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Synopsis 
I t  is shown t h a t  the  opera to r  p2 _ q2 has  a cont inuous  spec t rum ex tend ing  f rom --  00 

to + oo. The expansion of an  a rb i t r a ry  funct ion  wi th  respect  to the  eigenfunct ions is 
given. The  ac t ion  of the  opera tors  q and  p on the  e igenfunct ions  can be wr i t t en  ex- 
pl ic i t ly  by  means  of symbol ic  formulae.  Final ly ,  an a l t e rna t ive  me thod  for s tudy ing  
the  behaviour  of self-accelerat ing wave  packets  is given. 

1. Introduction. The interaction of a non-relativistic electron with the 
electromagnetic field gives rise to a term of the type p2 _ q2 in the Hamil- 
tonian, where p and q are two canonically conjugate variables 1)2)3)4). 
Such a term may be regarded as the Hamiltonian of a harmonic oscillator 
with a negative binding force, and hence with an imaginary frequency 
i (or --  i). Classically the equations of motion of such an 'oscillator' can 
easily be solved. It  turns out that  p(t) and q(t) contain a time factor et, so 
that  they increase exponentially with time. This corresponds to the well 
known self-accelerating solution of Lorentz' equation of motion for the 
electron 5). 

In order to deal quantummechanically with this pathological oscillator, 
one has to find a representation in which the operator p2 _ q2 is diagonal. 
If one represents the operators p and q in the usual way by  the operators 
--i(d/dx) and x acting in function space, the problem is to find a complete 
set of solutions of the eigenvalue problem 

(_ d 2 / ~ 2  _ x2) ~(x) = ~ ( x ) .  (1) 

Some time ago I have stated 1) that  this cannot be done in a proper way. 
This statement was criticised by  S t e in w e d e 12), but  reasserted by  A r n o u s 6) 
and E n z 4). On the other hand, according to the general theory of differen- 
tial operators 7), there should be a continuous spectrum from --oo to + oo, 
with a complete set of eigenfunctions. In view of this controversy it may be 
of some use to give explicit formulae for the eigenfunctions of (1) and for 

*) Temporarily at Columbia University, New York, N.Y., United States. 
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the expansion in these eigenfunctions, thus proving that  S t e i n w e d e l  
was right. 

Equation (1) is a special case of the confluent hypergeometric differential 
equation and is called Weber 's  equation 8). Its solution in terms of Weber 's  
function Dv(z ) is *) 

9(x) = D_½_½1 ~ [ +  (I + i) x]. (2) 

In section 2 we write this function in a more explicit form, and list some 
properties. In section 3 it is shown that an arbitrary square integrable 
function /(x) can be expanded with respect to the functions (2), when 2 
ranges from - -oo  to +oo .  In section 4 the explicit form of the expansion is 
given. Finally in section 5 the argument used by  A r n o u s  s) to show that  
no complete set of eigenfunctions exists, is discussed, and the explicit form 
of the operators q and p in the representation of these eigenfunctions is 
given. 

2. Solution o/ equation (1). Putt ing 9(x) = e-½*xa~v(x) one finds for ~(x) 

the equation 
V '  --  2ix~' + (4 --  i)W = O. (3) 

This equation can be solved by  the standard Laplace method 9) ; one is thus 
led in a straightforward way to tlae solution 

~p (x) ---- f ~  t -j+~¢~ e -t*ts+*tx dt. (4) 

The integration path in (4) may be turned into the half-line (0, oo e -*e) 
wh~re ~9 is an arbitrary angle between 0 and ½~. It  can then readily be 
verified that  (4) actually satisfies (3) for every real ,~. Furthermore ~v~(x) 
is an entire function of x; it tends to zero like Ix[-~ for x -+ + oo and is 
therefore not square integrable along the real axis (see appendix A). 

A second solution of (3) is ~ ( - -x ) .  (Indeed, ~vz(--x) cannot be a multiple 
of ~vz(x), because ~pz(x) tends to zero as x --* oo in the upper half of the 
complex x-plane, and ~z(--x) tends to zero in the lower half.) Accordingly, 
we have the following two solutions of (1) **) 

9a(x) = e-½*xs~oa(x) and ~;~(x) = e ~-~*~2 ~va(--x) ----- 9a(--x). (5) 

These solutions only differ by  a constant factor from the solutions (2). 
Further  details are provided in appendix A. 

3. Completeness. We shall prove the completeness of the set of functions 

( - o o  < < +oo) 

*) S t e i n w e d e l  2) ment ioned this solution and suggested tha t  it should be possible to formulate 
the corresponding expansion theorem. 

**) The bar  in ~0 serves as a distinctive mark;  complex conjugation will be indicated by  *. 
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by showing tha t  any function ](x) tha t  is square integrable, 

f_+~ I[(x)[ 2 dx < oo or ](x) e L2(--oo, +oo) ,  

can be expanded in the form 

[(x) = f + 2  {a(2) 9a(x) + b(R) q~A(x)} dR. (6) 

Obviously # * z S ] ( x ) =  g(x) is again square integrable and should satisfy 

g(x) = f + :  {a(a) ~oA(x) + b(2) ~0~(--x)} d2. (7) 

Hence it suffices to prove the existence of an expansion (7). Since g(x) is 
square integrable it has a Fourier-transform G(t) such that  

g(x) = f_+: C(t) e ux dr. 

It  is convenient to decomposeg(x) in a "positive-frequency par t"  g+(x) and 
a "negative-frequency par t"  g_(x), defined by 

g+(x) = f~o G(t) e *t~ dr, g_(x) = fo00 G(t) e*tx dr. 

We shall first prove the expansion 

g+(x) = fy00 a(R) ~0~(x) dL (8) 

Equat ion (8) may  also be written 

f~o G(t) e *tx dt = f_+~ a(R) dR f000 t -~-+~-*~ e -t'a2+a* dt, (9) 

which suggests that  one put  *) 

G(t) = e-¼tt* f + ~  a(R) t -i+tta dt. (0 < t <oo)  (10) 

Now since G(t) is square integrable on (0 < t <oo) ,  so is e itt9 G(t) = H(t). 
Hence it remains to be shown that  any function H(t)E L2(O, oo) can be 
written in the form 

H (t) = f -+2 a( R) t -~+~*~ dR. (0 < t <oo)  (11) 

This is the Mellin transformation, which associates with every H(t) e L2(O,oo) 
an a(R) E L2(--oo, +oo)  and vice versa. The reciprocal formula is **) 

a(R) = (1 /4~) /~  H(t) t-t-½*A dt. (12) 

*) The reversal  of the order of integrat ions is justif ied in appendix  B. 
**) In  order to prove this, pu t  t = e'r, so tha t  

00 + o o  

f lH(t)l a dt = f let'r H(er) 19 d*. 
0 - - 0 0  

Hence e~rH(g r) ¢ L ~ ( - -  0% + oo), so tha t  there is a Fourier  t r ans fo rm h(0~), 
+00 

et'r n(er) = f h(0J) eio~r do. (*) 
- - o o  

This equat ion  reduces to (11) on pu t t ing  0J = ½~. and th(t~t) = a(~.). The reciprocal formula to (* 
furnishes (12). 
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Thus it has been shown that  the expansion (8) is possible. The result may  
also be stated as follows. The subspace of Hilbert space spanned by the 
y~(x) (--co < 2 < + co) coincides with the space of positive-frequency 
functions, i.e., the subspace spanned by the functions e*tZ with 0 < t <oo.  
The transformation from the expansion coefficients a(2) to the function 
g+(x) is the product of a Mellin transformation to give H(2), a trivial multipli- 
cation to give G(t), and finally a Fourier transformation to give g+(x). 

It  is now easy to show that  one may  similarly write 

g_(x) = f + ~  5(4) v2a(--x ) d2. 

For, by changing x into --x, this equation reduces to an expansion of the 
type (8), because g_(--x) is a positive-frequency function: 

g-(--x)  = f°_oo G(t) e -~tx dt = f~o G(--t) e ~t~ dr. 

Thus the possibility of (7) and therefore of (6) has been proved. 

4. Expl ic i t /orm o~ the expansion. The formulae in the previous section 
also permit to write the expansion coefficients a(2), b(A) in terms of the given 
function/(x).  With the aid of (12) one obtains 

a(A) = (1/4~)  f~o t_ i_i ,  ~ ei,ts G(t) dt  = 

= (1/8z~ z) f~o t-~-t*A ei*t ~ dtf_+~ e-*tx+t*z ~/(x) dx 

= (1/8 2) f_+: l(x) dx. 

Similarly one finds 

b(2) = (1/8~ 2) f_+~ @A*(x)/(x) dx. 

The result may  be expressed symbolically by 

f + ~  {9~(x) 9~* (x') + @~(x) @~*(x')} d/t = 8~2 ~(x--x').  

This formula shows in a condensed way that  the spectrum extends from 
--co  to +co ,  that  there are two eigenfunctions for each eigenvalue 4, and 
that  these eigenfunctions constitute a complete set. In addition one has the 
symbolic formulae 

f_+g 9~*(x) ~o~,(x) dx = f_+g ~*(x)  ~,(x)  dx = 8z~2 ~(~ --  2'), 

f_+~ 9~*(x) q~,(x) dx = f_+~ @~*(x) 9~,(x) dx =0 .  

They exhibit more clearly the orthogonality and normalization of the 
9~ and @~. 

5. The operators q and p. The formula (4) for ~/~(x) may  be used to extend 
the definition of ~v~(x) to complex values 2 + i/~ of the index. For [#[< ½ 
the integral remains convergent as it stands. For/~ < -- ½ one first has to 
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turn  the integration path into a direction e -*a in the fourth quadrant. For 
/~ /> + ½ one must replace the integral by a contour integral along a loop 
surrounding the origin. I t  is then easy to prove the identities 

x~vA = - -  ½(X + i) ~PA+2* + ½~0A-2i, (13a) 

pv/~ = --ivz' = W-2*. (13b) 

These identities are merely the recursion formulae for Weber's function 8). 
In terms of ~ they read 

x ~  ---- --½(2 + i) ~0~+~, + ½9A-2,, (14a) 

p¢~ = ½(2 + i)9a+2i + ½9;~-21. (14b) 

Incidentally, with the aid of these formulae it is very easy to check that  
~0 a actually satisfies (1). 

From these equations A r n o u s  6) concluded that  the application of the 
operators q and p to ~0~ leads to new functions, q0A+2i and 9a-2,, which cannot 
be expressed in terms of ~0~ and ~ .  This is correct inasmuchas 9~+2, and ~0~-21 
are not square integrable. However, the same objection could be raised 
against the use of plane waves for the eigenfunctions of a free particle. The 
correct way to deal with this difficulty is to construct 'wave packets' that  
are square integrable. These wave packets may  still be subject to certain 
restrictions; in fact, it is evident that  the operations x and p cannot be defined 
for every function in Hilbert space. I t  suffices that  the restricted class of 
wave packets envisaged is everywhere dense in Hilbert space, i.e., that  
every square integrable function can be approximated by them (in mean) *). 

As an example we show that  the wave packet 

/(x) ---- f_+~ A (2) W-2~(x) 42 (15) 

can be expanded in the form 

l(x) = f - W  a(2') d2' (16) 

under suitable restrictions to be imposed on A (4). If A (4 + i/z) is a holo- 
morphic function in the strip 0 < tz < 2 and continuous in 0 < /~  < 2, 
then the integration path in (15) may  be shifted upwards so that  (15) 
becomes 

l(x) = f + ~  A (4 + 2/) q0a(x ) d2, (1 7) 

which is the desired expansion (16). However, two questions remain. First 
we have to establish the restriction to be imposed on A (4) in order that  while 
shifting the integration path the infinitely large values of 2 may be neglected. 

*) An example of such a class of wave packets is provided by  the  cut  off functions aA(A) employed 
in  appendix  B. They  are dense in tha t  half of the Hilbert space tha t  is spanned by the q~)L. 
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Secondly we have to show that  the A (3.) restricted in this way constitute 
an everywhere dense set. 

In order to anwer the first question we need the estimate 

9~+~t,(x) = 0(13.1) for 3.--> -{- co, - -2 • # < 0. 

which is derived in appendix C. I t  can then be shown, using a device due to 
P a l e y  and W i e n e r  10), that  the shifting of the integration path  is allowed, 
provided that  3.A(3.) is uniformly square integrable in the strip, i.e., 

f-+~ l(3. + i/~) 2 A(3. + i/x)[ 9 d3. < M, (--2 < g < 0) (18) 

the constant M not depending on/~. 
In order to answer the second question we employ the Fourier transfor- 

mation of A (3.), 

A (3.) = f_+~ ~(to) e ~ do. 
One then has 

f + ~  [(3. + i/~) ~ A(A + ig)l ~ d3. = 2~f_+~ le-~ ° ~'(w)[ z dw. 

Thus our question reduces to the question whether an arbitrary square 
integrable function ~[0(o~) can be approximated in mean by  an ~(to) such 
that  e -~° ~'(o~) is square integrable. Now ~[0 can certainly be approximated 
by a function ~[1 which is zero for large ]oJ]. This ~1 is summable in the 
Lebesgue sense, and can therefore be approximated by  a piecewise constant 
function ~z. Finally by rounding off the jumps in 9~2 one may  construct an 

whose derivative exists and is zero for large [o~[, and such that  the norm 
of ~[ -- ~0 is as small as desired. Consequently, after restricting the wave 
packets envisaged in (15) to those for which (18) holds and therefore also 
(17), one is still left with an everywhere dense set in Hilbert space. In this 
sense one may  write for the expansion coefficient a(3.) in (16) 

a(3.) = A(3. + 2i). 

• Generatising this result to the .equations (14) one may  put 

x/(x) = f_+o~A(X){--½(3. + i) 9~+9., + ½9~-2,} d3. 
+¢0 = f _ ®  - / )  A(3. --  2/) + ½A(3. + 2/)) 

p/(x) = f+o~ {½(3. --  i);A(3. --  2/) + ½A (3. + 2/)} 9~(x) d3.. 

Here A(2) is subject to the additional restriction that  A(A + i/~) must also 
be holomorphic and satisfy (18) in  the strip --.2 </x  < 2. To eliminate the 
use of wave packets one might introduce the following symbolic notation 

xgA(x) = f + X  {--½(A) --  i) 6(X' --  3. --  2/) + ½6 (3.' - -  ~ + 2/)}ga;(x) d3.'; 

pgA(x) = f+_o~ {{(A' --  i) 8(3.' --  X - -2 i )  + ½8(3.' --  A + 2/)} 9A,(x) d3.'. 
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6. Propagation o/ a wave packet. If the wave packet is given at time 
t = O, its shape at time t can be found by  applying the 'propagator'  or 
'evolution matrix '  

1___ 
Ut(x, x') = 8z~z .I-.~ {ga(x) qa*(x') + ~;~(x) ¢a*(x')} e -~tat d2. 

It  is not easy, however, to reach general conclusions concerning the evolution 
of the wave packet in this way. Recently, W i l d e r m u t h  and B a u m a n n  11) 
studied the evolution of a wave packet by  using the WKB approximation 
for the function qa(x), and showed that  it behaved in a way sim51ar to the 
classical self-accelerating solution. In this section we want to show that  the 
more important  features of the behaviour of a wave packet can be found 
directly, without explicit use of the stationary solutions ~a(x). 

The essential point is that  like for the ordinary harmonic oscillator the 
equations of motion for p and q (in Heisenberg representation) are linear: 

¢=p .  

Consequently, the expectation values <p> and <q> satisfy the same equations 

(d/dr) <p> ---- <~b> = <q>, (d/dr) <q> ---- <p>. 

They are identical with the classical equations and can be solved to give 

<P>t = <P>0 cosh t -4- <q>0 sinh t, 
<q>t = <P>o sinh t + <q>o cosh t. 

These results are rigorously valid for every choice of the initial wave packet; 
they  show that  both the average position and average momentum increase 
exponentially like e t for t ~ -4- co. 

Similarly. one finds for the second-order momenta  

(d/d 0 <pg. + q~> __ 2<Pq + qP>, 
(d/d 0 <pq + qp> = 2<p9. + qS>. 

These equations can be solved in the same way. By means of the identi ty 

<pz _ q2> = <~> _-- 2<E> 

(<E> is the average energy of the wave packet) one then obtains for the mean 
square fluctuation of q 

<qZ>t --" <q>t ~ = ~{<(P + q)~>0 --  (<P + q>0) 9"} e zt + finite terms. 

This shows that  the wave packet spreads out at the same rate at which its 
centre of gravity runs away. 

For special initial wave packets it may  happen that  <P>t and <q>t remain 
finite as t -+ + co, namely if .<p + q>0 = 0. If, moreover, the fluctuation 
of p + q vanishes in the initial wave packet, the mean square fluctuation 
of q will also remain finite. These wave packets correspond to those special 
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solutions of the classical equations which, owing to a suitable choice of the 
initial values of p and q, do not increase exponentially. 

In order that  <P>t and <¢>t remain finite as t -+ - -  co, one must  have 
<P --  q>0 = 0. Hence, for those wave packets for which <P>0 = <q>0 = 0, 
the centre of gravity does n o t r u n  away exponentially for t -+ 4- co, bu t  
remains fixed at the origin. In order that  the mean square fluctuation of 
q remains finite as t -+ --  co, the fluctuation of p --  q must  vanish at t = 0. 
There are no wave packets for which the fluctuations of both p + q and 
p - -  q vanish, because these operators do not commute. Hence every wave 
packet spreads out at least in one time direction. 

API'EI~DIX A. Proparties of ~o~(x). Comparing (4) with the integral ex- 
pression for Weber 's  function one finds 

9A(-{- x) = 2i+iaX e-t~*+t*rA F(½ + ½ iX) D-I-t ,A[~(1 + i) x], 

Hence all properties of 9~ and ~ can be found from those of the well known 
Weber  function s). However, we shall here derive the asymptotic  ex- 
pansions more directly by  applying the method of stat ionary phase 19.) to 
the integral (4), 

First let x tend to --  co. For  negative X there is no t for which the exponent 
of e is stationary. Hence there remains only one critical point, the end-point 
t = 0 of the integration interval. The contribution of this critical point can 
be computed b y  putt ing Ix] t = .r, 

= IxI-H*  .r-Ha  e-a* exp(--i~-~./4x z) dr, 

and expanding exp (--i-rZ]4xZ): 

_ + ½ix) + 

Now let x tend to + co. Again the origin gives a contribution, which can 
be computed in the same' way  to be 

x-4-t~ {F(½ + ½iX) ei~ra(t~4*~, + O(x-9.)), (!9) 

In addition there is now a contribution from the neighbourhood of the 
stationary point ts = 2x, viz., 

ts-4+~aA e-t*tS'+tts, { f  +~  e.-t*(t-tsm dt + 0(ts-X)} = 

= + (20) 

Collecting results one has for x -+ + co 

~;~(x) ~ e -i~+i*;~ F(½ + ½iX)'x -}-½a~ e-t~*~; 

9A(x) ,~  e t*ra-t*rA/'(½ + ½iX) x -}-}aA e -}*x' -4- 

+ e-t*f 2t + }aA ~/~ x--t+HA ett~ I. 

This shows that  Ix} ~A(x)] tends to a finite limit so that  #A cannot be 
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square integrable. Nor can 9~ be square integrable, because 9~(x) = @a(--x). 
Incidentally, a second pair of solutions of (1) is obtained by taking the 

complex conjugates of (5) 

= = 

By comparing the asymptotic expansions one finds 

q~* = ~-~ 2 - 4 - ~  1"(½ --  ½iX) {e -~'~ q~ + ieV~ @~}. 

APPENDIX B. Justi]ication o] equation (10). The work in section 3 is 
rigorous but  for the interchange of integrations between (9) and (10). In 
order to justify this, we start  from a given square integrable function ](x) 
and define g(x), G(t), and H(t) as in section 3. Finally a(X) may  be determined 
from (11), so that  (10) is an identity. In order to prove (9) and hence (8) it 
remains to show the validity of 

fo [°°1 e -tu~+~t~ d t f [ ~  ~ a(X)t -½+t*~ dX = f[t_+~] a(X) dX f~" t-~+~*~ e-¼~t~+~t~ dr. (21) 

The limits indicated by [4- co] are limits in mean. 
In order to render the infinite range of X harmless, we define a cut off 

function aa(X ) by putting 

aa(X) = a(X) for IX[ < A, 
aa(X ) = 0 for IXl > A. 

Furthermore, we put 

Ga(t ) = e-i*t' HA(t) = e-~tt' f_+~ aa(X)t-t+~*A dL (22) 

Clearly when A tends to infinity, aa(X ) tends to a(X) in mean: 

lim/_+2 Ix(X) -- aa(X)iz dX = 0 as A -+ co. 

Because the transformation (22) preserves the norm, one also has 

limf_+2 IG(t) -- Ga(t)l z dt == 0 as A->co. 

Consequently the Fourier transform of Ga(t ) - that  is the left-hand side of 
(21) - tends to the Fourier transform g+(x) of G(t). Hence we only have to 
prove that  the integrations in (21) may  be interchanged for the cut off wave 
packet aa(X ) instead of for a(X). 

The interchange of integrations in (21) is certainly allowed if not only the 
X-intervM., but  also the t-interval is cut off by some large constant T (ref. 13), 
p. 390). 

f~ '  e-i*t'+**:~ d t f+a a aa(X ) t-~+t*a dX = f_a a aa(X ) dXf0 ~ t -~+~*~ e -i**'+**~ dt. (23) 

Hence it has to be shown that  for T --. co the right-hand side of (23) tends 
in mean to the right-hand side of (21) (with aa(X ) instead of a(X)), or that  

f + ~  ]f__a a aa(~t ) d,Xf~," t -~+~ e -~u'+*t~ dt[9. dx (24) 

tends to zero for T --* co. 
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First decompose the integration on x into two integrals, I and II,  covering 
tixe intervals (--oo, X) and (X,+co)  respectively. For the first integral the 
inequality of Schwarz yields 

I < f_A A laa(2)12 d2f_x~ dxf2A [ f~  t -++t<~ e -++t*-~t+ dtl 9" d2. (25) 

Here the t-integral becomes by partial integration (supposing T > 2X) 

f ~  - -  _ _  

t-~+t+h 

- -  ½it + ix 

T-++t~ 
e-t ~Pm+~'x + 

½iT-- ix 
oo d t -½+++h \ 

+ ~ e-"t'+U= ( d[ ½it _ ix /  (26) 

An .upper bound for the absolute value is 

T - +  r °° t -s/2 
2½-V_ + ½1xlj+ +i - - x  dt 

½ - x   og /r_v,N Vr  " 

This is square integrable in (--co, X) and vanishes uniformly for T ~ co 
with fixed X. 

The integral II  must again be decomposed into two parts, because the 
#integral is asymptotically equal to (20), and hence not square integrable. 
The first part takes out the dangerous term, so that  the second part is again 
square integrable. To this end we put for the t-integral in (24) 

(2x)-++i+A f~' e-++t"++t= d~ + f~' {t.-l'+l'+,x __ (2x)-t~'+,x} e-i+t*-~t= dr. (27) 

Inserting the first term in I I  one has -- 

f...a a aa(3.) (2x)-i+i"++~ d2. f~' e -+`t'+`t= dr. 

The first factor is a square integrable function of x, whereas the second 
factor is bounded for all x and T. Hence the square integral of this term 
between X and + co tends to zero as X goes to +co, uniformly with 
respect to T. 

The second term of (27) becomes by partial iri~e"gration similar to (26) 

- -,- ( a 
½iT -- ix + \ - ~  ~ - ~  ~x ] dr. (28) 

The first term can be shown in an elementary fashion to be in absolute value 
less than 

I-- ½ + ½i2l T - t -  (2x)-+ 211 + iAI < 
-- ½ ½T -- x ,x/T(~/T + V~x) V2x" 

Hence its square can be integrated from X to + oo and the result vanishes 
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as T goes to. + c o ,  The second term in (28) is in absolute value less than 

, 

< 211 -- i21 • l1 --  ½i21 . d~- t - -  2x dt 

211 + iAI. I1 + ½iAI 
V T ( v ' T  + V2x) V f x  

This is again square integrable and vanishes for T -+ co. 
Finally it must be remarked that,  on inserting for the t-integral in II  the 

three terms into which we have decomposed it according to (27) and (28), 
there appear not only the squares of these terms - which were shown to 
vanish when T tends to infinity - bu t  in addition the cross products. These, 
however, cannot be larger than the squared terms, owing to Schwarz' 
inequality, and must  therefore also vanish in the limit. This completes the 
proof of the expansion derived in section 3. 

APPENDIX C. Behaviour o[ ~vA+,~ ]or large 2. In section 5 an estimate was 
needed of ~o~+~(x) for 2 ~ + c o ,  while x a n d - ~ - ~ o n ~ t a ~ : " ° L e t ~ ± h e  
interval of integration in (4) be decomposed into (0, a) and (a, co). The first 
part  yields 

. 
a½-t t~  

lY0 ~ t -H*~-*~ e - -~ '÷"~  dtl < ½----~. 
½ 

The second part  becomes by  Partial integration 

IXif~* t-÷+t~-t~, e~.** de-ht'[ < 2a -÷- t t  ' 

+ 2lxl f.** t-a--'t~' dt + I -  3 + i2 - #lf~* t -÷- t t ,  dr. 

The fight-hand side is clearly of order 121, so that  one has 

• ~oA+,~(x) = 0(121), (29) 

uniformly for I~1 < 1 - ~ < 1. 
J X A similar calculation leads to the same result for ~p A+*~,(). Hence, from 

(13b) follows that  Wa+,~,(x) is also of order 121 in the strip --  3 + ~ < / z  < -- 1 --  c~. 
In addition, it caneas i ly  be shown that  in the gap - -1 - -6  < # < -- 1 + c~ 
the increase of ~pA+,~ (x) is at most exponentially; according to the theorem of 
P h r a g m 6 n  and L i n d e l S f  18) it can therefore be asserted that  (29) holds 
true uniformly for --  3 + c~ < # < 1 -- & This implies the result needed 
in section 5. 
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• R E C T I F I C A T I O N  

ON THE NOISE GENERATED 
BY DIFFUSION MECHANISMS 

by K. M. VAN VLIET and A. 'VAN DER ZIEL 

In the paper quoted (Physica, 24 (1958) 415) equation (33) should be 
altered as follows: 

D(O9/i~/)e~ = W" sg; DCO~/Oz)±c = ~ s9 (33) 

In (35) and (36) D2 should be replaced by D everywhere. The line below 
eq. (37) should read: By multiplication with e2Eg(#. + #~)~/4A 2 one obtains 
the current noise S~(/). 


