DOUBLE-EXCHANGE CONTRIBUTIONS TO THE FIRST-ORDER INTERACTION ENERGY BETWEEN CLOSED-SHELL MOLECULES

Jeanne G.C.M. VAN DUIJNEVELDT-VAN DE RIJDT and Frans B. VAN DUIJNEVELDT
Department of Theoretical Organic Chemistry, University of Utrecht, Utrecht, The Netherlands

Received 31 May 1972
Revised manuscript received 21 August 1972

Abstract

Explicit formulas are presented for the double-exchange first-order interaction energy of two closed-shell molecules. Calculations on He_{2} show that the double-exchange terms contribute significantly for $R<3.5 \mathrm{au}$.

For a system consisting of two closed-shell molecules R and T with N^{R} and N^{T} electrons, respectively, the total hamiltonian may be written as
$H=H^{0}+U=H^{\mathrm{R}}+H^{\mathrm{T}}+U$,
where U collects the coulombic interactions between the electrons and nuclei of R on the one hand and those of T on the other hand. A good trial function for the interacting system in its ground state is the antisymmetrized product $A \phi^{0}=A \psi^{R} \psi^{T}$ where ψ^{R} and ψ^{T} are the ground-state eigenfunctions of H^{R} and H^{T}, respectively. In symmetry-adapted perturbation theory the corresponding first-order interaction energy is given by [1]
$\widetilde{U}=\left\langle\mathrm{A} \phi^{0}\right| U\left|\phi^{0}\right\rangle /\left\langle\phi^{0} \mid \phi^{0}\right\rangle$.
In the usual case where only approximations $\phi^{\mathrm{R}}, \phi^{\mathrm{T}}$ to the exact eigenfunctions $\psi^{\mathrm{R}}, \psi^{\mathrm{T}}$ are available one may still use this expression to estimate a first-order energy.

Following Murrell et al. [2] \widetilde{U} may be decomposed into the classical electrostatic energy, $E_{C}=\left\langle\phi^{0}\right| U\left|\dot{\phi}^{0}\right\rangle$, and a remainder called the exchange energy by expanding the antisymmetrizer A. One may write
$A=N\left(P_{0}-P_{1}+P_{2} \ldots\right)$,
where N is a numerical constant, P_{0} is the identity operator and P_{1}, P_{2}, etc. are sums of operators exchanging one, two, etc. pairs of electrons between the interacting molecules. The P_{0} term gives rise to E_{C},
and most of the short-range repulsion energy comes from the P_{1} terms.

In refs. [2,3] it was argued that the P_{1} terms in (1) are of the order S^{2}, the P_{2} terms of the order S^{4}, etc. (where S is a typical overlap integral between occupied orbitals on R and T) and hence if the intermolecular overlap is small then terms beyond those arising from P_{1} may be neglected. Consequently, explicit formulas for \widetilde{U} have so far only been given up to terms of the order $S^{2}[4,5]$. However, in practice the P_{0} and P_{1} terms can be of the same magnitude (the latter in fact dominate \widetilde{U} at short distances) and while the P_{2} terms are an order of S^{2} smaller than the P_{1} terms it is not clear under what circumstances they are truly negligible. The purpose of this letter is to provide explicit formulas for the P_{2} terms in terms of single-determinant $M O$ wavefunctions for the separate molecules. We also present some preliminary results for the He_{2} interaction*.

Carrying through the expansion of A in (1) we find

[^0]\[

$$
\begin{align*}
\widetilde{U} & =\frac{\left\langle\left(1-P_{1}+P_{2} \ldots\right) \phi^{0}\right| U\left|\phi^{0}\right\rangle}{\left\langle\left(1-P_{1}+P_{2} \ldots\right) \phi^{0} \mid \phi^{0}\right\rangle} \\
& =\frac{E_{C}-\left\langle P_{1} \phi^{0}\right| U\left|\phi^{0}\right\rangle+\left\langle P_{2} \phi^{0}\right| U\left|\phi^{0}\right\rangle-\ldots}{1-\left\langle P_{1} \phi^{0} \mid \phi^{0}\right\rangle+\left\langle P_{2} \phi^{0} \mid \phi^{0}\right\rangle-\ldots} \\
& =E_{C}+\frac{-\left\langle P_{1} \phi^{0}\right| U-E_{C}\left|\phi^{0}\right\rangle+\left\langle P_{2} \phi^{0}\right| U-E_{C}\left|\phi^{0}\right\rangle-\ldots}{1-\left\langle P_{1} \phi^{0} \mid \phi^{0}\right\rangle+\left\langle P_{2} \phi^{0} \mid \phi^{0}\right\rangle-\ldots} \\
& \equiv E_{C}+\frac{X_{1}+X_{2}+\ldots}{1+S_{1}+S_{2}+\ldots} \tag{3}
\end{align*}
$$
\]

In the next step we use the explicit form of P_{1} and P_{2}, viz.,
$P_{1}=\sum_{i} \sum_{k} P_{i k}$ and $P_{2}=\sum_{i<j} \sum_{k<l} \sum_{i k} P_{i k} P_{j l}$,
where i and j are electrons on R and k and l are electrons on T. Inserting $\phi^{0}=\phi^{\mathrm{R}} \phi^{\mathrm{T}}$, with $\phi^{\mathrm{R}}=$ $\left|\bar{r} \bar{r}^{\prime} \bar{r}^{\prime} r^{\prime \prime} \bar{r}^{\prime \prime} \ldots\right|$ and $\phi^{\mathrm{T}}=\left|t \bar{t} t^{\prime} \bar{t}^{\prime} t^{\prime \prime} \bar{t}^{\prime \prime} ..\right|$ one finds after some tedious algebra (a detailed derivation of S_{1} and X_{1} may be found in [10]; the derivation of S_{2} and X_{2} is similar but more involved):
$s_{1}=-\left\langle P_{1} \phi^{0} \mid \phi^{0}\right\rangle=-2 \sum_{t} \sum_{r} s_{r t}^{2}$,

$$
\begin{align*}
S_{2} & =\left\langle P_{2} \phi^{0} \mid \phi^{0}\right\rangle \\
& =\sum_{t^{\prime}} \sum_{r^{\prime}} \sum_{t} \sum_{r} s_{r^{\prime} t^{\prime}} S_{r t}\left\{2 S_{r^{\prime} t} s_{r t}-S_{r t^{\prime}} S_{r^{\prime} t}\right\}, \tag{5}
\end{align*}
$$

$=-2 \sum_{t} \sum_{r}\left\{\left(S_{r t} V^{\mathrm{T}} \mathrm{i} \rho_{r t}^{\mathrm{R}}\right)+\left(\rho_{r t}^{\mathrm{T}} \mid S_{r t} V^{\mathrm{R}}\right)+\left(\rho_{r t}^{\mathrm{T}} \mid \rho_{r t}^{\mathrm{R}}\right)\right\}$,
$X_{2}=\left\langle P_{2} \phi^{0}\right| U-E_{C}\left|\phi^{0}\right\rangle=2 \sum_{t^{\prime}} \sum_{r^{\prime}} \sum_{t} \sum_{r}\left\{S_{r^{\prime} t^{\prime}} S_{r t}\right.$
$\times\left[\left\langle V^{\mathrm{T}} \mid 2 \rho_{r^{\prime} t^{\prime}}^{\mathrm{R}} S_{r t}-\rho_{r^{\prime} t}^{\mathrm{R}} S_{r t}\right\rangle+\left\langle V^{\mathrm{R}} \mid 2 \rho_{r^{\prime} t^{\prime}}^{\mathrm{T}} S_{r t}-\rho_{r^{\prime} t}^{\mathrm{T}} S_{r t^{\prime}}\right\rangle\right]$
$\left.+\left\langle S_{r t} \rho_{r^{\prime} t^{\prime}}^{\mathrm{R}}+S_{r^{\prime} t^{\prime}} \rho_{r t}^{\mathrm{R}} \mid 2 S_{r t} \rho_{r^{\prime} t}^{\mathrm{T}}-\rho_{r^{\prime} t}^{\mathrm{T}} S_{r t^{\prime}}\right\rangle\right\}$.

In these expressions the summations over r and r^{\prime} run over all occupied space orbitals of R. Similarly, the summations over t and t^{\prime} are over the occupied space orbitals of T. The quantities V^{T} and V^{R} represent the potential energy of an electron in the field of T and R, respectively:

$$
\begin{align*}
& V^{\mathrm{T}}(1)=2 \sum_{t} \int[t(k)]^{2} r_{1 k}^{-1} \mathrm{~d} \tau_{k}-\sum_{\nu} z_{\nu} r_{1 \nu}^{-1}, \tag{8}\\
& V^{\mathrm{R}}(1)=2 \sum_{r} \int[r(i)]^{2} r_{i 1}^{-1} \mathrm{~d} \tau_{i}-\sum_{\mu} z_{\mu} r_{1 \mu}^{-1}
\end{align*}
$$

where the summations over μ and ν run over the nuclei of R and T . (The respective nuclear charges are Z_{μ} and Z_{ν}.) The quantities $\rho_{r r}^{\mathrm{R}}$ and $\rho_{r t}^{\mathrm{T}}$ have been called [2] overlap transition densities. They are defined by
$\rho_{t r}^{\mathrm{R}}(1)=t(1) r(1)-\sum_{r^{\prime}} S_{t r^{\prime}} r^{\prime}(1) r(1)$,
$\rho_{r t}^{\mathrm{T}}(1)=r(1) t(1)-\sum_{t^{\prime}} S_{r t^{\prime}} t^{\prime}(1) t(1)$.
A simple example to which we have applied these formulas is that of two interacting He atoms where A does not contain higher exchanges than the double exchange $P_{2}=P_{13} P_{24}$. Using Slater determinants $\left.\mid 1 s^{R}(1)\right] s^{R}(2) \mid$ and $\left|1 s^{T}(3) 1 s^{T}(4)\right|$ to describe the unperturbed atoms and using an expansion of the 1 s Hartree-Fock AO as a sum of ten 1s gaussians [11] we obtained the results shown in table 1^{*}.

As noted above, X_{1} dominates \widetilde{U} at short distances, and in fact since E_{C} for He_{2} merely arises form penetration, X_{1} here remains the largest contribution even at long distances. Thus X_{1} cannot be treated as being an order of S^{2} smaller than E_{C}. By contrast, X_{2} is an order of S^{2} smaller than X_{1} at all distances ($X_{2} \approx 0.7 S_{1} X_{1}$) and its contribution to \widetilde{U} is less than 1% from $R=3.5$ onwards. Likewise, the S_{1} contribution to the denominator of (3) is negligible from $R=3.5$ au onwards, while the S_{2} contribution is already small at $R=2.0$ au. Thus for $R>3.5$ au one has $\widetilde{U} \approx E_{\mathrm{C}}+X_{1}$, which is the expression employed

[^1]Table 1
Break-down of the first-order interaction energy \tilde{U} for He_{2} a)

	$R(\mathrm{au})$			
	20			
S_{1}	$-1.95931(-1)$	$-3.632(-3)$	$-3.9(-5)$	
S_{2}	$9.597(-3)$	$3(-6)$	$\approx(-10)$	
E_{C}	-3180.57	-28.333	-0.169	
X_{1}	16204.72	175.506	1.120	
X_{2}	-1996.17	-0.455	-0.000	
\widetilde{U}	14281.81	147.356	0.951	
ΔE b)	15050.41	147.466	1.108	

a) In this case $S_{1}=2 S^{2}, S_{2}=S^{4}$ where $S=\int 1 \mathrm{~s}^{\mathrm{R}} 1 \mathrm{~s}^{\mathrm{T}} \mathrm{d} \tau$. Energies in units 10^{-5} au.
b) ΔE is a first-order interaction energy comparable to \tilde{U} (see text).
by Murrell and Shaw [12] in the region $R \geqslant 4.0$ au. Contrary to what one might expect this expression underestimates \widetilde{U} at shorter distances.

The last column of table 1 contains values (for the same 10 s basis set) of the alternative first-order energy ΔE, defined as $\langle H\rangle\rangle_{t_{0}}-\left\langle H^{\mathrm{R}}\right\rangle_{\phi} \mathrm{R}-\left\langle H^{\mathrm{T}}\right\rangle_{\phi} \mathrm{T}$. This quantity can be obtained routinely in SCF calculations on interacting systems, but it has been emphasized that ΔE and \widetilde{U} are very different for approximate $\phi^{\mathrm{R}}, \phi^{\mathrm{T}}[1,13]$. By contrast, we find ΔE to be nearly equal to \widetilde{U} at all distances. As we will show elsewhere, this arises because the difference between ΔE and \widetilde{U} is approximately equal to $\left\langle P_{1} \phi^{0}\right| H^{0}-\left\langle\phi^{0}\right| H^{0}\left|\phi^{0}\right\rangle\left|\phi^{0}\right\rangle$ and this integral is rigorously zero if Hartree-Fock
wavefunctions are used for R and T. Further calculations on He_{2} and Ne_{2} are in progress and will be published elsewhere.

We thank the referee for drawing our attention to the work by Matsen and Klein [9].

Referenices

[1] H. Margenau and N.R. Kestner, Theory of intermolecular forces (Pergamon, London, 1969) section 3.2.
[2] J.N. Murrell, M. Randie and D.R. Williams, Proc. Roy. Soc. A284 (1965) 566.
[3] J.N. Murrell and G. Shaw, J. Chem. Phys. 46 (1967) 1768.
[4] D.R. Williams, L.J. Schaad and J.N. Murrell, J. Chem. Phys. 47 (1967) 4916.
[5] J.G.C.M. van Duijneveldt-van de Rijdt and F.B. van Duijneveldt, Chern. Phys. Letters 2 (1968) 565.
$[6]$ R. Block, R. Roel and G. ter Maten, Chem. Phys, Letters 11 (1971) 425.
[7] V. Beitrân-L6pez, M. Javier Flores and O. Novaro, Chem. Phys. Letters 11 (1971) 417.
[8] P.D. Dacre and R.McWeeny, Proc. Roy. Soc. A317 (1970) 435.
[9] F.A. Matsen and D.J. Klein, J. Phys. Chem. 75 (1971) 1860.
[10] F.B. van Duijneveldt, Ph.D. Thesis, Utrecht (1969). Copies are avaliable upon request.
[11] F.B. van Duijneveldt, IBM Technical Report RJ945 (1971).
[12] J.N. Murrell and G. Shaw, Mol. Phys. 12 (1967) 475; 15 (1968) 325.
[13] H. Margenau and P. Rosen, J. Chem. Phys. 21 (1953) 394.

[^0]: * First-order energies for He_{2} have recently also been studied by Block et al. [6] and by Beltrấr-López et al. [7]. The partitioning of interaction energies into orders of S^{2} has recently been studied by Dacre and McWeeny [8] and by Matsen and Klein [9]. In the spir-free formulation of the latter authors the partitioning is achieved by performing a double-coset decomposition of the symmetric group $\mathrm{S}^{N^{\mathrm{R}}+N^{\mathrm{T}}}$ with respect to the subgroup $\mathrm{S}^{N^{\mathrm{R}}} \otimes \mathrm{S}^{N^{T}}$. There is a oneto-one correspondence between these double cosets and the various terms (P_{0} or P_{1} or $P_{2} \ldots$) in our eq. (2).

[^1]: * The calculations were performed on an IBM $360 / 65$ (IBM Computing Centre, Rijswijk) using a special version of Clementi and Veillard's IBMOL-4 program.

