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Explicit formulas are presented for the double-exchange first-order interaction energy of two closed-shell mole-
cules. Calculations on Hes show that the double-exchange terms contribute significantly for R < 3.5 au.

For a system consisting of two closed-shell mole-
cules R and T with VR and NT electrons, respectively,
the total hamiltonian may be written as

H=H+U=HR+HT + U,

where U collects the coulombic interactions between
the electrons and nuclei of R on the one hand and
those of T on the other hand. A good trial function for
the interacting system in its ground state is the anti-
symmetrized product A¢0 = AYR YT where YR and
T are the ground-state eigenfunctions of #R and HT,
respectively, In symmetry-adapted perturbation

theory the corresponding first-order interaction energy
is given by [11

&= (A% U169 /<0160y . (1

In the usual case where only approximations ¢R, ¢T
to the exact eigenfunctions YR, ¢T are available one
may still use this expression to estimaie a first-order
energy.

Following Murrell et al. {2] U may be decomposed
inte the classical electrostatic energy, £ = (@01 U169,
and a remainder called the exchange energy by ex-
panding the antisymmetrizer A. One may write

A =N(PQ—P1%P2--‘) 3. )

where N is a numerical constant, Py is the identity
operator and Py, P4, etc. are sums of operators ex-
changing one, two, etc. pairs of electrons between the
interacting molecules. The Py term gives fise to £e,

and most of the short-range repulsion energy comes
from the P terms.

In refs. [2, 3] it was argued that the P, terms in
(1) are of the order S2, the P, terms of the order 54,
etc. (where S is a typical overlap integral between oc-
cupied orbitals on R and T) and hence if the inter-
molecular overlap is small then terms beyond those
arising from P maxbe neglected. Consequently, ex-
plicit formulas for U have so far only been given up to
terms of the order S2 [4, 5]. However, in practice the
Py and P terms can be of the same magnitude (the .
latter in fact dominate U at short distances) and while
the P, terms are an order of S2 smaller than the Py
terms it is not clear under what circumstances they
are truly negligible. The purpose of this letter is to
provide explicit formulas for the P, terms in terms of
single-determinant MO wavefunctions for the separate
molecules. We also present some preliminary results
for the He, interaction®.

Carrying through the expansion of A in (1) we find

* First-order energies for He, have recently also been studied
by Block et al. {61 and by Beltrdn-Lépez et al. {7]. The
partitioning of interaction energies into orders of 8?2 has

" recently been studied by Dacre and McWeeny [8] 4nd by
Matsen and Klein [9]. In the spin-free formulation of the -
Iatter authors the partitioning is achieved by performing a

liz eco oset decomposition of the symmeénc gro¥p
+¥% with respect to the subgroup SV . There -
is a one-to-one correspondence between these double cosets
and the various terms (Pg or Py or Pz...) in our eq. (2).
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In the next step we use the explicit form of P| and P,
viz.,

P1=Z,>Z>Pik and Pzz.E_Z;EZPikP/I’
ik i<j k<l

where i and j are electrons on R and & and / are elec-
trons on T. Inserting ¢© = ¢R¢T, with ¢R =

FRA-UE-44

|rrr'7r " .. and @1 = |tir'Ft"7"..| one finds after
some tedious algebra (a detailed derivation of S and
X may be found in [10]; the derivation of S, and
X is similar but more involved):

5, == e =-2223352 (@)
t r

Sy =Py @016
=E = 23 Z-\‘Sr’t'‘S‘rt{z‘svi-'r“grr =Sy Sprpd (5
I A A 4
= 0 0
X, =P, ¢"IU-Elo™)

()
=2 2325 {5, ¥TieR) + (RIS, V) + (e leR) Y
t r ’

Xy =Py IU—EL16% =27, 25 2 25(S,,S,,
tor ot
Ti5,R R Rys,T T
X [ lzpr.t.Sn—pr,tSn.)+(V 12'Dr'r’‘S‘rt'pr'r‘s‘rr’n
R Riy T T :
+ (‘Slrtpr‘t"-!-sr't'prtl ZS'rtpr'z"—pr'z'gz'_t')} : _ M
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In these expressions the summations over r and 1’
run over all occupied space orbitals of R. Similarly,
the summations over ¢ and ¢’ are over the occupied
space orbitals of T. The quantities I'T and V'R repre-
sent the potential energy of an electron in the field of
T and R, respectively:

viin=2 Zt)f (1) ?ritar, — 252, 7L,
124

®)
rR() =22 [ 1 >rtdr - 2z, 1),
r B

where the summations over u and v run over the nuclei
of R and T. (The respective nuclear charges are Z,,

and Z,,.) The quantities pﬁ and p-,r[ have been called
[2] overlap transition densities. They are defined by

PR =1 (Dr() - 238, r(Dr(1),
©
pE(Y=r(D (1) = 23S, (1D e(1) .
.

A simpie example to which we have applied these
formulas is that of two interacting He atoms where A
does not contain higher exchanges than the double
exchange Py = Py3 Py4. Using Slater determinants
[1sR(D TsR(2)! and | 1sT(3) 1sT(4)] to describe the
unperturbed atoms and using an expansion of the 1Is
Hartree—Fock AQ as a sum of ten 1s gaussians [11]
we obtained the results shown in table 1*.

As noted above, X; dominates T at short distances,
and in fact since £ for He, merely arises form pene-
tration, X; here remains the largest contribution even
at long distances. Thus X; cannot be treated as being
an order of $2 smaller than E¢. By contrast, X5 is an
order of §2 smaller than X, at all distances
(X, =0.78, X) and its contribution to U is less than
1% from R = 3.5 onwards. Likewise, the Sy contri-
bution to the denominator of (3) is negligible from
R = 3.5 au onwards, while the S, contribution is al-
ready small at R = 2.0 au. Thus for R > 3.5 au one
has U= E + Xy, which is the expression employed

* The calculations were performed on an IBM 360/65 (IBM
Computing Centre, Rijswijk) using a special version of
Clementi and Veillard's IBMOL4 program.
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. Table 1. -
~ Break-down of the first-order interaction energy U for He; a)

R (aw)

2.0 4.0 6.0
S -1.95931 (-1) ~3.632(-3) -3.9(-3)
Sz 9.597¢(-3) 3(-6) ~(—10)
EC ~3180.57 -28.333 ~0.169
X1 16204.72 175.506 1.120
Xa -1996.17 -0.455 ~0.000
u 14281.81 147.356 0.951
AED) 1505041 147.466 1.108

a) In this case Sy = 282, §, = §* where § = { 1sR 151 dr.
Energies in units 10™ 5 au,

b) AF is a first-order interaction energy compa:able to I (see
text).

by Murrell and Shaw [12] in the region R > 4.0 au.
Contrary to what one might expect this expression
underestimates U at shorter distances.

The last column of table | contains values (for the
same 10s basis set) of the alternative first-order energy
AE, defined as () o — (HP) R~ (HT) 1. This
quantity can be obtained routmely in SCFsbcalcuIations
on interacting systems, but it has been emphasized
that AF and U are very different for approximate
#R, ¢T [1, 13]. By contrast, we find AE to be nearly

equal to U at all distances. As we will show eisewhgge,

this arises because the difference between AE and U
is approximately equal to (P; ¢0]HO— (301 H0[¢0)¢0)
and this integral is rigorously zero if Hartree—Fock
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wavefunctions are used for R and T. Further calcula-
tions on He, and Ne, are in progress and will be pub-
lished elsewhere.

We thank the referee for drawing our attention to -
the work by Matsen and Klein [9].
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