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Introduction
It is nice to give a talk at this event on the influential paper:

[M]  Yu. I. Manin — The theory of commutative formal groups over fields of finite
characteristic. Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963), 1-80.

As Yuri Manin explained to me:

“Formal groups” was my “habilitation” thesis:
it is the second thesis in the Russian system, earning “Doctor of science”,
whereas PhD is called “Candidate of science”.

As you will see soon, this thesis contained material to keep several mathematicians busy for
the 40 years to follow.

In the first section I will briefly discuss the contents of the paper, however not using
notations from 1963, but using notions the way we phrase these concepts now.

In the second section we will see questions, suggestions and conjectures contained in the
paper.

In the last section I will discuss some material developed in 1964 — 2005, mostly stimulated
by ideas and concepts of this paper. As you will see this answers almost all questions posed
in this thesis. This paper has been a source of inspiration.

Although I will follow material of [M] closely, I will try to use notations which are standard
now, sometimes slightly different from phrasing as used in [M].

As in [M], in this note I will use contravariant Dieudonné module theory.

An “equidimensional commutative formal group” as in [M] will be a called a “p-divisible formal
group”.

A p-divisible group called "homogeneous” in [M], see page 38 is now called “isoclinic” (all
Newton slopes are equal). Something which could have been called a “formal isogeny type”,
as in [M], Classification Theorem on page 35, and in [M] Th. 4.1 on pp. 72/73 will be encoded
by means of a Newton polygon. The Serre dual of a p-divisible group X will be denoted by



X*t. The p-divisible group denoted by Manin as Gm.n, having properties like dim(Gp, ) = m,
and dim((Gpm.n)") = n, will give rise to the slope m/(m + n) with multiplicity m + n.

All base fields will be of characteristic p. We write k for an algebraically closed field. We will
write A and B, etc. for an abelian variety, and X and Y, etc. for a p-divisible group.

1 Contents of the paper by Manin

In Chapter I Manin discusses the theory of contravariant Dieudonné modules of finite group
schemes and of formal groups over a perfect field.

In Chapter IT Manin describes isogeny classes of p-divisible groups over a perfect field and over
an algebraically closed field. Here is the main result: for a pair of coprime positive integers
m,n € Z there exists an isosimple formal group G, , of dimension m, with dim((G, ,)") = n.
Any formal p-divisible group X over k is up to isogeny a direct sum of such groups:

X ~ Z Gmi,m;

see [M] Classification Theorem on page 35. Note that for any abelian variety (for example
defined over a field of large transcendence degree over F),), its p-divisible group is isogenous
with a p-divisible group defined over the prime field.

Note that the results in this section show there is a bijection between the set of k-isogeny
classes of p-divisible groups over k and the set of Newton polygons:
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Theorem (Dieudonné and Manin), see [M], “Classification theorem ” on page 35 .

{X}) ~r = {Newton polygon}

In Chapter III Manin constructs a moduli space for all isomorphism classes of formal groups
inside one given isogeny class. The crucial notion here is the definition of a special p-divisible
group, see [M], page 38. In Th.3.5 on page 44 we see that the minimal possible degree of an
isogeny X — Xq from any p-divisible group X in the isogeny class of a special X is universally
bounded inside that isogeny class. Once this established we see that the moduli space of all
such isogenies is given as a closed set in an appropriate Grassmannian.

In Chapter IV Manin discusses Newton polygons coming from an abelian variety. The “formal
structure of an abelian variety A”, now called the Newton polygon of A, is discussed, written
as N(A):

A — Ap¥]=X — NX) = N(4).

For an abelian variety A over a finite field Manin proves that the Newton polygon of an
abelian variety is symmetric in the sense that the isogeny factors Gy, , and Gy, ,, appear with
the same multiplicity; or in other words: a slope A appears with the same multiplicity in N (A)
as the slope 1 — .



Manin then formulates his celebrated
Manin Conjecture [M], Conjecture 2 on page 76:

a Newton polygon & comes from an abelian variety < & is symmetric.

In [M] we find some evidence supporting this conjecture:

Theorem 4.2. FEvery p-divisible group appears up to isogeny as a direct summand of an
abelian variety.

Indeed, for coprime integers m > n > 0 the formal group G, is contained up to isogeny in
the p-divisible group of the Jacobian of the curve given by

m+n71

YP—y = XP

Example 1 on pp. 77/78:
Jac(Y?=X"-X+1) ~ Go1+Gia.
Example 2 on p. 78:
Jac(Y? =X+ X"+ X +1) ~ Gs1+Gig.
Example (c) on p.80, p=2:

Jac(Y? =Y = X° +aX?) ~ Gi1+Gia.

2 Questions, suggestions and conjectures by Manin formulated
in this paper

(2.1) A. The duality theorem. See. pp. 70, 72. 73, 74. From [M], page 70, especially
displays (4.2) and (4.3): for an isogeny ¢ between abelian varieties, and G = Ker(p) it should
hold that the Cartier dual GP equals the kernel of the dual isogeny, GP = Ker ().

Manin remarks, page 70, that “this variant of the duality of A. Weil apparently does not
follow from results in the existing literature.”

Judging from remarks on page 80 one could deduce that Manin was thinking of the duality
theorem for abelian varieties defined over fields.

If duality theorem holds over every field then for every abelian variety A the Newton
polygon N(A) is symmetric.

(2.2) B. The Manin conjecture. See Conjecture 2, page 76:
¢ is symmetric <  JA: N(A) =&

On page 77 we read: “I do not know how to construct abelian varieties with such properties
in the general case; the difficulty is increased by the fact that it is clearly hopeless to try and
obtain such wvarieties by reduction mod p an abelian variety of characteristic zero with the
required properties.”



(2.3) C. Weil numbers: isogeny classes. See pp. 33, 72, 80. In I.3 on page 33 Manin
focuses on the geometric Frobenius. On page 72 the eigenvalues of endomorphisms appear.
On page 80 Manin stresses “the connection between the formal structure and the characteristic
polynomial of the Frobenius endomorphisms”.

(2.4) D. Cartier theory. In [M] .5, Comments, we read: “A question arises naturally
is the study of formal groups over rings, and not merely over fields.”
This theory was worked out by Cartier, see [1], [2]. Also see the nice survey [25].

(2.5) E. Jumps, the Grothendieck conjecture. We have seen that Manin constructed
moduli spaces for isomorphism classes within one isogeny class. Commenting on this, Manin
writes, page 45: we are not able “to touch on the question of specializations in the moduli space.
The possible ‘jumps’ from one component to another under specialization seem to possess a
very complex character. With some definitions, specializations may even change the isogeny
class ...”.

(2.6) F. Structure and dimension of strata. On page 78 we read: “It can be shown
that the points of the parameter space for which the completion of the Jacobian variety corre-
sponding to the curve has a given isogeny type are constructible sets. What is the structure of
there sets and in particular their dimension 27

(2.7) G. Supersingular. On page 79 we read: “For g = 1, all elliptic curves whose
completion is isomorphic to G1,1 are isogenous among themselves ‘globally’. Is this also true
for g =2 and the case J ~ 2G11 77

This indeed is true. Define an abelian variety A over a field K D [, to be supersingular
if ARk k ~ EY9, where E is a supersingular elliptic curve. Write o for the Newton polygon
having all slopes equal to 1/2.

N(A)=0c <= A is supersingular.

Various details were proved by: Tate, FO, Deligne, Shioda; for references see [10], 1.6.

(2.8) H. Moduli spaces for isomorphism classes. We have seen in Chapter II the
construction of moduli spaces classifying isomorphisms classes inside one isogeny class.

This question was taken up again in [5], Seection 5. For one of the main ingredients, the
finiteness theorem [M], Th. 3.5 on page 44, also see: [20], 1.6.1; we see that this theorem of
Manin holds in a more general case: we need not restrict to the case of one isogeny class,
uniformity holds with respect to the height.

(2.9) I. Newton polygons of curves. We have seen that the Manin conjecture was
supported by examples involving constructions of algebraic curves. Describing strata of curves
with a given Newton polygon, see page 78: “A complete answer to this question presupposes
fairly precise information on the moduli space of curves of a given genus.”

3 Some developments in 1964 — 2005 in this field

(3.1) A. The duality theorem. While Manin was working on his thesis, another
manuscript was being prepared, see [12]. Theorem 19.1 in that reads:
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Duality theorem. Let S be a locally noetherian base scheme. Let ¢ : A — B be an isogeny
of abelian schemes over S, with kernel N = Ker(p). The exact sequence

0 - N — A 2 — 0

gives rise to an exact sequence

O—>ND—>Bt£>At—>0.

This makes some results of [M] more general. Also it shows that some aspects of the theory
are truly geometric (and it is not necessary to work over a finite field), whereas some other
results are more arithmetic in nature (e.g. the Honda-Serre-Tate theory, see below), where it
is essential to work over a finite field.

(3.2) B & C. The Manin conjecture, Weil numbers. Through the work by A.
WEeil it became clear that eigenvalues of a geometric Frobenius of a variety over a finite field
are important. For curves and abelian varieties Weil proved that such a number satisfies the
Riemann hypothesis.

Definition. Let ¢ = p®. A q-Weil number w is an algebraic integer such that for every
embedding 1 : Q(1) — C we have | (7) |= \/q.

We say that 7 and 7" are conjugated if there exists an isomorphism Q(7) = Q(#') mapping
m to 7.

Theorem (Weil). Let A be an abelian variety over K =TF,. Let (F4)* =n € End(A). Then
m is a q- Weil number. See [11], Th. 4 on page 206.

Theorem (Honda, Serre and Tate). Fiz a finite field K = F,. The assignment A — 7 = (Fa)*
induces a bijection from the set of K-isogeny classes of K-simple abelian varieties defined over

K and the set of conjugacy classes of q- Weil numbers.
See [24].

In the proof of this theorem it is necessary to construct “enough” abelian varieties. This is
done by choosing an appropriate CM-type abelian variety in characteristic zero, and deducing
from its CM-type properties of the Newton polygon of its reduction mod p, see [24], §4 and
§5. In this way the Manin conjecture was proved:

See [24], page 98. For coprime integers m > n > 0 choose the polynomial 72 + p"T +p™*". A
zero 7 of this polynomial is a g-Weil number with ¢ := p™*". By the Honda-Serre-Tate theory
this g-Weil number defines an isogeny class; properties of m show that any abelian variety A
in this isogeny class has formal group A[p™| ~ Gy, + G m. Hence the Manin Conjecture is
proved.

Note that a characteristic zero abelian variety with “the same properties as A” was not con-
structed; however choosing an appropriate abelian variety in characteristic zero, and reduction
mod p turned out to be a crucial step in the way of proving the Honda-Serre-Tate theory, and
hence of proving the Manin conjecture.



(3.3) D. Cartier theory. In [M] L5, Comments, we read: “A question arises naturally
is the study of formal groups over rings, and not merely over fields.”
This theory was worked out by Cartier, see [1], [2]. Also see the nice survey [25].

(3.4) E. Jumps, the Grothendieck conjecture. As Manin remarks, under deforma-
tions, or under specializations, the formal isogeny type may change. This aspect of the theory
turns out to be a difficult one. The main obstacle is that, although deformation theory can
be formulated quite well (in abstract terms, also in the language of “displays”) it is not easy
to read off from a given deformation the Newton polygon of the generic fiber. Grothendieck
was very well aware of this:

(3.5) A conjecture by Grothendieck. (GC) Suppose given a p-divisible group Xy over
a field K, with Newton polygon 3 := N (Xy). Suppose given a lower Newton polygon: v = 3.
Conjecture: there exist an integral scheme S over K, a closed point 0 € S(K), and a p-divisible
group X — S such that over the generic point n € S we have N'(X,) =~ (?)

See [4], page 150.

Here is a variant:

(GCpp) Suppose given a principally quasi-polarized (Xo, \g). Suppose given symmetric New-
ton polygons & = ¢ := N(Xp). Does there exist a deformation of quasi-polarized p-divisible
groups (X,\) — S such that N'(X,) =¢ ¢

Remarks. It is easy to give counterexamples to an analogous conjecture for polarized p-
divisible groups, or polarized abelian schemes, if the the polarization is not supposed to be
principal.

If (GCpp) holds, then the analogous conjecture is true for principally polarized abelian
schemes; this follows using the Serre-Tate theorem.

(GCpp) = (MCQ): If this conjecture (GCpp) holds, then the Manin conjecture follows.
Indeed, for a given symmetric Newton polygon &, we choose Ag to be a principally polarized
supersingular abelian variety. Clearly N'(Ag) = o < £. If (GCpp) does hold, we can construct
N(A,) = ¢, thus proving MC.

Note that we are free to choose the supersingular Ag; this allows us to use a weaker version
of the (analogon of the) Grothendieck conjecture. This is the way the Manin conjecture is
proved in [17]. Note that this proof does not use any information on abelian varieties in
characteristic zero: this is a pure characteristic p proof.

The conjectures GC and GCpp have been proved, see [17] and [19], see below.

(3.6) F. Structure and dimension of strata. Manin remarks that Newton polygon
strata are constructible sets, see page 45. In fact much more is true. We introduce a partial
ordering on the set of Newton polygons. We write v > ( if these Newton polygons have the
same endpoint, and no point of v is above 3, i.e. v is “below” [§. Explanation: strata defined
by « contain strata defined by [, hence for ~ is “below” 3 we feel as v being larger than .
Grothendieck proved: “Newton polygons go up under specialization”. This can be made more
precise.



For a given p-divisible group X — S and given v we define

W,(8) = {s | N () <7},

Theorem (Grothendieck-Katz).
Wy(S) < S

15 a closed subset.
See [6], Th. 2.3.1 on page 143.

We write We = We(Ag1 @ Fp). In [16], [17], [5] and [19] we find:

- a proof of (GC), (GCpp), (MC);

- a computation of dimension of Newton polygon strata in A, 1 ®F), and of Newton polygon
strata in universal deformation spaces of (quasi-polarized) p-divisible groups.

Here are some remarks on methods.

The theory of displays, as developed by Mumford, Norman and FO enables us to perform
direct computations on deformation spaces.

Define a(X) = dimg(Hom(ay,, X) for a commutative group scheme over a perfect field
K D Fp.

Theorem (see [17]). Let Xo be a p-divisible group over a field K. Let D = Def(Xy) be the
universal characteristic p deformation space. Suppose a(Xy) = 1. Let 8 := N(Xg). For any
Newton polygon v belonging to dimension d and height h = d + ¢ we write

OM) ={(z,y) € ZxZ|y<e, y<wz, (x,y) not below ~}.

For any ~ > B:
Wy(D) = Spi(K[[tmy) | (z,y) € O()])-

In particular, these strata are nonsingular, and for v = 3 we have WS(D) #£ .
The proof uses a variant of the Cayley-Hamilton theorem, as known in linear algebra.

The analogous theorem holds for principally quasi-polarized p-divisible groups with a(Xg) = 1,
for principally polarized abelian schemes a(Ag) = 1, and symmetric Newton polygons.

As there exist principally polarized supersingular abelian varieties of any dimension, we
conclude from the theorem:

Corollary (the Manin conjecture). For every prime number p, and for every symmetric
Newton polygon & there exists an abelian variety A over a finite field in characteristic p with

N(A) = ¢.

However, deformation theory of a p-divisible group Xy with a(Xp) > 1 in most cases gives
Newton polygon strata which are highly singular; direct computations seem difficult to per-
form. Therefore we first prove:

Lemma. Let Xy be a p-divisible group; there exists a deformation X — S over an integral
base, such that N'(Xo) = N (X)) and a(X,) < 1.

L.e. we can move out of a (singular) point with a(Xy) > 1 to a non-singular point with
(I(X(]) =1.



Also variants of this are proven for principally quasi-polarized p-divisible groups and for prin-
cipally polarized abelian schemes.

This difficult lemma is the crucial method in the whole technique. It uses ”Purity” as
proven in [5]. Then it uses a variant of the methods developed by Manin in [M], Chapter II,
see (2.8). A tricky computation shows that this moduli of isomorphism classes in an isosimple
isogeny class is irreducible, see [5], Theorem 5.11; this shows that the (a = 1)-points are dense
in this moduli space; hence the lemma is proved in this case. Once arrived at that point it is
merely a matter of carefully bookkeeping to prove the lemma in full generality, see [19], Th.
2.10 and Th. 4.1..

The lemma reduces the general case to the case with (a = 1). The Cayley-Hamilton method
finishes off, and gives all information we would like to have:

Theorem. The Grothendieck conjecture GC holds. The analogon GCpp holds for principal
quasi-polarized p-divisible groups, and for principally polarized abelian schemes.
See [17] and [19].

We see that the question of Manin for the structure and their dimension of Newton polygon
strata inside Ay @ Fy, is fully and satisfactorily answered. However, the “complete answer”
which Manin asks for on page 78 seems far away, see (3.7).

(3.7) I. Newton polygons of curves. Which Newton polygons show up on the moduli
space My = My @ T, of curves in characteristic p?

This is the only question in [M] which is still unanswered. It has become clear what an
answer might be, but this problem seems still wide open. There is an enormous amount of
literature on this topic. Let us mention only one detail. We expect that not all symmetric
Newton polygons appear on M,. Here is a candidate.

(3.8) Expectation;. Let g = 11, and let £ be the Newton polygon with slopes 5/11 and
6/11. We expect:

WO M, @F,) = 0.
Here Wg(Mg @ F,) :={[C] | N(Jac(C) = §)}. See [21] for details.

(3.9) Conjecturer. Let ¢',g" € Zso; let &, respectively £ be a symmetric Newton polygon
appearing on My @ I, respectively on Mg,, @ Fp,; write g = ¢’ + ¢"”. Let & be the Newton
polygon obtained by taking all slopes with their multiplicities appearing in &' and in £"'. We
conjecture that in this case £ appears on M,.

If this were true, then we would have as

Corollary,. For any prime number p, and any g € Zsq the supersingular locus W,(M,) is
non-empty; i.e. we conjecture that for any genus in every characteristic supersingular curves
do exist. This has been proved for many values of g and p (Van der Geer and Van der Vlugt,
Scholten and Zhu, Re).

Here is the essence of (3.8) and (3.9): for slopes with “large denominators” it might be that
such a Newton polygon does not show up on M,. However for a Newton polygon where all
slopes have “small denominators” we think it does show up on M,.



(3.10) Local monodromy. We describe some of the ideas contained in [7]. A p-adic
analogue of Grothendieck’s local monodromy theorem was formulated by Crew and Tsuzuki.
This concerns quasi-unipotence of the Frobenius operator for modules with a connection over
the “Robba ring” (a ring with an overconvergence property for its elements). Tsuzuki proves
that this quasi-unipotence would follow if a certain slope filtration would exist.

If the module would come from the Dieudonné module of a p-divisible group over a discrete
valuation ring, following Grothendieck we would know that the special fiber has a Newton
polygon above that of the generic fiber.

In the situation at hand there is no special fiber. But one could use the virtual presence
as a guide line for investigations. In the paper [7] the author studies two different Newton
polygons. One is the usual Dieudonné-Manin theory of slopes of Frobenius on the generic fiber,
see Section 5. A rather difficult and virtuoso construction gives the “special slopes” (which
would come from the Newton polygon of the special fiber if that would exist), see Section
4. Once these concepts are at hand, Grothendieck-comparison of special and generic Newton
polygon can be proved and several slope filtrations can be constructed over various extension
rings. The ascending special slope filtration finally leads to the required monodromy.

Here we see that the Dieudonné-Manin theory of slopes is the essential tool giving access
to this result.
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