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Synopsis 
The  m e t h o d  of s t a t i o n a r y  p h a s e  is d iscussed a n d  reasons  are  g iven  w h y  i t  is o f ten  

p re fe rab le  to  t h e  m e t h o d  of s t eepes t  descent ,  in  sp i te  of t h e  m a t h e m a t i c i a n s '  p a r t i a l i t y  
to  t h e  l a t t e r .  T h e  m e t h o d  of Fresne l  zones is c o m p a r e d  w i t h  t he  m e t h o d  of s t a t i o n a r y  
p h a s e  a n d  is s h o w n  to  be  a p r i m i t i v e  vers ion  of it. The  pu rpose  of t he  zones is to  
r e d u c e ' t h e  doub le  in t eg ra l  to  a single in t eg ra l ;  t h i s  s ame  ar t i f ice  under l ies  t h e  va r ious  
a t t e m p t s  to  p r o v e  t he  m e t h o d  of s t a t i o n a r y  p h a s e  for doub le  in tegrals .  

I. Introduction. The method of Z e r i l i k e  and N i j b o e r  1) for calculating 
the diffraction pattern in the presence of optical aberrations, is based on 
an expansion in powers of the aberration. Hence it is suitable when the 
distance of the actual wave front from the ideal spherical form is not more 
than a few wave lengths. This is, of course, the case in which the influence 
of diffraction on the image formation is of most interest from a practical 
point of view. In the opposite case of large aberration, the image of a point 
source can be found to first approximation by means of geometrical optics. 
However, N i e n h u i s '  experiments with large aberrations 8) exhibit a variety 
of detailed structures in the image, which cannot be fully explained in this 
way. It  is therefore not surprising that in 1947 the question arose of how to 
calculate the influence of diffraction when the aberration is large compared 
to the wave length. 

Mathematically, the problem is the following. Huygens'  principle states 
that the light amplitude u in a point Q of the image space is a sum of contri- 
butions from all points in the exit pupil of the optical system. According to 
K i r c h h o f f ,  this can be formulated as an integral, 3) 

u(Q) = k f f g(x, y)e-*kf(~,v, dxdy. (I) 
f 

Here x and y are coordinates in the exit pupil, and g(x, y) measures the ampli- 
tude in each point (x, y) of the exit pupil.**) k[(x, y) is the phase with which 

*) Temporarily at Columbia University, New York, United States. 
**) Actually g(x, y) contains two more factors, but they are practically constant in many cases, 

and at any rate irrelevant for the the present discussion. 
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a light ray from (x, y) arrives in Q. Alternatively one may  say that k is the wave 
number, and/ (x ,  y) the distance between Q and the.projection of (x, y) on 
some fixed wave front, for instance the one through the centre of the exit 
pupil. Our problem is to evaluate this integral for large aberrations, or what 
amounts to the same, for large k. 

2. The method o~ stationary phase (MSP). The appropriate mathematical 
method for dealing with integrals involving rapidly varying phase factors 
is the method of stationary phase 4) 5). This method dates back to Stokes 
and has been used by  Kelvin to derive the concept of group velocity 4). It  
is a valuable tool in many different fields of physics, wherever one has to do 
with' a superposition of a continuous distribution of coherent waves 6). 

The basic idea is that for large k the exponential varies so rapidly that the 
contributions from the various elements dxdy to the integral almost comple- 
tely cancel each other, so that  the net result i~ extremely small. This can- 
cellation, however, will not be effective if / does not vary with x and y; 
therefore the contribution from the vicinity of any point where / is stationary 
i.e.~ 

= = o, (2) 

must be calculated separately. It  turns out that  these are the main contri- 
butions to the integral. Such points are called "critical points of the first 
kind". In addition, the cancellation may also become ineffective in the neigh- 
bourhood of the limits of integration, which gives rise to critical points of the 
second and third kinds. Their contributions are of a higher order in 1/k and 
represent the diffraction at the edge of the aperture 7). 

Until recently, mathematicians were little interested in the method 
of stationary phase s). The reason is that  by  shifting the integration path 
into the complex plane, one can (at least for integrals with one variable) 
make the exponent real, so that  the method of steepest descent ("Sattel- 
punktmethode",  reference (4), p. 235) applies. It  is then much easier to 
prove that the result is actually an asymptotic series for large k (in the sense 
of P o i n c a r 6  9)). Yet I feel that  it is incorrect to regard the method of 
stationary phase as an illegitimate child of the steepest descent, for the 
following reasons. 

(i) Even in simple examples the construction of the correct path of 
steepest descent often requires a cumbersome investigation of the analytic 
behavior of the exponent /, whereas the MSP only takes a few lines. It is 
true that  the latter gives less genera] results, but  usually it gives just those 
results in which the physicist is interested. 

(ii) The method of steepest descent cannot readily be applied to integrals 
between finite limits, unless these limits happen to be essential singularities 
of the integrand. In mathematics this is usually the case, for instance, when 
the integral arises from the solution of a differential equation. But in inte- 
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grals arising from physical problems the limits are t~ften arbitrary numbers. 
(iii) The generalization of the method of steepest descent to multiple 

integrals seems hardly practicable. 
(iv) There is in general no justification to assume of a function arising in 

a physical problem (such as in our case the aberration function) that it has 
an analytic continuation. It is true that one always approximates such 
functions by analytical expressions, but the behaviour of these approxi- 
mating functions in the complex plane depends strongly on the special form 
of the approximation one chooses. Hence no direct physical meaning can be 
attributed to the contributions of the various saddle points in the complex 
plane. On the other hand, when using the MSP the contributions from the 
different critical points have an immediate physical interpretation *). This 
will be made clear in the following section by showing that the MSP, when 
applied to the Kirchhoff integral, can be regarded as an improved version 
of the well known "method of Fresnel zones". 

3. Comparison with the method o/Fresnel  zones ( M F Z ) .  Since/(x, y) is the 
distance between the fixed point Q and the point (x, y), the condition (2) 
tells that each critical point  of the first kind is the foot of a normal through 
Q on the wave front. These are just the points from which a geometrical 
ray passes through Q. In the neighbourhood of such a critical point, (Xo, Y0) 
say, / can be expanded 

A~ =--/(xo + ~, yo + n) -- /(xo,  yo) = a~2 + 2b~  + c~2 + . . . .  

The following possibilities must be distinguished. 
(a) / has a maximum in (xo, Y0), A/ is negative definite; 
(b) has a minimum in (xo,)'0), A~ is positive definite; 
(c) A / t a k e s  both positive and negative values, / is only stationary; 
(d) A/ is  semi-definite, there is one direction ~/'7 along which / does not 

vary. 
For each of these cases we shall compare the MFZ with the MSP. 

(a) The method of stationary l~hase yields for the contribution of a point 
(x0, Y0) of this type, in lowest approximation 7), 

kgo e -i~'/° f f -+~ e -ik('~°'+ 2~n +on2) d~ d~j 

= go e -i~/° e½~ri z~/~/ab --  c 2 (3) 

The first factor is the amplitude in the point xo, Y0, the second factor is the 
phase lag due to the distance from (xo, Y0) to Q. The phase factor e ½~l is 
connected with 'the fact that the rays coming from the neighbourhood of 
(xo, Y0) have a focus between Q and the wave front. The remaining amplitude 

*) I t  should  be emphas ized ,  however ,  t h a t  the MSP only  applies when I is real.  This  r e m a r k  
removes  the a rb i t ra r iness  in the resul t  which E e k a r t  6) found. In dispers ion theory  complex  ex-  
ponen t s  do occur, so t h a t  one is forced to shi f t  the in t eg ra t ion  path. F o r t u n a t e l y  in this  case the 
causa l i t y  pr inc ip le  gua ran tees  tha t  an ana ly t i c  con t inua t ion  exis ts !  



440 N. G. VAN KAMPEN 

factor  measures the area on the wave front  tha t  is effective in contr ibut ing 
to the ampli tude in Q. 

According to the method  of F r e s n e l  zones 10) one would of course write 
the first and second factor, and also the th i rd  one, a l though this "anoma-  
lous" phase has been the subject of some discussion 11). Ins tead of the last 
factor  one would calculate the area A of the first Fresnel zone, tha t  is, the 
area of the ellipse (fig. 1) 

A /  =-- a~ 2 + 2 b ~  + c~ 2 = - ½4; 

which is 
A = { z ~ ( a b  - -  c2) --~. (4) 

Ode then  has to take  half the contr ibut ion of this first zone, which leads to 
the result (3) with a spurious factor ¼4. Thus the correct ampli tude is 

• . ~  

F ig .  1 

r? 

Fig .  2 

obtained by  taking the result of the MFZ and adding the factor 4//t = 2 k / ~ .  

(b) This case is identical with (a), but  for the anomalous phase factor, which 
is now e -½'~*. To this category belongs the propagation of light in free space ; 
one then has to take for the wave front a sphere around the light source 12). 

(c) The MSP gives almost the same expression (3); one only has to write 
lab - -  c2] under  the square root, because the determinant  is now negative, 
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and moreover the phase factor #,u has to be omitted. F o k k e r  la) suggested 
the application of the method of Fresnel zones to this case, but as the 
Fresnel zones are hyperbolic and extend to infinity, it is not possible to 
guess the factor that  measures the effective area on the wave front. The 
MSP, however, gives the following recipe. Take the hyperbolas given by  

A I  = -4- ½,;~; 
then (4) is the area of the inscribed ellipse (fig. 2), supposing that the absolute 
value of the square root is taken. Thus the light amplitude arising from a 
critical point of the first kind with hyperbolic Fresnel zones may be 
written 

(2k/z~) go e -~kJ% • ½A. 

(d) There is a "ridge" on the wave front, i.e., a curve on which/(x, y) 
is constant and greater (say) than in the neighbourhood of the curve (fig. 3). 

Fig. 3 

All points on the curve have stationary phase. Let s measure the length 
along the curve and } the distance from it, then 

/ (x,  y) = / l ( s )  - ~%(s )  + . . . .  

The contribution of this stationary curve to (1) is 

k f gl(s) e -ikh(s) ds f -+~ e ¢k1~(8)~ d~ = 

= ½ k f g l ( s )  e -ikhls) B(s) ds . e t'~. 

Here B(s) -~ ~/2~//2(s) is the breadth of the first Fresnel zone, i.e., the strip 
along the curve in which the variation of / is less than ½~t. From the MFZ one 
would find half the integral, so that the correct result differs from it by an 
additional factor k. 

A critical point of the second kind is a point on the edge of the exit pupil 
for which / is stationary along the edge : ~//Os = O. These points give rise to 
"diffraction rays", which were first derived from the Kirchhoff integral by  
R u b i n o w i c z  14). In the neighbourhood of such a point (x0, Yo) one has 

:, A / - ~  a~ z + b~. 
i 

There are two possibilities to be distinguished, according as the parabolas 
of constant A/ look like in fig. 4 or like in fig. 5 (a and b of the same or the 
opposite sign respectively). 

Physica XXIV 
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Fig. 4 

(e) In the first case (fig. 4) the MSP gives for the cont r ibut ion  of (Xo, Y0) 

kgo e-ikt° f_+~ e - ik"~  d~ f ~  ° e -ikb'7 d~7 = 

=- kgo e -ik:° y ~ e :F J'~': 

i 

1 

k lal ¢kb" (5) 

The area of the f i rs t  Fresnel zone is A = ½ ~ ' ]  ;t 3/~- lal-  Ibl- . Thus (5) may 
be wri t ten  

E3k/2~i] go e -ikl° • ½A. e :F t,~i, (6) 

exhibi t ing the factor  t ha t  has to be added to the MFZ to obtain the exact  
result. 

--'.- ......... -2--" 

Fig. 5 

([) The case of fig. 5 need not  be computed  separately,  because the 
contr ibut ion  of this critical point  must  be just  the opposite of the wave tha t  
is suppressed b y  the diaphragm. Hence the contr ibut ion  of such a point is 
(6) with a minus sign, where A is now the area of the first "h idden  Fresnel 
zone".  

4. Discussion.  In  the preceding section it was explici t ly  shown for a 
number  of examples  tha t  the MFZ gives the same result as the first order  
MSP. The only  factor  which the MFZ is unable to determine depends on the 
wave length and the na ture  of the critical point,  bu t  not  on the values of 
the coefficients i n / ;  these are taken  care of in the factor  A. Wha t  is the 
general reason why  these coefficients always occur in a combinat ion tha t  
can be in te rpre ted  as the area of a Fresnel zone ? 

To answer this question, we consider the cont r ibut ion  from the neighbour-  
hood of one par t icular  critical point  (x0, y0). Let  G(v) dv be the area between 
the curves A/(x ,  y) = v and  A/(x ,  y) = v + dv. Suppose tha t  for v --+ 0 the 
funct ion G(v) behaves like Cv~, where p is a number  depending on the na tu re  
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of the singularity.  For example, p = 0 in case (e) and p = ½ in case (e). The 
area of the first Fresnel zone is 

A =f~ '~  G ( v ) d v  =. C(p + 1) -1 (½2)~ +1. (7) 

On the other hand, using G(v) one can write the contribution to (1) from 
the neighbourhood of (xo, Y0) as a single integral:  

u =- kgo e-il~l°f~ G(v) e -':kv dv. 

The MSP for single integrals can now be applied, giving for the contribution 
at v = 0 to first approximation 

kgo e -~kf° C f ~  v~ e -u~v dv ~-~ kgo e -~ki° CP(p  + l) / ( ik)P +1 

On account of (7) this can be writ ten in the form 

E2k(z~i)-~-i T'(p + 2)1 go e -u~l° • ½A. 

The last two factors consti tute the expression one would find from the MFZ. 
The factor i -:°-1 in the brackets is the anomalous phase, and the other 
quanti t ies in [ l are the factor tha t  cannot be found from the MFZ. 

In the above argument  the investigation of a critical point of a double 
integral has been reduced to applying the MSP to a single integral. This 
artifice has been used already by  K i r c h h o f f  1~) in the case of a spherical 
wave front (in which case there is just one critical point of the first kind). 
More generally, it provides a means for proving the correctness of the MSP 
for double integrals *), because the MSP for single integrals is much easier to 
handle and has been thoroughly  studied by V a n  d e r  C o r p u t  15). Several 
proofs along this line have been published 16) **) However, there is one 
difficulty. 

The artifice does not apply to critical points of "hyperbolic type" ,  such 
as case (c), fig. 2. Here the Fresnel zones are not confined to the vicinity 
of the critical point, but  extend far into the exit pupil. Hence one must  first 
isolate the critical point (by means of a neutral isator 15)), which makes it 
possible to define G(v); it then turns out tha t  G(v) has a logarithmic singu- 
lari ty at v = 0. This can again be handled by applying the MSP for single 
integrals, if one deals with the positive and negative values of v separately. 
Recent ly  a proof along these lines was obtained by  B e r g h ui s 17). However by 
separating the positive and negative values of v one disregards the fact tha t  
they  largely compensate each other, so tha t  the results are not as simple as 

• ) I t  is e a sy  t o ' s h o w  t h a t  the  MSP gives rise to a p o w e r  series in l/k, b u t  w h a t  has  to be p r o v e d  
is t h a t  th i s  series is an  a s y m p t o t i c  e x p a n s i o n  in the  sence of Po inca r6 .  Of course ,  one shou ld  no t  
confuse  a heur i s t ic  d e r i v a t i o n  wi th  a proof . tg) .  

• *) The obv ious  a p p r o a c h  would  be to t r ea t  (1/ as a r e p e a t e d  in t eg ra l  a n d  to a p p l y  the  MSP 
to the  .r a n d  3' i n t e g r a t i o n s  s e p a r a t e l y .  This,  however ,  l eads  to diff icul t ies ,  because  the f i rs t  s t ep  gives  
rise to zeros in the d e n o m i n a t o r .  These  diff icul t ies  can  be p a r t l y  ove rcome  in the  lowest  o r d e r  20), 
b u t  p r o b a b l y  llot ill the  h igher  t e r m s  of the a s y m p t o t i c  expans ion .  
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might be desired. A straightforward proof for critical points of this type does 
not yet  exist to my  knowledge. 

In addition to the simple examples of critical points considered here, there 
are many  more complicated types, which may  be regarded as arising from 
the coincidence of two or more simple critical points. Such a coincidence 
gives rise to a discontinuity in the asymptotic expansion ("Stokes' pheno- 
menon"), which shows up physically as a focus or a caustic, or as the boundary 
of the geometrical shadow. The problem of finding asymptotic expansions 
that  are valid in the vicinity of such singularities has been studied by 
several authors 14) 7) is), but will not be discussed here. 

2¢tote added in proo/. R e c e n t l y  a n o t h e r  t r e a t m e n t  of t he  m e t h o d  of s t a t i o n a r y  
phase  was  g iven  by  D. S. J o n e s  and  M. K l i n e  [Journ .  m a t h .  Phys .  38 (1958) 1]. 
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