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The Bethe-Salpeter equation for the TN system in the ladder approximation with N exchange is solved in
the elastic region using Padé approximants. It is shown that the lowest order diagonal approximant [1, 1]

is a bad approximation for this case.

Recently there has been interest in the applica-
tion of Padé approximants within the domain of
particle physics [1,2]. In this method the scatter-
ing amplitude T'(g) for a given value of the coup-
ling constant g is approximated by a quotient of
two polynomials P M(g) and @p(£) of order M and
N respectively; their coefficients are determined
from the power series expansion of T(g) at g =0
[3]. Results obtained in non-relativistic potential
scattering for certain potentials showed that the
sequence of diagonal approximants (M = N), usu-
ally denoted by [N, N], converges rapidly with
increasing N [4]. Moreover, the first approxi-
mant [1,1] turned out to be already a reasonable
approximation to the exact solution, even for
rather large coupling constants. In view of the
possible applications of this method to the study
of the dynamics of strongly interacting particles
it is of some interest to study in a systematic
way its usefulness in an actual field theoretical
model.

In this note we present some results on the
solutions of the Bethe-Salpeter equation for 7N
scattering in the ladder approximation with N
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Fig. 1. The Bethe-Salpeter equation in diagrammatic
form. P is the total 4~-momentum; in the c.m. system

P=(0,0,0, \/TSL)
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Fig. 2. g2 versus A at elastic threshold s = 61.6 for
some approximants. On this scale [3, 3] and [4, 4] coin-
cide with [5, 5].

exchange and pseudoscalar interaction. The equa-
tion in diagrammatic form is shown in fig. 1.

The corresponding integral equation for the
scattering amplitude 7 in momentum space is
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Fig. 3. The phase shift versus g2 at s = 70 and A = 15.

given by

Tp,p') =-4ng2 [ivip +p") + M]A(p +p") +

-idng? [ d4k4 [inp+k) + M A(p+ k) ¥
(2m) (1)
X [AN3P + k) -M]G (k) T(k,p")
with
AlR) = [k2 + M2 - ie]
Ge) = [P+ B2+ M2 -1l (EP- B2+ 1-ie] L .

-1

We have set here my = 1. Furthermore the coup-
ling constant is defined in such a way that the ex-
perimental value of g2 is given by 14.5.

Each term in the perturbation series solution
of eq. (1) is finite as can easily be inferred from
power counting arguments. However, the integral
equation itself is marginally singular. For this
reason a relativistic cutoff is introduced in the
interaction by making in eq. (1) the substitution

AR) = A, k) =[R2 +m? 1] =[R2+ A2-i€]7],
Introduction of a complete set of helicity spinors
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in eq. (1) leads after partial wave decomposition
to a pair of coupled integral equations in spinor
space which are of the form

2
00 4 00
TpP100) = Vyyy (b,00) + 25 [k [ dkgy x
n=1 o —00
(2)
X Kmn (£, ol b, ko) Tylk, ko).

In eq. (2) only the integration and spinor variables
are written out explicitly.

In order to solve these equations numerically
a Wick rotation has been performed in the %,
variable from the real to the imaginary axis, a
procedure already used in the case of scalar
particles [5]. The remaining singularities can be
handled numerically. No extra complications
arise as long as A > M. The resulting equations
have been iterated on a IBM 360-50 using an in-
tegration with 8 Gaussian points in each variable.
The accuracy of the coefficients obtained in this
way has been tested to be better than 1% by in-
creasing the number of integration points. An in-
dependent check was also made on the box dia-
gram contribution by calculating it in a different
way. The solution of Bethe-Salpeter equation was
obtained by constructing diagonal Padé approxi-
mants from the coefficients of this perturbation
series expansion in g2. One of the main advantages
of these diagonal approximants is that elastic
unitarity is automatically satisfied.

Some results which are representative for the
applicability of this method are given in figs. 2,
3 and 4. Specifically the pgg partial wave is con-
sidered here. In fig. 2 the coupling constant for
which the first bound state occurs at elastic thres-
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Fig. 4. The phase shift versus A at s = 70 and g2 =
= 14.5. On this scale [3, 3] and [4, 4] coincide with
{5,5].
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hold is given as a function of the cutoff param-
eter A. It shows a rapid convergence of the se-
quence of [N,N] approximants. The first approxi-
mant [1,1] however gives results which differ
considerably from the exact values. In contrast
to the fact that the [1,1] approximant cannot
produce, even for infinite cutoff, a bound state
below g2 ~ 66, the exact solution already gives
a bound state for A >22 at g2 = 14.5. As a con-
sequence the N§3 can even be realised here in
the Bethe-Salpeter equation as a bound state. Of
course it can be obtained as a resonance by
adapting the cutoff parameter.

For a given A the sequence of { N,N] approxi-
mants converges slower for increasing coupling
constant. This is shown fig. 3 where the phase
shift is plotted as a function of g2 ats =70 and
A =15, For this value of the cutoff a second
bound state appears at g2 = 80. Even in this
region of g2 the [4,4] and [5, 5] approximants are
still very close to each other. Finally in fig. 4
the phase shift is given as a function of A ats =
=70 and g2 = 14.5. Here too it is found that the
[1,1] approximant is a very poor approximation.

To summarize, we may conclude that although
the Padé method can be used to solve the Bethe-
Salpeter equation for the 7N system for inter-
mediate strong interaction higher order approxi-

mants than [1,1] are needed. It is in contrast to
the case of scalar particles where the [1,1] ap-
proximant already gives a reasonable description
[6]. This difference may be ascribed to the
singular nature of the one nucleon exchange force
in the 7N case.
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