates transitively on IIo(W).

(10.5) The proof of the general case consists of three completely different steps:

(I) Any irreducible component of an open Newton polygon stratum is the product of a central
leaf and an isogeny leaf, up to a finite map, see (4.12); hence:

He(x) is dense in C(x) = H(x) is dense in We(Ag @ Fp).
We see it suffices to prove the Hecke-¢-Orbit Conjecture.

(IT) (The discrete form of the Hecke Orbit Conjecture). For every non-supersingular x €
Ag @ F), the central leaf passing through x is geometrically irreducible; i.e. C(x) = Cy. This
is precisely (9.8).

(III) (The continuous form of the Hecke Orbit Conjecture). For every (non-supersingular)
z € Ay @ F), its Hecke-l-orbit H(z) is dense in the irreducible component Cy of the central
leaf C(z) passing through x. This last step is quite involved, and we refer to [5] for a survey.

We see that these three steps prove the Hecke Orbit Conjecture. We see that the methods in
the various steps are are rather different. The most technical and most difficult step is the
continuous form of the Hecke Orbit Conjecture; it requires a lot of different techniques. For a
survey we refer to [5], until the proof is completely written up and published in [8].

11 Minimal p-divisible groups and simple finite group schemes

Basic references: [60], [63].

(11.1) A p-divisible group X can be seen as a tower of building blocks, each of which
is isomorphic to the same finite group scheme X|[p]. Clearly, if X; and X5 are isomorphic
then Xi[p] & Xa[p]; however, conversely Xi[p] = Xa[p] does in general not imply that X;
and Xs are isomorphic. Can we give, over an algebraically closed field in characteristic p, a
condition on the p-kernels which ensures this converse? Here are two known examples of such
a condition: consider the case that X is ordinary, or the case that X is superspecial (X is
the p-divisible group of a product of supersingular elliptic curves); in these cases the p-kernel
uniquely determines X.

(11.2)

EO In [52] we have defined a natural stratification of the moduli space of polarized abelian
varieties in positive characteristic: moduli points are in the same stratum if and only
if the corresponding p-kernels are geometrically isomorphic. Such strata are called EO-
strata.
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Fol In [54] we define in the same moduli spaces a foliation: moduli points are in the same
leaf if and only if the corresponding p-divisible groups are geometrically isomorphic; in
this way we obtain a foliation of every open Newton polygon stratum.

Fol C EO The observation X =Y = X|[p] = Y|[p] shows that any leaf in the second sense
is contained in precisely one stratum in the first sense; the main result of [60] “X is
minimal if and only if X|[p] is minimal’, shows that a stratum (in the first sense) and
a leaf (in the second sense) are equal if we are in the minimal, principally polarized
situation:

(11.3) For coprime integers m,n € Z>o we define H,,, (see [21], 5.2. Basically this is
a p-divisible group , isogenous to G, ,, defined over F, such that End(H,,, ® E) is the
maximal order in EndO(Gmm ® E. This determines H,,, up to isomorphism over E. For
a Newton polygon ¢ = > (m;,n;) we write H(¢) = [[ Hm;n,- Such a p-divisible group is
called minimal. For every Newton polygon there is up to isomorphism over any algebraically
closed field exactly one minimal p-divisible group in the isogeny class defined by that Newton

polygon.

(11.4) Theorem see [60], Theorem 1.2. Suppose X is a p-divisible group over k, and
suppose there exist a Newton polygon ¢ and an isomorphism X[p] = H(()[p] ® k. Then
X=H(C) @k

Remark. Note that we did not put any restriction a priori on the Newton polygon of X. One
of the strong aspects of the theorem is the fact that X|[p] = H(¢)[p] ® k forces N (X) = (.

(11.5) Corollary. Let [(A,p)] =z € Ay @ F,. Suppose ¢ = (H(C)[p]/ =), and v € S,.
Then Cp = S,,.

Remark. Of course X =Y = X|[p| = Y[p]. Hence, for any [(A, 1)] = = we have C; C Syp:
any central leaf is contained in a unique EO-stratum. The corollary says that in the minimal
situation these two concepts coincide. Also see (12.8).

(11.6) Here is another way of phrasing the results. Starting from a p-divisible group X we
obtain a BT group scheme:

[p] : {X | a p—divisible group}/ =, — {G|a BT1}/=; X G:=X][p|.

This map is known to be surjective; see [19], 1.7, see [52], 9.10; it is not difficult to construct
a section for this map, e.g. see [63], 2.5. It is the main theorem of [60] that the fiber of this
map over (G up to =) is precisely one p-divisible group X if G is minimal.

(11.7) Work over an algebraically closed field k& O F,. Consider BT group schemes. Can
we classify the simple ones (in the category of BTy group schemes)? In [63] we find:

G is BTi-simple <= G is indecomposable and minimal.
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12 Remarks, questions and conjectures

(12.1) Components of a Newton polygon stratum. We have seen how to compute the
dimension of a Newton polygon stratum in A, 1 ®F,. However in the non-principally polarized
case the number derived need not be the dimension of a NP-stratum. For example, the
dimension of W,, the supersingular locus, for g = 3 equals [g?/4] = 2. However W, (A,1 ®F,)
does have components of dimension 2 and of dimension 3; see [24]; for more examples see [30],
Chapter 12.

The way that Hecke-p-correspondences blow up and down is still not fully understood in
general.

(12.2) Conjecture. Let & be a symmetric Newton polygon; suppose its p-rank is f(§) = f;
this means: § = (f,0) + >_(m4,n;) + (0, f) with m; > 0 and n; > 0. Then (7) Wy(Ag1 @ Fp)
does have an irreducible component of dimension equal to g(g+1)/2—(9—f) = g(g—1)/2+ f.
Note that his is the maximal possible by [40], Th. 4.1.

Note the curious fact that moduli spaces of polarized abelian varieties with fixed Newton
polygon (or the same of polarized p-divisible groups) under Hecke correspondences can change
in dimension, as we have seen. But components of moduli spaces (deformation spaces) of
(unpolarized) p-divisible groups with fixed Newton polygon all have the same dimension, as
we have seen in (6.2), although also here Hecke correspondences blow up and down in a rather
wild way.

(12.3) Complete subvarieties. Moduli spaces of abelian varieties are non-complete (non-
compact). One can ask what the maximal dimension is of a complete subvariety. In [50],14.A
we find the conjecture that

(12.4)
a complete subvariety W of Ay @ C for g > 3 has dim(W) < g(g —1)/2,

i.e. the codimension of W in A; ® C at least g + 1 for g > 3. Also see [49], 2.3G. This
conjecture was proved to be true in 2003 by Keel and Sadun, see [28].

In positive characteristic however indeed there is a subvariety of codimension g: the locus Vj
of abelian varieties of p-rank equal to zero is complete, see [44], Theorem 1.1, and has this
codimension: Koblitz in the principally polarized case, see [40], Theorem 4.1 for the general
case.

(12.5) Conjecture (see [50], 14.B). Let g > 3 and let W C A,QF, be a complete subvariety
of dimension g(g —1)/2; then (7) the generic point of W corresponds with an abelian variety
of p-rank zero.

Suppose this conjecture holds, i.e. indeed V) would be the only complete subvariety of this

dimension; the irreducibility of Vy C Ay 1 @ F, for g > 3, see (7.4), and computations of Chow
classes by G. van der Geer, see [13], would give a new proof of (12.4)
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(12.6) Abelian varieties isogenous to a Jacobian. For more information, and for
references, see [59]. Fix some g, and choose some algebraically closed field k. Is every abelian
variety A over k isogenous with the Jacobian of a compact type algebraic curve? If g < 3
the answer is “yes”: in those cases the closed Torelli locus T, ® k equals A, ® k. If g > 4
and k = C: there does exist an abelian variety of this dimension over C not isogenous with a
Jacobian.

(12.6).1 Expectation. If g > 4 and either k = Q or k = IFTP there does exist an abelian variety
of this dimension over k not isogenous with a Jacobian.

(12.6).2 Question. Fiz g; which Newton polygon occur as the Newton polygon of a Jacobian?
Le., determine the set of all Newton polygons & such that We N (Ty @ Fp,) # 0.

(12.6).3 Expectation. There does exist g and & for which We N (Ty @ Fp,) = 0. For details
see [59].

(12.6).4 Expectation. We expect that (3,2) + (2,3) does not appear on Ts.
More generally. Let g > 5. We expect that the almost supersingular Newton polygon does not
appear on the closed Torelli locus.

(12.6).5 Conjecture. Suppose C1 and Co are non-singular complete curves whose Jacobian
has Newton polygon &1, respectively &. We conjecture there do exist P; € C; such that the
stable curve C1Up,—p, Cy admits a deformation to a smooth curve with Newton polygon &1 U&s.
Notation: &; U & is the Newton polygon obtained by taking all slopes in & and in &, and
ordering these slopes in non-decreasing order.

See [59].

(12.6).6 Question. Is it true that for any g the supersingular locus W, NTy has a component
of dimension at least g— 1 ¢ Or that all of these components have dimension equal to g —1 ?
I discussed this with Carel Faber in August 2005, and we both thought that at least one of
these questions could have a positive answer.

If the previous conjecture holds, for every g there does exist a component of the supersin-
gular locus of Ty of dimension at least g — 1.

Boundary points of a central leaf. Suppose we have Newton polygons & = &. Let
x e Cp C I/Vgo1 be a central leaf. Consider the intersection C(z)%*" N Wg%» i.e. boundary
points of C, with Newton polygon £&. We would like to have information on this intersection.
Experiments show that in general a point y € Wg need not be in the closure of any leaf in
Wgo1 . It seems that certain points in W£O2 act as kind of “attractor” for being in the boundary
of leaves in WSOI. We do not have a general conjecture to offer, but we would like to know an
answer to:

(12.7) Question. For every & = & and every x € C,, C I/Vgo1 describe C(x)% N W£02.
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When is a central leaf = EO-stratum ? We have seen that for a minimal p-divisible
group X, and ¢ = (X[p]/ =) the central leaf, in a universal deformation space, or in Ay ® I,
coincide. We think that the converse should be true:

(12.8) Conjecture. Let [(A,p)] =z € Ay ®@TF,, and let ¢ = ((A,p)/ =). We know that
Cy C S,. We conjecture that:

Cr,=8, <= A[p™] is minimal
The same conjecture can be stated for the unpolarized case.

Elementary sequences on a Newton polygon stratum. Choose a symmetric Newton
polygon £. Which elementary sequences appear on Wg? We do not see a general rule for this.
Write p¢ = ES(H (&)[p]) for the elementary sequence determined by H(§)[p].

(12.9) Conjecture.
WeNS, #0 = ¢ Co.
Here we use the notation ¢ C @9 as in [52], 14.3.
(12.10) Conjecture. Suppose x = [(A,p)] is not minimal; write ¢ = ((4, p)[p]/ =). We

conjecture that dim(S, N I(x)) > 0.
It seems that this conjecture, if true, would imply that (12.9) is true.

A question which is slightly different:

(12.11) Question. Suppose given a symmetric Newton polygon &. Determine the set of
elementary sequences ¢ such that the generic point of S, is contained in W:?i-

In [17] S. Harashita starts an interesting research partially answering this question: in that
paper we find, given ¢ the first slope of the Newton polygon whose open stratum contains the
generic point of S,. Hopefully this method can be extended in such a way that it can answer
the question just posed.
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